JPH0445098B2 - - Google Patents
Info
- Publication number
- JPH0445098B2 JPH0445098B2 JP61242882A JP24288286A JPH0445098B2 JP H0445098 B2 JPH0445098 B2 JP H0445098B2 JP 61242882 A JP61242882 A JP 61242882A JP 24288286 A JP24288286 A JP 24288286A JP H0445098 B2 JPH0445098 B2 JP H0445098B2
- Authority
- JP
- Japan
- Prior art keywords
- excitation
- impact
- measured
- irregular
- frequency response
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005284 excitation Effects 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 47
- 230000001788 irregular Effects 0.000 claims description 22
- 238000005316 response function Methods 0.000 claims description 17
- 238000009527 percussion Methods 0.000 claims description 14
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、機械や構造物等の被測定物の周波
数応答関数を計測する際に行なわれる不規則打撃
加振法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an irregular percussion excitation method used when measuring the frequency response function of an object to be measured such as a machine or a structure.
従来から、機械や構造物等の動的な特性、即
ち、これらに加わる外力とそれに対する振動等の
動的応答を把握するためには、その伝達関数(周
波数応答関数等)を測定すれば良いと言われてい
る。そのうち、周波数応答関数の計測方法には第
4図a,b,cのように様々な種類があるが、こ
の中で最も安直なのは、同図cの打撃加振法であ
る。この方法は、力検出器30a(ロードセル)
付きのインパクトハンマ30で構造物10等の被
測定物を打撃するだけで良く、同図a,bの他の
加振法のように加振機60を設置する必要がない
ため、現場でも容易に実行できる。その代わり、
加振機60を用いる方法に比べ、色々な面で精度
的に不利であることは否定できない。具体的には
人力で打撃するため、加振エネルギが比較的
小さい。
Traditionally, in order to understand the dynamic characteristics of machines and structures, that is, the external forces applied to them and their dynamic responses such as vibrations, it is sufficient to measure their transfer functions (frequency response functions, etc.). It is said that Among them, there are various methods for measuring the frequency response function, as shown in Fig. 4 a, b, and c, but the simplest of these is the percussion excitation method shown in Fig. 4 c. This method uses a force detector 30a (load cell)
It is only necessary to hit the object to be measured such as the structure 10 with the attached impact hammer 30, and there is no need to install a vibrator 60 as in the other vibration methods shown in a and b in the same figure, so it is easy to use on site. can be executed. Instead,
It cannot be denied that this method is disadvantageous in accuracy in many respects compared to the method using the vibrator 60. Specifically, since the impact is performed manually, the excitation energy is relatively small.
加振波形が第5図に示すようにインパルス状
であるため、加振エネルギが、打撃後のごく短
時間に集中し、その後は加振エネルギが0にな
る。従つて、波高率が高くなり、ノイズの影響
や構造物10等の非線形性の影響を受けやす
い。 Since the excitation waveform is impulse-like as shown in FIG. 5, the excitation energy is concentrated for a very short time after the impact, and thereafter becomes zero. Therefore, the crest factor becomes high, and it is susceptible to the influence of noise and nonlinearity of the structure 10 and the like.
などの欠点が挙げられる。There are drawbacks such as:
従つて、特に大形構造物の場合には、加振応答
が小さくなり周波数応答関数の計測精度が低下し
やすい。 Therefore, especially in the case of a large structure, the excitation response becomes small and the measurement accuracy of the frequency response function tends to decrease.
この欠点を解消するための一つの方法が、不規
則打撃加振法である。これは、第6図のように、
FFT装置20の時間窓内で多数回の打撃を行う
方法である。このことにより、加振波形の波高率
を低下させ、加振エネルギを大きくすることがで
きる。打撃の回数をNとすれば、加振エネルギは
約10logNdB増加する。 One method to overcome this drawback is the irregular impact vibration method. This is as shown in Figure 6.
This is a method of performing multiple hits within the time window of the FFT device 20. This allows the crest factor of the excitation waveform to be lowered and the excitation energy to be increased. If the number of strikes is N, the excitation energy increases by about 10 logNdB.
このように不規則打撃加振法では、打撃加振法
により加振力を増加させることが可能であるが、
なお、次のような欠点を有している。
In this way, in the irregular percussion excitation method, it is possible to increase the excitation force by the percussion excitation method, but
However, it has the following drawbacks.
○ア 一人の人間がハンマ30を振るため、その加
振力には限度がある。○A Since one person swings the hammer 30, there is a limit to its excitation force.
