JPH0773454A - Production of carbon protective film and plasma treating device - Google Patents

Production of carbon protective film and plasma treating device

Info

Publication number
JPH0773454A
JPH0773454A JP5217193A JP21719393A JPH0773454A JP H0773454 A JPH0773454 A JP H0773454A JP 5217193 A JP5217193 A JP 5217193A JP 21719393 A JP21719393 A JP 21719393A JP H0773454 A JPH0773454 A JP H0773454A
Authority
JP
Japan
Prior art keywords
film
plasma
protective film
positive
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5217193A
Other languages
Japanese (ja)
Inventor
Hiroshi Inaba
宏 稲葉
Yuichi Kokado
雄一 小角
Hiroshi Matsumoto
洋 松本
Shigehiko Fujimaki
成彦 藤巻
Makoto Kito
諒 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5217193A priority Critical patent/JPH0773454A/en
Publication of JPH0773454A publication Critical patent/JPH0773454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a magnetic recording medium having a high-hardness protective film by superposing a positive DC bias voltage on the output of a high-frequency power source at the time of forming plasma by using the high-frequency power source, thereby executing film formation selectively using the negative ion active species in plasma. CONSTITUTION:An electrode 1 commonly used as a vacuum chamber is evacuatable to a pressure below the atm. pressure and generates plasma when a high voltage is impressed thereto. A DC positive voltage impressing device 4 and a choke coil 9 impresses a DC positive voltage to a substrate holder 3 commonly used as a third electrode holding a disk substrate 2 to be treated. The high-frequency power source 5 supplies high-frequency electric power to the electrode 1 commonly used as the vacuum chamber via a blocking capacitor 10. As a result, the film formation selectively using the negative ions of C, CH<-> which are ion active species without contg. many H atoms is executed to obtain the film mainly composed of the C single bond having the small quantity of H, and the magnetic recording medium having the high-hardness protective film of the quality quantitively and collectively evaluated from Raman spectra.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高硬質なアモルファスカ
ーボン保護膜を有する磁気記録媒体と、そのの製造方法
及び製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having a highly hard amorphous carbon protective film, and a manufacturing method and manufacturing apparatus for the same.

【0002】[0002]

【従来の技術】プラズマ処理装置を用いた被処理基板へ
の薄膜形成技術は、スパッタ、CVD技術等を用いて磁
気ディスクや光ディスクにおける薄膜形成に広く用いら
れている。
2. Description of the Related Art A thin film forming technique for a substrate to be processed using a plasma processing apparatus is widely used for forming a thin film on a magnetic disk or an optical disk by using a sputtering technique, a CVD technique or the like.

【0003】特に、高周波プラズマCVDにおいては、
公開特許公報昭62−83471号に開示されている様
に高エネルギーイオンによるエッチングやイオンアシス
ト成膜を行う方法が公知であり、リアクティブイオンエ
ッチングや高硬度カーボン膜の成膜が行われている。
Particularly in high frequency plasma CVD,
As disclosed in Japanese Unexamined Patent Publication No. 62-83471, a method of performing etching with high-energy ions or ion-assisted film formation is known, and reactive ion etching or high-hardness carbon film formation is performed. .

【0004】しかしながら、被処理基板上における成膜
過程については学術的にも不明瞭な点が多く、被処理基
板にアタックするイオン活性種と成膜される膜質との関
係は明らかでない。通常のプラズマCVD処理は、被処
理基板を接地側電極上あるいは高周波を印加する側の電
極上のいずれかで処理を行うが、この場合、中性ラジカ
ル粒子とシースによって加速される正イオンによって成
膜処理が行なわれていると考えられている。例えばCH
4ガスを用いたプラズマCVD処理におけるイオンエネ
ルギーアナライザの測定結果からは、中性ラジカル粒子
と主イオン成分としては、CH3+イオン,C25+イ
オンのスペクトルが最も強度が高く観測され、正イオン
を主とした成膜が行なわれていることが確認できる。
However, the film forming process on the substrate to be processed is often unclear from an academic point of view, and the relationship between the ion active species attacking the substrate to be processed and the film quality to be formed is not clear. In the ordinary plasma CVD process, the substrate to be processed is processed either on the ground side electrode or on the electrode to which a high frequency is applied. In this case, it is formed by neutral radical particles and positive ions accelerated by the sheath. It is believed that a membrane treatment is performed. For example CH
From the measurement results of the ion energy analyzer in the plasma CVD process using 4 gases, the spectra of CH 3 + ions and C 2 H 5 + ions were observed as the highest intensity as the neutral radical particles and the main ion component, It can be confirmed that the film is formed mainly with positive ions.

