JPH058978B2 - - Google Patents

Info

Publication number
JPH058978B2
JPH058978B2 JP62008210A JP821087A JPH058978B2 JP H058978 B2 JPH058978 B2 JP H058978B2 JP 62008210 A JP62008210 A JP 62008210A JP 821087 A JP821087 A JP 821087A JP H058978 B2 JPH058978 B2 JP H058978B2
Authority
JP
Japan
Prior art keywords
signal
excitation
vibration
vibrator
irregular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62008210A
Other languages
Japanese (ja)
Other versions
JPS63177032A (en
Inventor
Masaaki Shirai
Takashi Fujishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP62008210A priority Critical patent/JPS63177032A/en
Publication of JPS63177032A publication Critical patent/JPS63177032A/en
Publication of JPH058978B2 publication Critical patent/JPH058978B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、機械や構造物等の振動特性を求め
るために用いられる加振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibrating device used for determining vibration characteristics of machines, structures, etc.

〔従来の技術〕[Conventional technology]

周波数応答関数の計測方法には数種の方法があ
るが、その中で他の加振法のように加振機を設置
する必要がなく現場でも容易に実行できるという
理由から、第3図に示すように機械や構造物等の
被測定物1を力検出器8aのついたインパクトハ
ンマ5で打撃し、加速度計8b等で振動加速度等
の振動応答を計測するだけでその周波数応答関数
が求められる打撃加振法が多用されいる。
There are several methods for measuring the frequency response function, but the method shown in Figure 3 is used because it does not require the installation of a vibrator like other excitation methods and can be easily carried out on site. As shown in the figure, the frequency response function can be obtained by simply striking an object 1 to be measured such as a machine or a structure with an impact hammer 5 equipped with a force detector 8a, and measuring the vibration response such as vibration acceleration with an accelerometer 8b or the like. The percussion excitation method is often used.

しかし、この加振法では、人力で打撃するた
め、加振エネルギが比較的小さく、且つ加振状況
が安定しないことや、加振波形が第4図aに示す
ようにインパルス状であるため、加振エネルギが
打撃後のごく短時間に集中し、その後0になるこ
とから波高率が高くなり、ノイズの影響や構造物
の非線形性の影響を受けやすい、等の欠点があ
る。これらの欠点の一部を解消するため、同図b
のようにFFT装置6の時間窓内で多数回の打撃
を行ない、それによつて加振波形の波高率を低下
させ、加振エネルギを大きくすることができる不
規則打撃加振法も実施されている。
However, in this vibration method, the vibration energy is relatively small and the vibration condition is not stable because the impact is performed manually, and the vibration waveform is impulse-like as shown in Figure 4a. Since the excitation energy is concentrated in a very short period of time after impact and then becomes zero, the wave height factor becomes high and there are drawbacks such as being susceptible to the effects of noise and nonlinearity of the structure. In order to eliminate some of these drawbacks,
An irregular impact excitation method has also been implemented in which multiple impacts are performed within the time window of the FFT device 6, thereby reducing the crest factor of the excitation waveform and increasing the excitation energy. There is.

しかし、この加振法にも、一人の人間がハンマ
5を振るため、その周期は概ね周期的になりがち
であり、加振力のスペクトルが不連続、或はそれ
に近いものとなり、周波数応答関数計測の精度が
低下することや、加振状況が安定せず精度を保て
ない等の欠点があつた。そのため本出願人は特願
昭61−242882号(特開昭63−98526号)で、複数
のインパクトハンマ(を二人以上)で同時に不規
則に被測定物を打撃する他入力不規則打撃加振法
の提案を行ない、不規則打撃加振法における打撃
の時間間隔を不規則にすることにより、周波数応
答関数の計測の精度の向上を達成せんとした。
However, even in this excitation method, since one person swings the hammer 5, the period tends to be approximately periodic, and the spectrum of the excitation force becomes discontinuous or close to it, and the frequency response function There were drawbacks such as a decrease in measurement accuracy and the inability to maintain accuracy due to unstable vibration conditions. Therefore, in Japanese Patent Application No. 61-242882 (Japanese Unexamined Patent Publication No. 63-98526), the present applicant proposes to hit the object to be measured at the same time with multiple impact hammers (by two or more people), as well as to apply irregular input impact. We proposed a vibration method and attempted to improve the accuracy of frequency response function measurement by making the time intervals of impact irregular in the irregular impact vibration method.