○イ 一人の人間がハンマ30を振るため、その周
期は概ね周期的になりがちであり、計測精度
上、打撃の時間間隔が保規則であることを要す
る該加振法では加振力のスペクトルが不連続、
あるいはそれに近いものとなり、周波数応答関
数計測の精度が低下する。○B Since one person swings the hammer 30, the period tends to be approximately periodic, and in this excitation method, which requires a constant time interval between strikes for measurement accuracy, the spectrum of excitation force is is discontinuous,
Or it becomes something close to it, and the accuracy of frequency response function measurement decreases.
本発明は以上のような問題に鑑み創案されたも
ので、不規則打撃加振法における打撃の時間間隔
を不規則にすることにより、周波数応答関数の計
測の精度を向上せんとするものである。 The present invention was devised in view of the above-mentioned problems, and aims to improve the accuracy of frequency response function measurement by making the time intervals of impact irregular in the irregular impact excitation method. .
そのため、本発明の打撃加振法は、第1図のよ
うに、構造物等の被測定物1に対して二以上のイ
ンパクトハンマ3により同時に不規則打撃加振を
行うものである。この方法は以下、多入力不規則
打撃加振法と呼ぶ。
Therefore, as shown in FIG. 1, in the impact vibration method of the present invention, two or more impact hammers 3 simultaneously apply irregular impact vibration to an object 1 to be measured such as a structure. This method is hereinafter referred to as the multi-input irregular impact excitation method.
加振を行う数は、ほぼ同一の点を打撃できる範
囲であればいくつでも構わない。また、同一点を
同じ方向から打撃するだけでなく、第1図のよう
に、たとえば表と裏から打撃しても良い(尚、イ
ンパクトハンマ3による打撃は人力によらず機械
的装置等を利用しても良い)。 The number of vibrations to be applied may be any number as long as it can hit approximately the same point. Furthermore, in addition to hitting the same point from the same direction, it is also possible to hit from the front and back, for example, as shown in Figure 1. ).
複数のインパクトハンマ3の力検出器3aから
の加振力信号は、第1図のように、電気的な加算
器4で加算されて1つの加振力信号となり、この
後は、通常の打撃加振実験と同様に加速度計5等
からの振動応答信号と共に解析装置2に入力され
周波数応答関数が計算される。なお、同じ方向に
打撃するハンマ3からの信号はそのまま加算器4
に加えるが、反対方向に打撃するハンマ3からの
信号は位相反転したうえで加算器4に加える。 As shown in FIG. 1, the excitation force signals from the force detectors 3a of the plurality of impact hammers 3 are added together by an electric adder 4 to become one excitation force signal, and after this, normal impact is performed. Similar to the vibration experiment, the vibration response signal from the accelerometer 5 and the like is input to the analysis device 2, and a frequency response function is calculated. Note that the signals from the hammers 3 striking in the same direction are sent directly to the adder 4.
However, the signal from the hammer 3 striking in the opposite direction is added to the adder 4 after having its phase inverted.
この方法では、加振エネルギが、従来の不規則
打撃加振法にくらべ、約10logMdB増加する(こ
こでMは、打撃を行う数)。さらに、加振波形が
第2図に示すようにより不規則になり、計測精度
が向上する。 In this method, the excitation energy increases by about 10 logMdB compared to the conventional irregular impact excitation method (here, M is the number of impacts). Furthermore, the excitation waveform becomes more irregular as shown in FIG. 2, improving measurement accuracy.
総重量約1000tonの低速デイーゼル機関架構に、
以下の4通りの加振法を適用して周波数応答関数
を計測した。
A low-speed diesel engine frame with a total weight of approximately 1000 tons,
The frequency response function was measured by applying the following four excitation methods.
(a) No.1シリンダ上に油圧加振機を設置し、正弦
波加振法を実施した。(a) A hydraulic vibrator was installed on the No. 1 cylinder, and a sine wave vibration method was performed.
(b) No.1シリンダを前記インパクトハンマで1回
だけ打撃する打撃加振法を実施した。(b) A striking vibration method was performed in which the No. 1 cylinder was struck only once with the impact hammer.
(c) No.1シリンダをインパクトハンマにより1人
でできるだけ不規則に打撃する不規則打撃加振
法を実施した。(c) An irregular impact excitation method was implemented in which the No. 1 cylinder was hit as irregularly as possible by one person using an impact hammer.
(d) No.1シリンダをインパクトハンマにより2人
同時に不規則に打撃する本発明に係る多入力不
規則打撃加振法を実施した。(d) A multi-input irregular impact excitation method according to the present invention was carried out in which the No. 1 cylinder was hit irregularly by two people at the same time with an impact hammer.
