JPH087219A - Amorphous carbon thin film and its production - Google Patents

Amorphous carbon thin film and its production

Info

Publication number
JPH087219A
JPH087219A JP13005894A JP13005894A JPH087219A JP H087219 A JPH087219 A JP H087219A JP 13005894 A JP13005894 A JP 13005894A JP 13005894 A JP13005894 A JP 13005894A JP H087219 A JPH087219 A JP H087219A
Authority
JP
Japan
Prior art keywords
thin film
carbon thin
film
plasma
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13005894A
Other languages
Japanese (ja)
Inventor
Hiroshi Inaba
宏 稲葉
Yuichi Kokado
雄一 小角
Hiroshi Matsumoto
洋 松本
Shigehiko Fujimaki
成彦 藤巻
Makoto Kito
諒 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13005894A priority Critical patent/JPH087219A/en
Publication of JPH087219A publication Critical patent/JPH087219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce a carbon thin film having high hardness by forming an amorphous carbon thin film in a plasma treatment device so that the film has a specified range of peak area ratio of SP<3>/SP<2> in the absorbance peaks measured by IR absorption spectrum. CONSTITUTION:The plasma treating device is equipped with a vacuum chamber and electrode 1 which can be evacuated to the pressure lower than the atmospheric pressure and can produce plasma by applying high voltage, a ground electrode 3, a disk substrate 2 to be treated, a third electrode 12 on which DC voltage is applied, and a device 4 to apply DC positive voltage. Further, the treating device is equipped with a chalk coil 9, a high frequency power supply 5, a blocking capacitor 10, an evacuating mechanism 7, etc. Plasma is produced by introducing CH4 gas into the device, controlling the flow amt. and the evacuating rate to obtain const. pressure, and applying high voltage. An amorphous carbon thin film having 5 to 11 peak area ratio of SP<3>/SP<2> absorbance peaks in the IR absorption spectrum is formed to make the wear rate minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高硬質なアモルファスカ
ーボン薄膜を有する磁気記録媒体と、その製造方法及び
製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having a highly hard amorphous carbon thin film, a manufacturing method and a manufacturing apparatus therefor.

【0002】[0002]

【従来の技術】プラズマ処理装置を用いた被処理基板へ
の薄膜形成技術は、スパッタ、CVD技術等を用いて磁
気ディスクや光ディスクにおける薄膜形成に広く用いら
れている。
2. Description of the Related Art A thin film forming technique for a substrate to be processed using a plasma processing apparatus is widely used for forming a thin film on a magnetic disk or an optical disk by using a sputtering technique, a CVD technique or the like.

【0003】特に、高周波プラズマCVDにおいては、
公開特許公報昭62−83471号に開示されている様
に高エネルギーイオンによるエッチングやイオンアシス
ト成膜を行う方法が公知であり、リアクティブイオンエ
ッチングや高硬度カーボン膜の成膜が行われている。
Particularly in high frequency plasma CVD,
As disclosed in Japanese Unexamined Patent Publication No. 62-83471, a method of performing etching with high-energy ions or ion-assisted film formation is known, and reactive ion etching or high-hardness carbon film formation is performed. .

【0004】しかしながら、被処理基板上における成膜
過程については学術的にも不明瞭な点が多く、被処理基
板にアタックするイオン活性種と成膜される膜質との関
係は明らかでない。通常のプラズマCVD処理は、被処
理基板を接地側電極上あるいは高周波を印加する側の電
極上のいずれかで処理を行うが、この場合、中性ラジカ
ル粒子とシースによって加速される正イオンによって成
膜処理が行なわれていると考えられている。例えば、C
4ガスを用いたプラズマCVD処理におけるイオンエ
ネルギーアナライザの測定結果からは、中性ラジカル粒
子と主イオン成 ンを主とした成膜が行なわれていることが確認できる。
However, the film forming process on the substrate to be processed is often unclear from an academic point of view, and the relationship between the ion active species attacking the substrate to be processed and the film quality to be formed is not clear. In the usual plasma CVD process, the substrate to be processed is processed either on the ground side electrode or on the electrode on the side to which a high frequency is applied. In this case, it is formed by neutral radical particles and positive ions accelerated by the sheath. It is believed that a membrane treatment is performed. For example, C
From the measurement results of the ion energy analyzer in the plasma CVD process using H 4 gas, neutral radical particles and main ion components It can be confirmed that the film formation is mainly performed.