【0005】この際、膜の硬質化を促すため膜表面から
の脱水素化を行なうが、これを行う方法として、より大
きな電位で加速したイオンを膜表面に打ち込んでいた。
しかしながら図1に示すように、膜表面では脱水素化に
ともない二重結合の生成される割合も高くなるため、膜
質をグラファイト化する原因ともなった。つまり、膜を
構成する分子内におけるHの絶体量が多いため、脱水素
化に伴う二重結合の増加が発生し、H量の少ないC単結
合主体の膜ができにくい状況にあった。
At this time, dehydrogenation from the film surface is carried out in order to promote hardening of the film. As a method of doing this, ions accelerated at a larger potential are implanted into the film surface.
However, as shown in FIG. 1, the rate of generation of double bonds increases with dehydrogenation on the surface of the film, which also causes graphitization of the film quality. In other words, since the absolute amount of H in the molecule constituting the film is large, the number of double bonds increases with dehydrogenation, which makes it difficult to form a C single bond-based film having a small amount of H.

【0006】[0006]

【発明が解決しようとする課題】前記したように従来の
プラズマCVD技術においては、成膜時に用いられる主
なイオン活性種が、H原子を多く含む正イオンであり、
H量の少ないC単結合主体の膜ができにくい状況にあっ
た。
As described above, in the conventional plasma CVD technique, the main ionic active species used during film formation are positive ions containing many H atoms,
There was a situation in which it was difficult to form a film containing mainly C single bonds with a small amount of H.

【0007】本発明においては、H原子を多く含まない
イオン活性種であるC~、CH~といった負イオンを選択
的に用いた成膜を行うことで、H量の少ないC単結合主
体の膜を得、成膜された膜質についてのラマンスペクト
ルから定量的、かつ総合的に促え、高硬度保護膜を有す
る磁気記録媒体を得ることを目的とする。
In the present invention, a film mainly containing a C single bond having a small amount of H is formed by performing film formation by selectively using negative ions such as C to and CH to which are ionic active species not containing a large amount of H atoms. And quantitatively and comprehensively promoting it from the Raman spectrum of the formed film quality to obtain a magnetic recording medium having a high hardness protective film.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、イオンプラズマ処理装置における被処理基
板保持部分に正の直流バイアスを印加する機構を備え付
けることで負イオンを基板表面に引き寄せ、選択的にこ
れを用いて成膜を行った。
In order to achieve the above object, the present invention is provided with a mechanism for applying a positive DC bias to a substrate holding portion of an ion plasma processing apparatus to attract negative ions to the surface of the substrate. The film was selectively formed using this.

【0009】具体的には、反応ガスとしてCH4ガスを
用いた場合、負イオン化してプラズマ中に存在すると確
認できるものはC~あるいはCH~であり、C原子1個当
たりに付属する水素原子数は、従来のイオン選択を行わ
ないプラズマCVDにおいて主イオン成分であったCH
3+イオン、C25+イオンに比較して1/2以下とな
る。つまり図2に示すように、負イオンを用いた成膜方
法を用いると膜中に含まれる水素の絶対量が少なくな
る。
Specifically, when CH 4 gas is used as the reaction gas, it is C ~ or CH ~ that can be confirmed to be negatively ionized and present in the plasma, and hydrogen atoms attached to each C atom. The number of CH is the main ion component in the conventional plasma CVD without ion selection.
It becomes 1/2 or less as compared with 3 + ions and C 2 H 5 + ions. That is, as shown in FIG. 2, when the film forming method using negative ions is used, the absolute amount of hydrogen contained in the film is reduced.