一方、第5図a,bのように加振機7を用い、
正弦波や不規則波で加振する方法は、精度や安定
性の点で上述した3つの打撃加振法より勝つてい
る。
On the other hand, using the vibrator 7 as shown in Fig. 5 a and b,
The method of excitation using a sine wave or irregular wave is superior to the three percussion excitation methods mentioned above in terms of accuracy and stability.

しかし、加振機7を被測定物1の加振点に固定
しなければならないので計測準備に時間がかか
り、又、前記被測定物1の加振点にはネジ穴を開
ける等の加工をする必要があるので、加振点が制
約されるという問題がある。更に、より高い精度
を得るために、複数の加振機7を用いて、互いに
相関のない不規則波で同時に加振すること(多点
同時加振)も行なわれているが、第5図a,bに
示すように加振機7を被測定物1に固定している
と、構造物の共振点等で加振機7がその影響を受
けることにより、加振力が無相関ではなくなつて
しまい、計測の精度が低下するという問題も生ず
る。
However, since the vibration exciter 7 must be fixed at the excitation point of the object to be measured 1, it takes time to prepare for measurement, and the excitation point of the object to be measured 1 requires processing such as drilling a screw hole. Therefore, there is a problem that the excitation point is restricted. Furthermore, in order to obtain higher accuracy, multiple vibrators 7 are used to simultaneously excite irregular waves with no correlation to each other (multi-point simultaneous excitation); When the vibrator 7 is fixed to the object to be measured 1 as shown in a and b, the vibrator 7 is affected by resonance points of the structure, and the excitation force is not uncorrelated. There is also the problem that the measurement accuracy deteriorates due to aging.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上詳述したように、打撃加振法は精度や安定
性の点で加振機を用いる加振法より劣り、又、該
加振機を用いる方法では、計測準備に時間がかか
ることや加振点が制約されること及び多点同時加
振では、加振力が互いに影響し合つて計測精度が
低下すること等の問題があり、いずれも周波数応
答関数を計測する場合に、計測の容易さと計測の
精度・安定性を両立し得るものではなかつた。
As detailed above, the percussion vibration method is inferior to the vibration method using a vibrator in terms of accuracy and stability, and the method using the vibrator requires time for measurement preparation and There are problems such as restrictions on the vibration point and simultaneous excitation at multiple points, where the excitation forces influence each other and measurement accuracy decreases. However, it was not possible to achieve both measurement accuracy and stability.

本発明は、このような現状に鑑み創案されたも
ので、不規則な打撃加振を行なえる加振装置を提
供することにより、人力によらずに不規則打撃加
振法(多入力の場合も含む)を実施できるように
して、計測の容易さと計測の精度・安定性の両立
を図らんとするものである。
The present invention was devised in view of the current situation, and by providing an excitation device that can perform irregular percussion excitation, the present invention can be applied to the irregular percussion excitation method (in the case of multiple inputs) without relying on human power. The aim is to achieve both ease of measurement and measurement accuracy and stability.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明は、不規則にパルス状の信号を
発生する信号発生器と、該信号発生器で発生する
信号に基づいて駆動し、被測定物を打撃・加振す
る加振機とを有することを基本的特徴とするもの
である。
Therefore, the present invention includes a signal generator that irregularly generates pulse-like signals, and a vibrator that is driven based on the signal generated by the signal generator to strike and vibrate the object to be measured. Its basic characteristics are:

又、このような加振装置により不規則打撃加振
法を実施して得られる振動応答は連続した不規則
波状になる傾向にあり、漏れ誤差のために精度が
低下する虞れがあるが、第2発明はこれを防止す
るため、前記信号発生器で発生した信号を断続せ
しめる信号断続器を設け、これにより断続せしめ
られた信号に基づいて前記加振器を駆動させ、被
測定物を打撃加振するようにしたものである。
In addition, the vibration response obtained by implementing the irregular impact vibration method using such a vibration device tends to be continuous and irregular waves, and there is a risk that the accuracy will decrease due to leakage errors. In order to prevent this, the second invention provides a signal interrupter that interrupts the signal generated by the signal generator, and drives the vibrator based on the interrupted signal to strike the object to be measured. It is designed to vibrate.

〔作用〕[Effect]

上記信号発生器で発生した不規則なパルス状の
信号は、加振機に送出され、更に該加振機では、
この信号に基づいて駆動するので、加振機を被測
定物に近接して配置しておけば、この加振機は被
測定物を不規則に打撃することができる。
The irregular pulse-like signal generated by the signal generator is sent to a vibrator, and the vibrator further performs the following steps:
Since it is driven based on this signal, if the vibrator is placed close to the object to be measured, the vibrator can strike the object to be measured irregularly.

又、第2発明では、信号発生器で発生した信号
を信号断続器で断続せしめて加振機に送るため、
被測定物への不規則打撃加振を断続的に行なわし
めることができる。
Further, in the second invention, in order to intermittent the signal generated by the signal generator with the signal interrupter and send it to the vibrator,
Irregular impact excitation to the object to be measured can be performed intermittently.

〔実施例〕〔Example〕

以下本発明の具体的例につき詳述する。 Specific examples of the present invention will be described in detail below.

第1図は、本発明の一実施例に係る加振装置を
用いて不規則打撃加振法を実施したところを示し
ており、図中10は該加振法により周波数応答関
数を求めようとする被測定物たる構造物である。
FIG. 1 shows the irregular percussion excitation method carried out using the excitation device according to an embodiment of the present invention, and 10 in the figure shows an attempt to obtain a frequency response function using the excitation method. The structure is the object to be measured.

本実施例の装置は、ワイヤ20により構造物1
0に近接する位置に吊下せしめた打撃加振機2
と、該加振機2に加振信号を送る信号発生器3と
からなる。
In the device of this embodiment, the structure 1 is
Impact exciter 2 suspended at a position close to 0
and a signal generator 3 that sends an excitation signal to the vibrator 2.

このうち打撃加振機2は一般の電磁加振機や油
圧加振機でも良いが、構造物を打撃できるもので
あれば、例えば電磁石や空気圧等を用いた簡単な
往復動装置でも差し支えない。又、この加振機2
は図のようにワイヤ20で支持する以外の方法で
支持しても良い。尚、該加振機2の打撃部には、
力検出器8aが取付けられており、構造物10の
周波数応答関数を求める際に必要となる加振器2
の打撃により加えられた力を検出するものであ
る。
Among these, the impact exciter 2 may be a general electromagnetic exciter or a hydraulic exciter, but it may also be a simple reciprocating device using an electromagnet, air pressure, etc., as long as it can strike a structure. Also, this vibration exciter 2
may be supported by a method other than the wire 20 as shown in the figure. In addition, the striking part of the vibrator 2 includes:
A force detector 8a is attached to the exciter 2, which is necessary when determining the frequency response function of the structure 10.
The device detects the force applied by the strike.