【0005】この際、膜の硬質化を促すため膜表面から
の脱水素化を行なうが、これを行う方法として、より大
きな電位で加速したイオンを膜表面に打ち込んでいた。
しかしながら図1に示すように、膜表面では脱水素化に
ともない二重結合の生成される割合も高くなるため、膜
質をグラファイト化する原因ともなった。つまり、膜を
構成する分子内におけるHの絶対量が多いため、脱水素
化に伴う二重結合の増加が発生し、H量の少ないC単結
合主体の膜ができにくい状況にあった。
At this time, dehydrogenation from the film surface is carried out in order to promote hardening of the film. As a method of doing this, ions accelerated at a larger potential are implanted into the film surface.
However, as shown in FIG. 1, the rate of generation of double bonds increases with dehydrogenation on the surface of the film, which also causes graphitization of the film quality. That is, since the absolute amount of H in the molecule that constitutes the film is large, an increase in double bonds occurs due to dehydrogenation, and it is difficult to form a film containing mainly C single bond with a small amount of H.

【0006】[0006]

【発明が解決しようとする課題】前記したように従来の
プラズマCVD技術においては、成膜時に用いられる主
なイオン活性種が、H原子を多く含む正イオンであり、
H量の少ないC単結合主体の膜ができにくい状況にあっ
た。
As described above, in the conventional plasma CVD technique, the main ionic active species used during film formation are positive ions containing many H atoms,
There was a situation in which it was difficult to form a film containing mainly C single bonds with a small amount of H.

【0007】本発明においては、H原子を多く含まない
イオン活性種であるC~、CH~といった負イオンを選択
的に用いた成膜を行うことで、H量の少ないC単結合主
体の膜を得、成膜された膜質について、IR(赤外線吸
収スペクトル)より求めたSP3/SP2の吸光度ピーク
面積比、Hの割合(Hydrogen Forward Scattering法に
よって水素量を測定)及び、ラマンスペクトルから定量
的、かつ総合的に促え高硬度薄膜を有する磁気記録媒体
を得ることを目的とする。
In the present invention, a film mainly containing a C single bond having a small amount of H is formed by performing film formation by selectively using negative ions such as C to and CH to which are ionic active species not containing a large amount of H atoms. For the film quality of the deposited film, the ratio of the peak area of the absorbance of SP 3 / SP 2 determined by IR (infrared absorption spectrum), the ratio of H (the amount of hydrogen was measured by the Hydrogen Forward Scattering method) and the Raman spectrum The purpose of the present invention is to obtain a magnetic recording medium having a high hardness thin film, which can be promoted comprehensively.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、イオンプラズマ処理装置における被処理基
板保持部分に正の直流バイアスを印加する機構を備え付
けることで負イオンを基板表面に引き寄せ、選択的にこ
れを用いて成膜を行った。
In order to achieve the above object, the present invention is provided with a mechanism for applying a positive DC bias to a substrate holding portion of an ion plasma processing apparatus to attract negative ions to the surface of the substrate. The film was selectively formed using this.

【0009】具体的には、反応ガスとしてCH4ガスを
用いた場合、負イオン化してプラズマ中に存在すると確
認できるものはC~あるいはCH~であり、C原子1個当
たりに付属する水素原子数は、従来のイオン選択を行わ
ないプラズマCVDにおいて 2に示すように、負イオンを用いた成膜方法を用いると
膜中に含まれる水素の絶対量が少なくなる。これによ
り、高エネルギーイオンを用いた膜中の脱水素化が不要
となり、それに伴う二重結合の生成を抑制することにな
る。
Specifically, when CH 4 gas is used as the reaction gas, the ones that can be confirmed to be negatively ionized and present in the plasma are C to CH and hydrogen atoms attached to each C atom. In plasma CVD without conventional ion selection As shown in 2, when the film forming method using negative ions is used, the absolute amount of hydrogen contained in the film is reduced. This eliminates the need for dehydrogenation in the film using high-energy ions, and suppresses the formation of double bonds accompanying it.