【0010】従って、膜中における単位体積当たりの水
素量が従来の正イオンを用いた場合得られる場合より少
なくすることが可能となる。このことは、二重結合の生
成を抑制することになり結果的には、H量の少ないC単
結合主体の膜を得る事が出来る。
Therefore, the amount of hydrogen per unit volume in the film can be made smaller than that obtained when the conventional positive ions are used. This suppresses the formation of double bonds, and as a result, it is possible to obtain a film mainly containing C single bonds with a small amount of H.

【0011】[0011]

【作用】本発明によると、負イオンのみで成膜されたカ
ーボン保護膜のラマンスペクトルは、1520cm~1以下
に一つだけピークをもつ特性を示すようになる。これ
は、従来の正イオンを用いた成膜で得られるアモルファ
ス的な構造を持つ膜に比較し、水素及び、二重結合が膜
中からより減少することにより、C単結合によりダイヤ
モンド構造をとる成分が増加したためと考えられる。ま
た、本スペクトルは二重結合の伸縮結合振動に対応する
ラマンスペクトル成分1580cm~1のピークがないこと
からも確認できる。また、ひとつのピークしか得られな
いことよりクラスタサイズの小さい同じ構造をもつ成分
で形成されていることも予想できる。
According to the present invention, the Raman spectrum of the carbon protective film formed with only negative ions shows a characteristic having only one peak at 1520 cm to 1 or less. This is because the hydrogen and double bonds are reduced from the film as compared with the conventional film having an amorphous structure obtained by film formation using positive ions, so that a diamond structure is formed by a C single bond. It is considered that the components increased. The present spectrum can be confirmed because there is no peak in the Raman spectrum components 1580 cm ~ 1 corresponding to stretching bond vibrations of the double bond. Further, since only one peak is obtained, it can be expected that the clusters are formed of components having the same structure with a small cluster size.

【0012】[0012]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0013】図3は本発明のディスク基板用プラズマ処
理装置の一実施例の構成を示す。
FIG. 3 shows the configuration of an embodiment of the plasma processing apparatus for disk substrates of the present invention.

【0014】本発明によるプラズマ処理装置は少なくと
も、大気圧以下の圧力に排気可能で、かつ、高電圧を印
加しプラズマを発生させるための真空槽兼電極1と、被
処理ディスク基板2とこれを保持し、かつ直流正電圧を
印加する第3電極3と印加するための直流正電圧印加装
置4とチョークコイル9と、前記電極1に高周波電力を
印加するための高周波電源5とブロッキングコンデンサ
10と電極間を絶縁するための絶縁材11と、ガス状物
質をプラズマ発生領域に導入するためのガス導入機構6
と、真空槽兼電極1内部を大気圧以下に保持するための
排気機構7と、真空槽兼電極1と排気機構7とを仕切る
バルブ8とから構成される。
The plasma processing apparatus according to the present invention is capable of exhausting at least a pressure below atmospheric pressure, and also serves as a vacuum chamber / electrode 1 for generating a plasma by applying a high voltage, a disk substrate 2 to be processed, and this. A third electrode 3 for holding and applying a DC positive voltage, a DC positive voltage applying device 4 for applying the voltage, a choke coil 9, a high frequency power source 5 for applying high frequency power to the electrode 1, and a blocking capacitor 10. An insulating material 11 for insulating between the electrodes, and a gas introduction mechanism 6 for introducing a gaseous substance into the plasma generation region.
And an exhaust mechanism 7 for keeping the inside of the vacuum chamber / electrode 1 at atmospheric pressure or below, and a valve 8 for partitioning the vacuum chamber / electrode 1 and the exhaust mechanism 7.

【0015】本装置において、反応ガスとしてCH4
スを導入し、圧力が6.7Pa一定となるように流量と
排気速度を調節した。その後、周波数13.56MHz
の高電圧を印加し、プラズマを発生させた。実効電力は
2kWであった。
In the present apparatus, by introducing a CH 4 gas as the reaction gas, the pressure was adjusted flow rate and the exhaust rate so that 6.7P a constant. Then frequency 13.56MHz
Was applied to generate a plasma. The effective power was 2 kW.