又、信号発生器3は、不規則なパルス状の信号
を発生し、これを前記加振機2に加振信号として
送るもので、本実施例では以下のようにして加振
信号を得ている。即ち、まず第2図bに示すよう
な不規則パルス信号を用意する。これは同図aの
ような不規則波に適当な閾値を設け、不規則波が
これを超える時にパルスが発生するようにしても
良いし、その他の既知の方法を用いても良い。次
に、この不規則パルス信号をフイルタを通す等し
て、そのパルス幅を加振機2を動作させるのに適
当な程度に調整し、同図cに示すような波形を得
る。
Further, the signal generator 3 generates an irregular pulse-like signal and sends it to the vibrator 2 as an excitation signal. In this embodiment, the excitation signal is obtained as follows. There is. That is, first, an irregular pulse signal as shown in FIG. 2b is prepared. This may be done by setting an appropriate threshold value for the irregular wave as shown in FIG. Next, this irregular pulse signal is passed through a filter, etc., and its pulse width is adjusted to a degree suitable for operating the vibrator 2, thereby obtaining a waveform as shown in FIG.

この波形信号を前記加振機2に加振信号として
与えれば、該加振機2は不規則に構造物10を打
撃するので、この加振力(前記力検出器8aで検
知される)と構造物10の振動応答(例えば振動
加速度)とを測定することによつて周波数応答関
数を計算することができる。
If this waveform signal is given as an excitation signal to the vibrator 2, the vibrator 2 will hit the structure 10 irregularly, so that the excitation force (detected by the force detector 8a) and The frequency response function can be calculated by measuring the vibration response (eg, vibration acceleration) of the structure 10.

又、測定された構造物10の振動応答は第2図
dに示すように連続不規則波状になり、周波数応
答関数を計算する際、漏れ誤差のために精度が低
下する虞れがある。従つて第1図の想像線で示さ
れるように、前記加振機2と信号発生器3との間
に信号断続器4を設け、第2図eに示すようなゲ
ート波形を設定してこれを用いて同図cの信号を
断続させ、同図fに示すような断続した信号を得
るようにする。
Further, the measured vibration response of the structure 10 has a continuous irregular wave shape as shown in FIG. 2d, and when calculating the frequency response function, there is a possibility that the accuracy may be reduced due to leakage errors. Therefore, as shown by the imaginary line in FIG. 1, a signal interrupter 4 is provided between the vibrator 2 and the signal generator 3, and a gate waveform as shown in FIG. 2e is set. is used to intermittent the signal shown in c in the same figure to obtain an intermittent signal as shown in f in the same figure.

このような信号を加振信号として加振機2に送
つて打撃加振を行なえば、その時の振動応答は同
図gのようになり、破線部分のデータを取り込ん
で周波数応答関数を計算すれば打ち切り誤差を防
止することができる。
If such a signal is sent as an excitation signal to the exciter 2 and vibration excitation is performed, the vibration response at that time will be as shown in g in the same figure, and if the data in the dashed line is taken in and the frequency response function is calculated, Truncation errors can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明の加振装置によれば、次の
ような優れた効果を奏することになる。
According to the vibrating device of the present invention described in detail above, the following excellent effects can be achieved.

加振機を対象物に取り付ける必要がないの
で、実験準備が容易である。
Experiment preparation is easy because there is no need to attach a vibrator to the object.

加振機を対象物に取り付ける必要がないの
で、対象物や加振点が制約されない。
Since there is no need to attach the vibration exciter to the target object, there are no restrictions on the target object or the point of vibration.

多点同時加振を行なつても、加振機が互いに
影響を与えず、完全に無相関な加振が可能であ
る。
Even when multiple points are simultaneously excited, the vibrators do not affect each other, allowing completely uncorrelated excitation.

人力で加振する場合に比べ、理想的に不規則
な打撃加振が可能である。
Irregular percussion excitation is ideally possible compared to when excitation is performed manually.

人力で加振する場合に比べ、安定な加振が可
能である。
Stable vibration is possible compared to the case of manual vibration.

人力で加振する場合に比べ、大きな加振力を
得ることができる。
A larger excitation force can be obtained compared to when excitation is performed manually.