【0010】従って、膜中における単位体積当たりの水
素量が従来の正イオンを用いた場合より少なくすること
が可能となり、しかもC単結合主体の膜を得る事が出来
る。
Therefore, the amount of hydrogen per unit volume in the film can be made smaller than in the case of using the conventional positive ions, and a film mainly containing a C single bond can be obtained.

【0011】[0011]

【作用】本発明によると、ある条件下で負イオンを選択
的に用いて成膜されたカーボン薄膜の膜中におけるHの
割合は30%以下で、ラマンスペクトルの成分は1520cm-1
以下にひとつだけピークを持つ特性を示すようになる。
これは、従来の正イオンを用いた成膜で得られる構造に
比較し、水素及び二重結合が膜中から、より減少するこ
とで結合次数が低く単結合に近い構造成分が増加したた
めと考えられる。ラマンスペクトルは二重結合の伸縮結
合振動に対応するスペクトル成分1580cm-1のピークがな
いことや、ひとつのピークしか得られないことからも確
認できる。
According to the present invention, the proportion of H in the carbon thin film formed by selectively using negative ions under a certain condition is 30% or less, and the Raman spectrum component is 1520 cm- 1.
The characteristics with only one peak are shown below.
This is probably because hydrogen and double bonds were reduced in the film compared to the structure obtained by conventional film formation using positive ions, so that the bond order was low and the structural component close to a single bond was increased. To be The Raman spectrum can also be confirmed from the fact that there is no peak at 1580 cm -1 , which corresponds to the stretching vibration of the double bond, and that only one peak is obtained.

【0012】そして、膜のビッカス硬度は、3000Hv以
上を持つようになった。
The film has a Vickus hardness of 3000 Hv or more.

【0013】さらに、IRより求めた吸光度ピークのS
3/SP2のピーク面積比が5〜11において、膜の摩耗
レートが最小になることを確認した。これは、ピーク面
積比が5以下の場合には、膜中の二重結合の割合が増加
し、膜硬度が低下するためと考えられる。一方、IRで
観察可能なSP3成分(水素でターミネートされてい
る。)が増加したピーク面積比が11以上の場合は、島状
のSP3成分が増加し、結合のネットワークが抑制され
ることになる。従って、膜質的には炭化水素化合物の混
合膜に近いものとなり、膜硬度が低下するため摩耗レー
トが増加すると考えられる。
Further, S of the absorbance peak obtained from IR
It was confirmed that when the P 3 / SP 2 peak area ratio is 5 to 11, the wear rate of the film is minimized. It is considered that this is because when the peak area ratio is 5 or less, the ratio of double bonds in the film increases and the film hardness decreases. On the other hand, if the peak area ratio in which the SP 3 component observable by IR (terminated with hydrogen) increases is 11 or more, the island-shaped SP 3 component increases and the bond network is suppressed. become. Therefore, it is considered that the film quality is close to that of the mixed film of hydrocarbon compounds, and the film hardness decreases, so that the wear rate increases.

【0014】[0014]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0015】図3は本発明のディスク基板用プラズマ処
理装置の一実施例の構成を示す。
FIG. 3 shows the configuration of an embodiment of the plasma processing apparatus for disk substrates of the present invention.