【0016】その後、正の直流電圧400Vを被処理デ
ィスク基板2に印加した状態とした。この状態で成膜を
行った結果、成膜されたラマンのデータを図4(a)に
示す。ここで、ラマンスペクトルは、1520cm~1当た
りにピークを持つ特性が得られた。なお、参考のため
に、従来の方法と等価である直流バイアスを0Vとし
て、チョークコイルを外した場合に得られたラマンのデ
ータも図4中の(b)に示している。この比較より明ら
かにピーク位置がシフトしていることが分かる。
After that, a positive DC voltage of 400 V was applied to the disk substrate 2 to be processed. As a result of forming the film in this state, data of the formed Raman is shown in FIG. Here, the Raman spectrum characteristic having a peak per 1520 cm ~ 1 is obtained. For reference, Raman data obtained when the choke coil is removed by setting the DC bias equivalent to the conventional method to 0 V is also shown in (b) of FIG. From this comparison, it can be seen that the peak positions are clearly shifted.

【0017】次に直流バイアス電圧を増加させイオン活
性種のエネルギーを増加させた場合の膜中におけるHの
割合(Hydrogen Forward Scattering法によって水素量
を測定)と、ラマンのピーク位置との関係を図5に示
す。本図からは、正、負のイオンいずれを用いた場合に
おいても、エネルギーの増加(直流バイアス値の増加)
により膜中のH量の割合は減少の傾向を示した。一方、
ラマンスペクトルのピーク波長位置はエネルギーの増加
に伴い、ピーク位置が高波数側にシフトしていく傾向が
見られた。一般に、高波数側にラマンのピークがシフト
することは、膜質のグラファイト化を意味しC=C結合
を持つ炭素のクラスター増加を意味する。従って、膜中
のHの割合を低く、かつ二重結合C=Cを低く抑えるた
めの最良点としては両特性曲線の交点が選択される。そ
こで、正イオンを用いた場合と負イオンを用いた場合の
特性曲線の最良点について比較を行った。ここで、膜中
の水素量は、負イオンを用いた場合の方が絶対値として
1/2以下程度であった。ラマンのピーク位置に関して
は、負イオンを用いて成膜した膜は、いずれのイオン活
性種エネルギーに対しても正イオンを用いた場合より低
波長側にピークをもちえることが確認できた。
Next, the relationship between the ratio of H in the film (the amount of hydrogen measured by the Hydrogen Forward Scattering method) and the Raman peak position when the DC bias voltage is increased and the energy of the ion active species is increased is shown in FIG. 5 shows. From this figure, increase in energy (increase in DC bias value) regardless of whether positive or negative ions are used
As a result, the proportion of H in the film tended to decrease. on the other hand,
The peak wavelength position of the Raman spectrum tended to shift to the higher wavenumber side as the energy increased. In general, the shift of Raman peak to the higher wave number side means graphitization of the film quality and an increase of carbon clusters having C = C bonds. Therefore, the intersection of both characteristic curves is selected as the best point for keeping the proportion of H in the film low and the double bond C = C low. Therefore, the best points of the characteristic curves when using positive ions and when using negative ions were compared. Here, the amount of hydrogen in the film was about 1/2 or less in absolute value when negative ions were used. Regarding the Raman peak position, it was confirmed that the film formed using negative ions had a peak at a lower wavelength side than when positive ions were used for any ion active species energy.

【0018】次に、膜硬度とイオン活性種のエネルギー
との関係についても図6に示している。ここで、正イオ
ンと負イオンの特性は、それぞれ、図5中のH特性曲線
とラマンピーク特性曲線の交点におけるイオンのエネル
ギー値をピークとした膜硬度特性曲線が得られた。膜硬
度の絶対値としては負イオンを用いた場合の方が、正イ
オンを用いたときに得られる膜より1500Hv高いビ
ッカス硬度4500Hvが得られた。
Next, FIG. 6 also shows the relationship between the film hardness and the energy of the ion active species. Here, as the characteristics of the positive ions and the negative ions, a film hardness characteristic curve having the energy value of the ion as a peak at the intersection of the H characteristic curve and the Raman peak characteristic curve in FIG. 5 was obtained. As for the absolute value of the film hardness, when the negative ions were used, a Vickus hardness of 4500 Hv which was 1500 Hv higher than that obtained when the positive ions were used was obtained.