以上の方法で測定した周波数応答関数を、第3
図a乃至dに示す(同図a乃至dは上述のa乃至
dの各加振法に夫々対応する)。これらの図から
分かるように、当然のことながらaの正弦波加振
法が最も奇麗であるが、これに次いでdの本発明
に係る多入力不規則打撃加振法が良く、固有振動
数やモード形を調べる程度の目的には実用上十分
なデータである。bの打撃加振法やcの不規則打
撃加振法は、特に低次モードが乱れており、使え
るデータとは言いがたい。 The frequency response function measured by the above method is
It is shown in figures a to d (the figures a to d correspond to the above-mentioned vibration methods a to d, respectively). As can be seen from these figures, the sine wave excitation method (a) is naturally the most beautiful, but the second best is the multi-input irregular percussion excitation method (d) according to the present invention, and the natural frequency and This data is practically sufficient for the purpose of investigating mode shapes. In the percussion excitation method b and the irregular percussion excitation method c, the low-order modes in particular are disturbed, and it is difficult to say that the data is usable.
このように、本発明に係る新しい加振法を用い
れば、低速デイーゼル機関のような大形構造物で
も、比較的容易に周波数応答関数を計測できるこ
とが分かる。 As described above, it can be seen that by using the new vibration method according to the present invention, the frequency response function of even a large structure such as a low-speed diesel engine can be measured relatively easily.
以上のような本発明の多入力不規則打撃加振法
によれば、一人で加振する場合に比べ、加振エネ
ルギを増加することができ、又加振波形が、より
不規則になり、加振スペクトラムが不連続になる
のを防ぐことができるため、従来は、正弦波加振
法でしか精度良く計測できなかつた大形構造物等
の周波数応答関数が、打撃加振法でも実用上十分
な精度で計測できるようになり、従つて、加振実
験の費用や時間を大幅に低減することが可能にな
つた。
According to the multi-input irregular impact excitation method of the present invention as described above, the excitation energy can be increased compared to the case of excitation by one person, and the excitation waveform becomes more irregular, Since it is possible to prevent the excitation spectrum from becoming discontinuous, the frequency response function of large structures, etc., which could previously only be measured accurately using the sine wave excitation method, can now be measured practically using the percussion excitation method. It has become possible to measure with sufficient accuracy, and therefore it has become possible to significantly reduce the cost and time of vibration experiments.
第1図は本発明に係る多入力不規則打撃加振法
の実施方法を示す説明図、第2図は本発明の加振
法により得られた加振波形の一例を示すグラフ
図、第3図a,b,c,dは本発明法及び従来法
を実施した場合に得られる周波数応答関数を示す
グラフ図であり、同図aは正弦波加振法によるも
の、同図bは打撃加振法によるもの、同図cは不
規則打撃加振法によるもの、同図dは本発明に係
る多入力不規則打撃加振法によるものを各示して
おり、又第4図a,b,cは従来の周波数応答関
数の計測方法を示す説明図であり、同図aは正弦
波加振法を、同図bは不規則加振法を、又同図c
は打撃加振法を示しており、更に第5図は打撃加
振法による加振時の加振波形を示すグラフ図、第
6図は不規則打撃加振時の加振波形を示すグラフ
である。
図中1は被測定物、10は構造物、2,20は
解析装置、20aは周波数応答関数測定装置、
3,30はインパクトハンマ、3a,30aは力
検出器、4は加算器、5は加速度計、60は加振
機を各示す。
FIG. 1 is an explanatory diagram showing an implementation method of the multi-input irregular impact excitation method according to the present invention, FIG. 2 is a graph diagram showing an example of an excitation waveform obtained by the excitation method of the present invention, and FIG. Figures a, b, c, and d are graphs showing the frequency response functions obtained when implementing the method of the present invention and the conventional method. Fig. 4(c) shows one using the irregular percussion excitation method, Fig. 4(d) shows one using the multi-input irregular percussion excitation method according to the present invention, and Fig. 4a, b, c is an explanatory diagram showing the conventional measurement method of the frequency response function, where a shows the sine wave excitation method, b shows the irregular vibration method, and c shows the method of measuring the frequency response function in the past.
shows the percussion excitation method, Fig. 5 is a graph showing the excitation waveform during excitation using the percussion excitation method, and Fig. 6 is a graph showing the excitation waveform during irregular percussion excitation. be. In the figure, 1 is an object to be measured, 10 is a structure, 2 and 20 are analysis devices, 20a is a frequency response function measuring device,
3 and 30 are impact hammers, 3a and 30a are force detectors, 4 is an adder, 5 is an accelerometer, and 60 is a vibrator.