【0016】本発明によるプラズマ処理装置は少なくと
も、大気圧以下の圧力に排気可能で、かつ高電圧を印加
しプラズマを発生させるための真空槽兼電極1と、接地
側電極3と被処理ディスク基板2とこれを保持し直流正
電圧を印加する第3電極12と、印加するための直流正
電圧印加装置4とチョークコイル9と、前記電極1に高
周波電力を印加するための高周波電源5とブロッキング
コンデンサ10と電極間を絶縁するための絶縁材11と、ガ
ス状物質をプラズマ発生領域に導入するためのガス導入
機構6と、真空槽兼電極1内部を大気圧以下に保持する
ための排気機構7と、真空槽兼電極1と排気機構7とを
仕切るバルブ8とから構成される。
The plasma processing apparatus according to the present invention is capable of evacuating at least to a pressure lower than atmospheric pressure, and also serves as a vacuum chamber electrode 1 for applying a high voltage to generate plasma, a ground side electrode 3 and a disk substrate to be processed. 2, a third electrode 12 for holding the same and applying a DC positive voltage, a DC positive voltage applying device 4 and a choke coil 9 for applying the voltage, a high frequency power source 5 for applying a high frequency power to the electrode 1, and a blocking An insulating material 11 for insulating between the capacitor 10 and the electrodes, a gas introduction mechanism 6 for introducing a gaseous substance into the plasma generation region, and an exhaust mechanism for keeping the inside of the vacuum chamber / electrode 1 below atmospheric pressure. 7 and a valve 8 for partitioning the vacuum chamber / electrode 1 and the exhaust mechanism 7.

【0017】本装置において、反応ガスとしてCH4
スを導入し、圧力が、6.7Pa一定となるように流量と
排気速度を調節した。その後、周波数13.56MHzの高
電圧を印加し、プラズマを発生させた。実効電力は2k
Wであった。
In the present apparatus, by introducing a CH 4 gas as the reaction gas, the pressure was adjusted flow rate and the exhaust rate so that 6.7P a constant. After that, a high voltage with a frequency of 13.56 MHz was applied to generate plasma. Effective power is 2k
It was W.

【0018】その後、正の直流電圧400Vを被処理ディ
スク基板2に印加した状態とした。この状態で成膜を行
った結果、成膜されたラマンのデータを図4(a)に示
す。ここで、ラマンスペクトルは、1520cm-1当たりにピ
ークを持つ特性が得られた。なお、参考のために、従来
の方法と等価である直流バイアスを0Vとして、チョー
クコイルを外した場合に得られたラマンのデータも図4
中の(b)に示している。この比較より明らかにピーク
位置がシフトしていることが分かる。
After that, a positive DC voltage of 400 V was applied to the disk substrate 2 to be processed. As a result of forming the film in this state, data of the formed Raman is shown in FIG. Here, the Raman spectrum has a characteristic with a peak at 1520 cm- 1 . For reference, the Raman data obtained when the choke coil is removed by setting the DC bias equivalent to the conventional method to 0 V is also shown in FIG.
It is shown in (b). From this comparison, it can be seen that the peak positions are clearly shifted.

【0019】次に直流バイアス電圧を増加させイオン活
性種のエネルギーを増加させた場合の膜中におけるHの
割合(Hydrogen Forward Scattering法によって水素量
を測定)と、ラマンのピーク位置との関係を図5に示
す。本図からは、正、負のイオンいずれを用いた場合に
おいても、エネルギーの増加(直流バイアス値の増加)
により膜中のH量の割合は減少の傾向を示した。一方、
ラマンスペクトルのピーク波長位置はエネルギーの増加
に伴い、ピーク位置が高波数側にシフトしていく傾向が
見られた。一般に、高波数側にラマンのピークがシフト
することは、膜質のグラファイト化を意味しC=C結合
を持つ炭素のクラスター増加を意味する。従って、膜中
のHの割合を低く、かつ二重結合C=Cを低く抑えるた
めの最良点としては両特性曲線の交点が選択される。そ
こで、正イオンを用いた場合と負イオンを用いた場合の
特性曲線の最良点について比較を行った。ここで、膜中
の水素量は、負イオンを用いた場合の方が絶対値として
1/2以下程度であった。ラマンのピーク位置に関して
は、負イオンを用いて成膜した膜は、いずれのイオン活
性種エネルギーに対しても正イオンを用いた場合より低
波長側にピークをもちえることが確認できた。
Next, the relationship between the ratio of H in the film (the amount of hydrogen measured by the Hydrogen Forward Scattering method) and the Raman peak position when the DC bias voltage is increased and the energy of the ion active species is increased is shown in FIG. 5 shows. From this figure, increase in energy (increase in DC bias value) regardless of whether positive or negative ions are used
As a result, the proportion of H in the film tended to decrease. on the other hand,
The peak wavelength position of the Raman spectrum tended to shift to the higher wavenumber side as the energy increased. In general, the shift of Raman peak to the higher wave number side means graphitization of the film quality and an increase of carbon clusters having C = C bonds. Therefore, the intersection of both characteristic curves is selected as the best point for keeping the proportion of H in the film low and the double bond C = C low. Therefore, the best points of the characteristic curves when using positive ions and when using negative ions were compared. Here, the amount of hydrogen in the film was about 1/2 or less in absolute value when negative ions were used. Regarding the Raman peak position, it was confirmed that the film formed using negative ions had a peak at a lower wavelength side than when positive ions were used for any ion active species energy.