【0019】また、本発明の高硬質膜を磁気記録媒体の
保護膜として用いると、従来の正イオンを用いた保護膜
では膜厚20nmで得られた耐摺動性、耐摩耗性が、本
発明の負イオンを用いて形成した保護膜では膜厚10n
mで同様な結果が得られた。
When the high hardness film of the present invention is used as a protective film for a magnetic recording medium, the conventional protective film using positive ions has the same sliding resistance and abrasion resistance as obtained at a film thickness of 20 nm. The protective film formed by using the negative ions of the invention has a film thickness of 10 n
Similar results were obtained with m.

【0020】第2の実施例としては、図3の装置で反応
ガスにCF4ガスを用いて実験を行った。CF4ガスによ
って作られるF~を主な成分とした負イオンを用いたC
膜の成膜においては、正イオンCF3+イオン、CF2
イオンを用いたフッ素系C膜中のF含有量と比較して、
より低いF含有量となるため図8に示すようなC原子に
よる立体障害が発生しやすく、より硬度の高い安定した
膜が得られた。尚、図7には、正イオンCF3+イオ
ン、CF2+イオンを用いて得られる膜構造を示してい
る。
As a second embodiment, an experiment was conducted by using CF 4 gas as a reaction gas in the apparatus shown in FIG. C using negative ions mainly composed of F ~ produced by CF 4 gas
In forming the film, positive ions CF 3 + ions, CF 2 +
Compared with the F content in the fluorine-based C film using ions,
Since the F content was lower, steric hindrance due to C atoms was likely to occur as shown in FIG. 8, and a stable film having higher hardness was obtained. Note that FIG. 7 shows a film structure obtained by using positive ions CF 3 + ions and CF 2 + ions.

【0021】次に、本発明による高硬度保護膜を有する
磁気記録媒体の断面図を図9に示している。ここでは、
保護膜13として採用している。
Next, FIG. 9 shows a sectional view of a magnetic recording medium having a high hardness protective film according to the present invention. here,
It is used as the protective film 13.

【0022】[0022]

【発明の効果】本発明によれば、高硬度なカーボン膜を
成膜可能である。そのため、磁気記録媒体においてはカ
ーボン膜厚を薄膜化できリード/ライト特性の向上と、
高記録密度化対応した成膜が可能となる。
According to the present invention, a carbon film having high hardness can be formed. Therefore, in the magnetic recording medium, the carbon film thickness can be reduced and the read / write characteristics can be improved.
It is possible to form a film corresponding to high recording density.

【図面の簡単な説明】[Brief description of drawings]

【図1】反応ガスCH4ガスにおける正イオンを主体と
した場合の成膜過程を示す図である。
FIG. 1 is a diagram showing a film forming process in the case of mainly positive ions in a reaction gas CH 4 gas.

【図2】反応ガスCH4ガスにおける負イオンを主体と
した場合の成膜過程を示す図である。
FIG. 2 is a diagram showing a film forming process when negative ions in a reaction gas CH 4 gas are mainly used.

【図3】プラズマ処理装置の一実施例の基本構成を示す
図である。
FIG. 3 is a diagram showing a basic configuration of an embodiment of a plasma processing apparatus.

【図4】本発明により得られた膜のラマンスペクトル特
性を示す図である。
FIG. 4 is a diagram showing Raman spectrum characteristics of a film obtained by the present invention.

【図5】イオン活性種エネルギーと膜中のHの割合、ラ
マンピーク波長の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the energy of ion active species, the ratio of H in the film, and the Raman peak wavelength.

【図6】イオン活性種エネルギーと膜硬度の関係を示す
図である。
FIG. 6 is a diagram showing a relationship between ion active species energy and film hardness.

【図7】反応ガスCF4ガスにおける正イオンを主体と
した場合の膜構造を示す図である。
FIG. 7 is a diagram showing a film structure when positive ions in a reaction gas CF 4 gas are mainly used.

【図8】反応ガスCF4ガスにおける負イオンを主体と
した場合の膜構造を示す図である。
FIG. 8 is a diagram showing a film structure when negative ions in a reaction gas CF 4 gas are mainly used.

【図9】磁気ディスクの断面概略図を示す図である。FIG. 9 is a diagram showing a schematic cross-sectional view of a magnetic disk.