加振機は簡単な構造でよく、大加振力のもの
でも安価に製作し得る。
The vibration exciter may have a simple structure, and even one with a large excitation force can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る加振装置を用
いて不規則打撃加振法を実施するところを示す説
明図、第2図a乃至gは上記加振装置を用いて不
規則打撃加振法を実施した場合の各種信号波形を
示しており、同図aは不規則パルス信号を得るた
めに用いられる不規則波の信号波形図、同図bは
信号発生器で発生せられる加振信号を得るために
用いられる不規則パルス信号の信号波形図、同図
cは信号発生器で発生せられる加振信号の信号波
形図、同図dは信号発生器で発生せられる加振信
号に基づいて加振機で打撃加振した際に得られる
応答信号の信号波形図、同図eは信号断続器で用
いられるゲート波形を示す信号波形図、同図fは
信号断続器により断続せしめられた加振信号の信
号波形図、同図gは断続せしめられた加振信号に
基づいて加振機で打撃加振した際に得られる応答
信号の信号波形図、第3図は従来の打撃加振法を
示す説明図、第4図aは打撃加振法による加振力
波形を示す波形図、同図bは不規則打撃加振法に
よる加振力波形を示す波形図、第5図a,bは加
振機を被測定物に接続せしめて加振し、その周波
数応答関数を求める従来の加振法を示しており、
同図aは正弦波加振法を示す説明図、同図bはラ
ンダム加振法を示す説明図である。 図中、1は被測定物、10は構造物、2は打撃
加振機、3は信号発生器、4は信号断続器を各示
す。
FIG. 1 is an explanatory diagram showing the implementation of an irregular impact vibration method using a vibration device according to an embodiment of the present invention, and FIGS. Various signal waveforms are shown when the excitation method is implemented. Figure a is a signal waveform diagram of an irregular wave used to obtain an irregular pulse signal, and Figure b is a signal waveform diagram of an irregular wave used to obtain an irregular pulse signal, and Figure b is a waveform diagram of an irregular wave used to obtain an irregular pulse signal. A signal waveform diagram of an irregular pulse signal used to obtain an oscillation signal, c is a signal waveform diagram of an excitation signal generated by a signal generator, and d is a signal waveform diagram of an excitation signal generated by a signal generator. Figure e is a signal waveform diagram of the response signal obtained when percussion vibration is applied by the vibrator based on the above figure. Figure e is a signal waveform diagram showing the gate waveform used in the signal interrupter. Figure f is the signal waveform diagram showing the gate waveform used in the signal interrupter. Fig. 3 is a signal waveform diagram of a response signal obtained when a vibration exciter is used to perform impact vibration based on an intermittent excitation signal, and Fig. 3 is a signal waveform diagram of a conventional impact signal. An explanatory diagram showing the vibration excitation method, Fig. 4a is a waveform diagram showing the excitation force waveform by the percussion excitation method, Fig. 4b is a waveform diagram showing the excitation force waveform by the irregular percussion excitation method, Fig. 5 Figures a and b show the conventional vibration method in which a vibration exciter is connected to the object to be measured, and the frequency response function is determined.
Figure a is an explanatory diagram showing the sine wave excitation method, and Figure b is an explanatory diagram showing the random excitation method. In the figure, 1 is an object to be measured, 10 is a structure, 2 is an impact exciter, 3 is a signal generator, and 4 is a signal interrupter.

Claims (1)