【0020】次に、膜硬度とイオン活性種のエネルギー
との関係についても図6に示している。ここで、正イオ
ンと負イオンの特性は、それぞれ、図5中のH特性曲線
とラマンピーク特性曲線の交点におけるイオンのエネル
ギー値をピークとした膜硬度特性曲線が得られた。膜硬
度の絶対値としとては負イオンを用いた場合の方が、正
イオンを用いたときに得られる膜より1500Hv高いビッ
カス硬度4500Hvが得られた。
Next, FIG. 6 also shows the relationship between the film hardness and the energy of the ion active species. Here, as the characteristics of the positive ions and the negative ions, a film hardness characteristic curve having the energy value of the ion as a peak at the intersection of the H characteristic curve and the Raman peak characteristic curve in FIG. 5 was obtained. As the absolute value of the film hardness, when the negative ions were used, a Vickus hardness of 4500 Hv which was 1500 Hv higher than that obtained when the positive ions were used was obtained.

【0021】また、本発明から得られた、IR(赤外線
吸収スペクトル)吸光度ピークのSP3/SP2ピーク面
積比が5〜11の高硬質膜を磁気記録媒体の保護膜として
用いると、図7に示すように摩耗レートは最小を示し
た。さらに、従来の正イオンを用いた保護膜では膜厚20
nmで得られた耐摺動性、耐摩耗性が、本発明の負イオ
ンを用いて形成した保護膜では膜厚10nmで同等な結果
が得られた。
Further, when a high hard film having an SP 3 / SP 2 peak area ratio of IR (infrared absorption spectrum) absorbance peaks of 5 to 11 obtained from the present invention is used as a protective film of a magnetic recording medium, FIG. The wear rate showed the minimum as shown in. Furthermore, the film thickness is 20 for the conventional protective film using positive ions.
In the protective film formed by using the negative ions of the present invention, the sliding resistance and the abrasion resistance obtained in the same range were obtained at a film thickness of 10 nm.

【0022】第2の実施例としては、図3の装置で反応
ガスにCF4ガスを用いて実験を行った。CF4ガスによ
って作られるF~を主な成分とした負イオンを用いたC
膜の 比較して、より低いF含有量となるため図9に示すよう
なC原子による立体障害が発生しやすく、より硬度の高
い安定した膜が得られた。尚、図8には、正イオ
As a second embodiment, an experiment was carried out using CF 4 gas as a reaction gas in the apparatus shown in FIG. C using negative ions mainly composed of F ~ produced by CF 4 gas
Of membrane In comparison, since the F content was lower, steric hindrance due to C atoms was likely to occur as shown in FIG. 9, and a stable film having higher hardness was obtained. In addition, in FIG.

【0023】図10は本発明において両面同時処理でき
るディスク基板用プラズマ処理装置の一実施例の構成ブ
ロック図を示す。ここで基板の両側に発生するプラズマ
は位相差信号発生器とマッチング調整を行うことによっ
てディスク中心穴等でプラズマ間の干渉が発生しないよ
うにした。
FIG. 10 is a block diagram showing the construction of an embodiment of a plasma processing apparatus for disk substrates which can perform simultaneous double-sided processing in the present invention. Here, the plasma generated on both sides of the substrate was adjusted to match with the phase difference signal generator so that interference between plasmas did not occur in the center hole of the disk.