【符号の説明】[Explanation of symbols]

1…真空槽兼電極、 2…被処理ディスク基板、 3…第3電極兼基板ホルダー、 4…直流電源、 5…高周波電源、 6…ガス導入機構、 7…排気機構、 8…仕切り弁、 9…チョークコイル、 10…ブロッキングコンデンサ、 11…絶縁部材、 12…潤滑膜、 13…保護膜、 14…磁性膜、 15…Cr下地膜、 16…Ni−Pメッキ、 17…アルミ基板。 DESCRIPTION OF SYMBOLS 1 ... Vacuum tank and electrode, 2 ... Processed disk substrate, 3 ... 3rd electrode and substrate holder, 4 ... DC power supply, 5 ... High frequency power supply, 6 ... Gas introduction mechanism, 7 ... Exhaust mechanism, 8 ... Gate valve, 9 ... Choke coil, 10 ... Blocking capacitor, 11 ... Insulating member, 12 ... Lubrication film, 13 ... Protective film, 14 ... Magnetic film, 15 ... Cr base film, 16 ... Ni-P plating, 17 ... Aluminum substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤巻 成彦 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 鬼頭 諒 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naruhiko Fujimaki 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Stock Manufacturing Research Institute, Hitachi, Ltd. (72) Inventor Ryo Kito 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Production Engineering Research Laboratory, Hitachi, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】プラズマCVD法において、プラズマ中の
負イオン活性種を選択的に用いることを特徴とするカー
ボン保護膜製造方法。
1. A method for producing a carbon protective film, which comprises selectively using negative ion active species in plasma in a plasma CVD method.
【請求項2】プラズマCVDにおいて、炭素とふっ素を
含むガスを原料とし、負イオン活性種を選択的に用いる
ことを特徴とするカーボン保護膜製造方法。
2. A method for producing a carbon protective film, characterized in that, in plasma CVD, a gas containing carbon and fluorine is used as a raw material, and negative ion active species are selectively used.
【請求項3】請求項1又は2記載のプラズマ処理方法を
行うため、被処理基板に正の直流バイアス電圧を印加す
ることを特徴とするプラズマ処理装置。
3. A plasma processing apparatus, characterized in that a positive DC bias voltage is applied to a substrate to be processed in order to perform the plasma processing method according to claim 1.
【請求項4】請求項3記載のプラズマ処理装置におい
て、高周波電源を用いてプラズマを生成させていると
き、正の直流バイアス電圧を、高周波電源の出力に重畳
させることを特徴とするプラズマ処理装置。
4. The plasma processing apparatus according to claim 3, wherein a positive DC bias voltage is superimposed on the output of the high frequency power source when plasma is generated using the high frequency power source. .
【請求項5】請求項1又は2記載のプラズマCVD法を
用いて形成した、ラマンスペクトル(アルゴンレーザー
励起による)の成分が1520cm~1以下でひとつだけピ
ークを持つことを特徴とするアモルファスカーボン保護
膜。
5. Amorphous carbon protection formed by the plasma CVD method according to claim 1 or 2, characterized in that the Raman spectrum (by argon laser excitation) has only one peak at 1520 cm to 1 or less. film.
【請求項6】請求項3又は4記載のプラズマ処理装置を
含むことを特徴とする磁気ディスク製造装置。
6. A magnetic disk manufacturing apparatus comprising the plasma processing apparatus according to claim 3 or 4.
【請求項7】薄膜磁性体からなる記録膜上に、請求項5
記載のアモルファスカーボン保護膜を形成したことを特
徴とする磁気ディスク。
7. The method according to claim 5, wherein the recording film is made of a thin film magnetic material.
A magnetic disk comprising the amorphous carbon protective film described above.
【請求項8】請求項7記載の磁気ディスクに、磁気ヘッ
ド、モータ、アーム等を付属させ構成したことを特徴と
する磁気ディスク装置。
8. A magnetic disk drive comprising the magnetic disk according to claim 7 with a magnetic head, a motor, an arm and the like attached thereto.
JP5217193A 1993-09-01 1993-09-01 Production of carbon protective film and plasma treating device Pending JPH0773454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5217193A JPH0773454A (en) 1993-09-01 1993-09-01 Production of carbon protective film and plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5217193A JPH0773454A (en) 1993-09-01 1993-09-01 Production of carbon protective film and plasma treating device