Claims (1)
その際の該インパクトハンマの加振力及び前記被
測定物の振動応答を測定してこれらの各信号から
被測定物の周波数応答関数を求める不規則打撃加
振法において、前記被測定物の打撃の際、複数の
インパクトハンマで、同時に不規則に打撃すると
共に、夫々の加振力信号を、これらが同一方向か
ら打撃された際生じたものである場合はそのまま
加算し、他方これらが反対方向から打撃された際
生じたものである場合は位相反転した上で加算
し、それによつて一つの加振力信号とした後、該
加振力信号と被測定物の振動応答信号とから該被
測定物の周波数応答関数を求めることを特徴とす
る多入力不規則打撃加振法。1 Hit the object to be measured with an impact hammer,
In the irregular impact excitation method, the excitation force of the impact hammer and the vibration response of the object to be measured are measured and a frequency response function of the object to be measured is determined from these signals. In this case, multiple impact hammers are used to strike irregularly at the same time, and if the respective excitation force signals are generated when they are struck from the same direction, they are added as is; on the other hand, when they are struck from the opposite direction, If the signal was generated when the object was hit by a vehicle, the phase is inverted and added, thereby creating a single excitation force signal. A multi-input irregular percussion excitation method characterized by determining the frequency response function of the object to be measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61242882A JPS6398526A (en) | 1986-10-15 | 1986-10-15 | Multi-input irregular impact excitation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61242882A JPS6398526A (en) | 1986-10-15 | 1986-10-15 | Multi-input irregular impact excitation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6398526A JPS6398526A (en) | 1988-04-30 |
JPH0445098B2 true JPH0445098B2 (en) | 1992-07-23 |
Family
ID=17095633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61242882A Granted JPS6398526A (en) | 1986-10-15 | 1986-10-15 | Multi-input irregular impact excitation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6398526A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050090559A (en) * | 2004-03-09 | 2005-09-14 | 경상대학교산학협력단 | Nondestructive evaluation of strength performance for finger-jointed timbers with different finger dimensions and distance between tips and roots for a pair of fingers by tapping with a hammer |
CN103852229B (en) * | 2014-03-21 | 2016-02-24 | 西北工业大学 | The Forecasting Methodology of the multiple spot frequency response function of milling handle of a knife and spindle assemblies |
CN105277348B (en) * | 2015-10-13 | 2018-08-17 | 国家电网公司 | A kind of hydrogenerator prototype stator core-engine base system frequency measurement method |
-
1986
- 1986-10-15 JP JP61242882A patent/JPS6398526A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6398526A (en) | 1988-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Farrar et al. | Excitation methods for bridge structures | |
Lee et al. | Evaluation of rock bolt integrity using Fourier and wavelet transforms | |
WO2023151681A1 (en) | Passive exciting type bridge flaw detection device | |
Ni et al. | Low-strain integrity testing of drilled piles with high slenderness ratio | |
JP2004325224A (en) | Diagnostic method of corrosion thinning of anchor bolt, and device used therefor | |
JPH0445098B2 (en) | ||
JP2953415B2 (en) | Impact test equipment | |
Zhang et al. | Closure effects on fatigue crack detection | |
Yufang et al. | Sound radiated from the impact of two cylinders | |
JP2001165915A (en) | Method of calculating density of banking and method of controlling degree of compaction of banking | |
JPH05281082A (en) | Building's soundness judging apparatus | |
Vandergheynst et al. | Modeling and simulation of an impact test using wavelets, analytical solutions and finite elements | |
JP3072621B2 (en) | Ground survey method and device using S-wave generator and cone penetration device mounted on ground survey vehicle | |
Park et al. | Measurements of dynamic properties of concrete structures using flexural wave propagation characteristics | |
Kawiecki et al. | Rosette piezotransducers for damage detection | |
CN114282417A (en) | Continuous elastomer knocking motion pair equivalent model and modeling method thereof | |
Hajialilue-Bonab et al. | Experimental study on the dynamic behavior of laterally loaded single pile | |
JP2559265B2 (en) | Judgment method of ground properties | |
JP2000028591A (en) | Method for measuring void between reinforcing plate material and grout material or the like | |
JPH058978B2 (en) | ||
Acikgoz et al. | Characterizing the vulnerability of flexible rocking structures to strong ground motions | |
JPH1078333A (en) | Measuring monitoring system for driven pile | |
JP3696298B2 (en) | Seismic evaluation method and apparatus for buildings | |
JPH09257632A (en) | Method for testing soundness of underground structure | |
JPH0443989A (en) | Method and instrument for measuring elastic wave speed |