【0024】次に、本発明による高硬度薄膜を有する磁
気記録媒体の断面図を図11に示している。ここでは、
保護膜14として採用している。
Next, FIG. 11 shows a sectional view of a magnetic recording medium having a high hardness thin film according to the present invention. here,
It is used as the protective film 14.

【0025】[0025]

【発明の効果】本発明によれば、高硬度なカーボン膜を
成膜可能である。そのため、磁気記録媒体においてはカ
ーボン膜厚を薄膜化できリード/ライト特性の向上と、
高記録密度化対応した成膜が可能となる。
According to the present invention, a carbon film having high hardness can be formed. Therefore, in the magnetic recording medium, the carbon film thickness can be reduced and the read / write characteristics can be improved.
It is possible to form a film corresponding to high recording density.

【図面の簡単な説明】[Brief description of drawings]

【図1】反応ガスCH4ガスにおける正イオンを主体と
した場合の成膜過程を示す図である。
FIG. 1 is a diagram showing a film forming process in the case of mainly positive ions in a reaction gas CH 4 gas.

【図2】反応ガスCH4ガスにおける負イオンを主体と
した場合の成膜過程を示す図である。
FIG. 2 is a diagram showing a film forming process when negative ions in a reaction gas CH 4 gas are mainly used.

【図3】プラズマ処理装置の一実施例の基本構成を示す
図である。
FIG. 3 is a diagram showing a basic configuration of an embodiment of a plasma processing apparatus.

【図4】本発明により得られた膜のラマンスペクトル特
性を示す図である。
FIG. 4 is a diagram showing Raman spectrum characteristics of a film obtained by the present invention.

【図5】イオン活性種エネルギーと膜中のHの割合、ラ
マンピーク波長の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the energy of ion active species, the ratio of H in the film, and the Raman peak wavelength.

【図6】イオン活性種エネルギーと膜硬度の関係を示す
図である。
FIG. 6 is a diagram showing a relationship between ion active species energy and film hardness.

【図7】IRにより求めたSP3/SP2比率と摩耗レー
トの関係を示す図である。
FIG. 7 is a diagram showing the relationship between the SP 3 / SP 2 ratio obtained by IR and the wear rate.

【図8】反応ガスCF4ガスにおける正イオンを主体と
した場合の膜構造を示す図である。
FIG. 8 is a diagram showing a film structure when positive ions in a reaction gas CF 4 gas are mainly used.

【図9】反応ガスCF4ガスにおける負イオンを主体と
した場合の膜構造を示す図である。
FIG. 9 is a diagram showing a film structure when negative ions in a reaction gas CF 4 gas are mainly used.

【図10】ディスク基板用両面同時プラズマ処理装置の
一実施例の構成ブロック図である。
FIG. 10 is a configuration block diagram of an embodiment of a double-sided simultaneous plasma processing apparatus for a disk substrate.

【図11】磁気ディスクの断面概略図である。FIG. 11 is a schematic sectional view of a magnetic disk.

【符号の説明】[Explanation of symbols]