Publications (1)

Publication Number Publication Date
JPH0773454A true JPH0773454A (en) 1995-03-17

Family

ID=16700320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5217193A Pending JPH0773454A (en) 1993-09-01 1993-09-01 Production of carbon protective film and plasma treating device

Country Status (1)

Country Link
JP (1) JPH0773454A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730266A2 (en) * 1995-02-06 1996-09-04 Hitachi, Ltd. Apparatus for plasma-processing a disk substrate and method of manufacturing a magnetic disk
DE19823900C2 (en) * 1997-05-30 2002-05-08 Yazaki Corp Connection element, connection structure between a connection element and a covered wire and method for connecting a connection element with a covered wire
US6455101B1 (en) 1999-07-28 2002-09-24 Anelva Corporation Method for depositing a protective carbon coating on a data recording disk
US7867579B2 (en) 2007-01-12 2011-01-11 Showa Denko K.K. Method for forming carbon protective film and method for producing magnetic recording medium, magnetic recording medium and magnetic recording/reproducing apparatus
JP2011192325A (en) * 2010-03-12 2011-09-29 Showa Denko Kk Carbon film forming method, magnetic recording medium, and magnetic recording and reproducing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730266A2 (en) * 1995-02-06 1996-09-04 Hitachi, Ltd. Apparatus for plasma-processing a disk substrate and method of manufacturing a magnetic disk
EP0730266A3 (en) * 1995-02-06 1998-07-01 Hitachi, Ltd. Apparatus for plasma-processing a disk substrate and method of manufacturing a magnetic disk
DE19823900C2 (en) * 1997-05-30 2002-05-08 Yazaki Corp Connection element, connection structure between a connection element and a covered wire and method for connecting a connection element with a covered wire
US6455101B1 (en) 1999-07-28 2002-09-24 Anelva Corporation Method for depositing a protective carbon coating on a data recording disk
US6571729B2 (en) 1999-07-28 2003-06-03 Anelva Corporation Apparatus for depositing a thin film on a data recording disk
US7867579B2 (en) 2007-01-12 2011-01-11 Showa Denko K.K. Method for forming carbon protective film and method for producing magnetic recording medium, magnetic recording medium and magnetic recording/reproducing apparatus
JP2011192325A (en) * 2010-03-12 2011-09-29 Showa Denko Kk Carbon film forming method, magnetic recording medium, and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
US6572935B1 (en) Optically transparent, scratch-resistant, diamond-like carbon coatings
EP0906636B1 (en) Highly tetrahedral amorphous carbon films and methods and ion-beam source for their production
US7931748B2 (en) Systems and methods for the production of highly tetrahedral amorphous carbon coatings
KR100586803B1 (en) A method of coating edges with diamond-like carbon
JP2002541604A (en) Method and apparatus for depositing a diamond-like carbon coating from a Hall current ion source
US6101972A (en) Plasma processing system and method
JPH0773454A (en) Production of carbon protective film and plasma treating device
US6090456A (en) Process for large area deposition of diamond-like carbon films
JP3384490B2 (en) Method of forming carbon film by high frequency plasma CVD
Ilias et al. Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle
JPH11158631A (en) Protective film, its production and article
JPH087219A (en) Amorphous carbon thin film and its production
EP0651385B1 (en) Method for producing diamond-like carbon film and tape driving apparatus
JPH101305A (en) Carbon film and production of carbon film
Robertson Deposition and properties of diamond-like carbons
JP3431914B2 (en) Method for manufacturing carbon or carbon-based film
Ullmann et al. Low energy ion-induced damage of polycrystalline diamond films
JPH06151421A (en) Formation of silicon nitride thin film
Gilbert et al. Novel in situ production of smooth diamond films
Lazar Influence of the substrate-electrode applied bias voltage on the properties of sputtered aC: H thin films
JP3327618B2 (en) Plasma processing equipment
Hara et al. Compound-layer-free nitriding of ferrous metals using electron-beam-excited nitrogen plasma
JP3000210B2 (en) Method for forming carbon or carbon-based coating
JP2003003262A (en) Method of manufacturing member coated with hard carbon film
Shevchenko et al. Diamond-like carbon film deposition using DC ion source with cold hollow cathode