【特許請求の範囲】 1 不規則にパルス状の信号を発生する信号発生
器と、該信号発生器で発生する信号に基づいて駆
動し、被測定物を打撃加振する加振機とを有する
ことを特徴とする打撃型不規則加振装置。 2 不規則にパルス状の信号を発生する信号発生
器と、該信号発生器で発生する信号を断続せしめ
る信号断続器と、該信号断続器で断続せしめられ
た前記信号に基づいて駆動し、被測定物を打撃加
振する加振機とを有することを特徴とする打撃型
不規則加振装置。
[Claims] 1. Includes a signal generator that irregularly generates pulse-like signals, and a vibrator that is driven based on the signal generated by the signal generator and excites the object to be measured by impact. A percussion-type irregular vibration excitation device. 2. A signal generator that generates pulse-like signals irregularly, a signal interrupter that interrupts the signal generated by the signal generator, and a signal generator that drives and receives signals based on the signal interrupted by the signal interrupter. 1. A percussion-type irregular vibration excitation device, comprising: a vibrator for percussively vibrating an object to be measured.
JP62008210A 1987-01-19 1987-01-19 Impact type irregular excitation apparatus Granted JPS63177032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008210A JPS63177032A (en) 1987-01-19 1987-01-19 Impact type irregular excitation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008210A JPS63177032A (en) 1987-01-19 1987-01-19 Impact type irregular excitation apparatus

Publications (2)

Publication Number Publication Date
JPS63177032A JPS63177032A (en) 1988-07-21
JPH058978B2 true JPH058978B2 (en) 1993-02-03

Family

ID=11686877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008210A Granted JPS63177032A (en) 1987-01-19 1987-01-19 Impact type irregular excitation apparatus

Country Status (1)

Country Link
JP (1) JPS63177032A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837223A (en) * 2014-03-07 2014-06-04 山东科技大学 Inherent frequency measuring system and method of automobile steering system
CN109142519A (en) * 2018-06-07 2019-01-04 奇瑞汽车股份有限公司 A kind of vehicle steering wheel rotation identification of mode frequency method and identification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934334B2 (en) * 1981-11-19 1984-08-22 株式会社東和電機製作所 Squid fishing machine squid removal device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934334U (en) * 1982-08-30 1984-03-03 曙ブレーキ工業株式会社 Vibration device for vibration testing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934334B2 (en) * 1981-11-19 1984-08-22 株式会社東和電機製作所 Squid fishing machine squid removal device

Also Published As

Publication number Publication date
JPS63177032A (en) 1988-07-21

Similar Documents

Publication Publication Date Title
CA1281117C (en) Method for driving a bender-type transmitter of a borehole logging tool to sequentially produce acoustic compressional and tube waves
CA2390981A1 (en) Acoustic logging tool having quadrapole source
CA2490936A1 (en) Method and apparatus for determining earth formation shear-wave transverse isotropy from borehole stoneley-wave measurements
MY100705A (en) Acoustic dipole shear wave logging device
NZ507081A (en) Method and apparatus for locating bending wave transducer means
JP2002116191A (en) Method and apparatus to provide dynamic ultrasonic measurement of rolling element bearing parameter
EP0231063A2 (en) Borehole logging method for determining the damping of acoustic tube waves in subsurface formations along a borehole wall
JPH058978B2 (en)
EP1471350A3 (en) Apparatus for in-situ nondestructive acoustic measurement of young's modulus of plate structures
JPH0679017B2 (en) Void probe
JP2549482B2 (en) Structure soundness determination device
AU2001282096A1 (en) Method for determining the earthquake resistance of buildings
JPH0511786B2 (en)
JPH0675055A (en) Control method for sweep oscillation source in ground investigation
JPH0445098B2 (en)
US20040111223A1 (en) Method for examining structures having high natural vibration frequency using alternating manual vibration-exciting method
JP2610378B2 (en) Hammering sound investigation method using wavelet transform
JP2003028842A (en) Method and apparatus for measurement of strength of concrete surface layer part
CA1278851C (en) Method of acoustic well logging
KR100440820B1 (en) The alternating man-powered vibration test for structures with high natural frequency
JP2823952B2 (en) Oscillation drive circuit
JP2000250637A (en) Active control method for ground low frequency vibration
JPS61271485A (en) Continuous wave transmission for multi-frequency ultrasonic pulse
KR0135697Y1 (en) Excitor using acoustic power
Zhu et al. Experimental study of flexural waves in a fractured or cased borehole model