1…真空槽兼電極、 2…被処理ディスク基板、 3…接地側電極、 4…正の直流電源、 5…高周波電源、 6…ガス導入機構、 7…排気機構、 8…仕切り弁、 9…チョークコイル、 10…ブロッキングコンデンサ、 11…絶縁部材、 12…第三電極、 13…潤滑膜、 14…保護膜、 15…磁性膜、 16…Cr下地膜、 17…Ni−Pメッキ、 18…アルミ基板。 DESCRIPTION OF SYMBOLS 1 ... Electrode for vacuum chamber, 2 ... Disk substrate to be processed, 3 ... Electrode on ground side, 4 ... Positive DC power supply, 5 ... High frequency power supply, 6 ... Gas introduction mechanism, 7 ... Exhaust mechanism, 8 ... Gate valve, 9 ... Choke coil, 10 ... Blocking capacitor, 11 ... Insulating member, 12 ... Third electrode, 13 ... Lubrication film, 14 ... Protective film, 15 ... Magnetic film, 16 ... Cr base film, 17 ... Ni-P plating, 18 ... Aluminum substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤巻 成彦 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 鬼頭 諒 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naruhiko Fujimaki 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Stock Manufacturing Research Institute, Hitachi, Ltd. (72) Inventor Ryo Kito 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Production Engineering Research Laboratory, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】真空容器と、真空容器中の圧力を大気圧よ
り低い状態に保持する排気手段と、真空容器中にプラズ
マを発生させるための電極と、プラズマ発生部にガス状
物質を供給する手段とを具備したプラズマ処理装置を用
いて形成した、IR(赤外線吸収スペクトル)より求め
た吸光度ピークのSP3/SP2のピーク面積比が5〜11
であることを特徴とするアモルファスカーボン薄膜。
1. A vacuum container, an evacuation unit for maintaining the pressure in the vacuum container at a pressure lower than atmospheric pressure, an electrode for generating plasma in the vacuum container, and a gaseous substance supplied to the plasma generation unit. And a peak area ratio of SP 3 / SP 2 of the absorbance peak obtained by IR (infrared absorption spectrum), which is formed by using a plasma processing apparatus equipped with
An amorphous carbon thin film characterized by:
【請求項2】膜中におけるHの割合(Hydrogen Forward
Scattering法によって水素量を測定)が、30%以下で
あることを特徴とする請求項1記載のアモルファスカー
ボン薄膜。
2. The proportion of H in the film (Hydrogen Forward
The amorphous carbon thin film according to claim 1, wherein the amount of hydrogen measured by the Scattering method is 30% or less.
【請求項3】ラマンスペクトル(アルゴンレーザー励起
による)の成分が1520cm-1以下でひとつだけピークを持
つことを特徴とする請求項1記載のアモルファスカーボ
ン薄膜。
3. The amorphous carbon thin film according to claim 1, wherein the Raman spectrum (by argon laser excitation) component has only one peak at 1520 cm −1 or less.
【請求項4】膜ビッカス硬度が3000Hv以上を持つこと
を特徴とする請求項1記載のアモルファスカーボン薄
膜。
4. The amorphous carbon thin film according to claim 1, which has a film Vickus hardness of 3000 Hv or more.
【請求項5】請求項1記載のアモルファスカーボン薄膜
を、プラズマ中の負イオン活性種を選択的に用いること
で形成することを特徴とするアモルファスカーボン薄膜
製造方法。
5. A method for producing an amorphous carbon thin film, which comprises forming the amorphous carbon thin film according to claim 1 by selectively using negative ion active species in plasma.
【請求項6】請求項5記載のプラズマ処理方法におい
て、炭素とフッ素を含むガスを原料とし、負イオン活性
種を選択的に用いることを特徴とするカーボン薄膜製造
方法。
6. The method for producing a carbon thin film according to claim 5, wherein a gas containing carbon and fluorine is used as a raw material, and negative ion active species are selectively used.
【請求項7】請求項5記載のプラズマ処理方法を行うた
め、高周波電源を用いてプラズマを生成させていると
き、正の直流バイアス電圧を、高周波電源の出力に重畳
させることを特徴とするプラズマ処理装置。
7. The plasma processing method according to claim 5, wherein a positive DC bias voltage is superimposed on the output of the high frequency power source when the plasma is generated using the high frequency power source. Processing equipment.
【請求項8】請求項5記載のプラズマ処理方法を行うた
め、被処理基板に正の直流バイアス電圧を印加すること
を特徴とするプラズマ処理装置。
8. A plasma processing apparatus, wherein a positive DC bias voltage is applied to a substrate to be processed to perform the plasma processing method according to claim 5.
【請求項9】請求項7又は8記載のプラズマ処理装置を
含むことを特徴とする磁気ディスク製造装置。
9. A magnetic disk manufacturing apparatus comprising the plasma processing apparatus according to claim 7.
【請求項10】薄膜磁性体からなる記録膜上に、請求項
1、2、3又は4記載に該当するアモルファスカーボン
薄膜を保護膜として形成したことを特徴とする磁気ディ
スク及び磁気ヘッド。
10. A magnetic disk and a magnetic head, wherein an amorphous carbon thin film according to claim 1, 2, 3 or 4 is formed as a protective film on a recording film made of a thin film magnetic material.
【請求項11】請求項10記載の部材を用いて、モー
タ、アーム等を付属させ構成したことを特徴とする磁気
ディスク装置。
11. A magnetic disk drive comprising the member according to claim 10 with a motor, an arm and the like attached thereto.
JP13005894A 1994-06-13 1994-06-13 Amorphous carbon thin film and its production Pending JPH087219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13005894A JPH087219A (en) 1994-06-13 1994-06-13 Amorphous carbon thin film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13005894A JPH087219A (en) 1994-06-13 1994-06-13 Amorphous carbon thin film and its production

Publications (1)

Publication Number Publication Date
JPH087219A true JPH087219A (en) 1996-01-12

Family

ID=15025028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13005894A Pending JPH087219A (en) 1994-06-13 1994-06-13 Amorphous carbon thin film and its production

Country Status (1)

Country Link
JP (1) JPH087219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH694112A5 (en) * 2000-09-22 2004-07-15 Tetra Laval Holdings & Finance Process for monitoring a plasma-promoted surface treatment used for chemical deposition of silicon oxide onto a plastic substrate involves measuring the absorption of infrared light through the plasma
US6875326B2 (en) 2000-07-07 2005-04-05 Hitachi, Ltd. Plasma processing apparatus with real-time particle filter
JP2008310849A (en) * 2007-06-12 2008-12-25 Fuji Electric Device Technology Co Ltd Protective film forming method and magnetic recording medium including protective film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875326B2 (en) 2000-07-07 2005-04-05 Hitachi, Ltd. Plasma processing apparatus with real-time particle filter
CH694112A5 (en) * 2000-09-22 2004-07-15 Tetra Laval Holdings & Finance Process for monitoring a plasma-promoted surface treatment used for chemical deposition of silicon oxide onto a plastic substrate involves measuring the absorption of infrared light through the plasma
JP2008310849A (en) * 2007-06-12 2008-12-25 Fuji Electric Device Technology Co Ltd Protective film forming method and magnetic recording medium including protective film

Similar Documents

Publication Publication Date Title
US7544397B2 (en) Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
US6066399A (en) Hard carbon thin film and method of forming the same
US6572935B1 (en) Optically transparent, scratch-resistant, diamond-like carbon coatings
KR100586803B1 (en) A method of coating edges with diamond-like carbon
JP2008123671A (en) Recording medium having protective overcoat of highly tetrahedral amorphous carbon film and method for their production
JP3547402B2 (en) Plasma processing system and method
Ilias et al. Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle
JPH087219A (en) Amorphous carbon thin film and its production
JPH0773454A (en) Production of carbon protective film and plasma treating device
JPH11158631A (en) Protective film, its production and article
JP3649873B2 (en) Thin film formation method by CVD and thin film and sliding parts
JPH101305A (en) Carbon film and production of carbon film
Robertson Deposition and properties of diamond-like carbons
EP0651385A2 (en) Method for producing diamond-like carbon film and tape driving apparatus
JP3143252B2 (en) Hard carbon thin film forming apparatus and its forming method
JP3478561B2 (en) Sputter deposition method
JP3431914B2 (en) Method for manufacturing carbon or carbon-based film
Gilbert et al. Novel in situ production of smooth diamond films
Ullmann et al. Low energy ion-induced damage of polycrystalline diamond films
JP4378022B2 (en) Amorphous carbon film forming apparatus and film forming method
JP2008138289A (en) Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
JPS6154871B2 (en)
MXPA99011903A (en) A method of coating edgeswith diamond-like carbon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041224

A02 Decision of refusal

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A02