JPH0444668B2 - - Google Patents

Info

Publication number
JPH0444668B2
JPH0444668B2 JP3047686A JP3047686A JPH0444668B2 JP H0444668 B2 JPH0444668 B2 JP H0444668B2 JP 3047686 A JP3047686 A JP 3047686A JP 3047686 A JP3047686 A JP 3047686A JP H0444668 B2 JPH0444668 B2 JP H0444668B2
Authority
JP
Japan
Prior art keywords
building
structures
rigid
period
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3047686A
Other languages
Japanese (ja)
Other versions
JPS62189265A (en
Inventor
Akira Higashiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Kogyo Co Ltd
Original Assignee
Sato Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Kogyo Co Ltd filed Critical Sato Kogyo Co Ltd
Priority to JP3047686A priority Critical patent/JPS62189265A/en
Publication of JPS62189265A publication Critical patent/JPS62189265A/en
Publication of JPH0444668B2 publication Critical patent/JPH0444668B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、大地震の際にも建造物を崩壊を免れ
ることができる耐震安定性の高い構築構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a construction structure with high seismic stability that can prevent a building from collapsing even in the event of a major earthquake.

[発明の背景] 従来、建造物に加わる地震の効力を減ずる免震
構造は、耐震構造の一つで、主に絶縁構造、復元
力調整構造、エネルギー消費構造、自動制御構造
が知られている。
[Background of the invention] Conventionally, base isolation structures that reduce the effectiveness of earthquakes applied to buildings are one type of earthquake-resistant structure, and are mainly known as insulation structures, restoring force adjustment structures, energy consumption structures, and automatic control structures. .

絶縁構造は、地盤から建造物へ地震波が伝播さ
れないようにする構造で、例えばボールベアリン
グを用いたり、ベアリングとバネを併用したり、
あるいはベアリングを支承する面を凹面にして復
元力を持たせる構造が知られている。この構造で
は、建造物自体が固有周期を持つために共振の問
題があるのでこれを防ぐためにロツキングボール
を用いた構造等が知られている。さらに地震力の
周期特性を知り、これとかけはなれた周期特性を
建造物に持たせる構造も絶縁構造の一つとして知
られている。
An insulating structure is a structure that prevents seismic waves from propagating from the ground to a building. For example, it uses ball bearings, a combination of bearings and springs, etc.
Alternatively, a structure is known in which the bearing supporting surface is made concave to provide restoring force. This structure has the problem of resonance because the building itself has a natural period, so structures using rocking balls are known to prevent this problem. In addition, by understanding the periodic characteristics of seismic force, structures that provide buildings with periodic characteristics that are different from these are also known as insulating structures.

復元力調整構造は、建造物の復元力特性を調整
できるようにする構造で、力と変形の関係を地盤
や建造物の性質に対して有利に、即ち共振的な振
動を起こさぬようにするものである。復元力特性
としては、建造物が大きな加速度に対して柔構造
を有し、大きな変位に対して剛構造を有し、しか
もエネルギー消費も担当し、変位エネルギーのか
なりの量を吸収できるものが望ましく、具体的に
は、壁に割れ目を入ておいて壁の剛性を落し応力
を分散させるスリツトウオール構造やそのままに
しておけば応力集中を起す壁の隅部にわざわざ開
口部を設計する構造などが知られている。また柱
で復元力特性を調整する多重柱構造等も知られて
いる。
A restoring force adjustment structure is a structure that allows the restoring force characteristics of a building to be adjusted, making the relationship between force and deformation favorable to the properties of the ground and building, in other words, preventing resonant vibrations. It is something. As for the restoring force characteristics, it is desirable that the building has a flexible structure against large accelerations, a rigid structure against large displacements, and is also responsible for energy consumption and can absorb a considerable amount of displacement energy. Specifically, this includes a slit wall structure in which cracks are created in the wall to reduce the rigidity of the wall and disperse stress, and a structure in which openings are intentionally designed in the corners of the wall where stress would concentrate if left as is. It has been known. Also known are multi-column structures in which the restoring force characteristics are adjusted using columns.

エネルギー消費構造は、入つてきたエネルギー
を建造物の主要部分の破壊に使われないうちに外
に出すか、あるいは消費する構造である。例えば
ダンパーを取付け、あるいは建造物の非主体構造
での破損を許してエネルギーを摩擦熱に変える構
造が知られている。
An energy-consuming structure is a structure that releases or consumes incoming energy before it is used to destroy the main part of the structure. For example, structures are known in which a damper is installed or a non-main structure of a building is allowed to break, thereby converting energy into frictional heat.

自動制御構造は、建造物を動かそうとする作用
を検出し、逆に建造物がこれに対しての応答を生
じるのを打ち消すような作用を加える構造で、小
型の建造物には適用の可能性があるとされてい
る。
An automatic control structure is a structure that detects an action that attempts to move a building and applies an action that cancels the building's response to this, and can be applied to small buildings. It is said that there is sex.

一方耐震構造として柔剛構造についての研究も
盛んに行れている。中・低層建造物は建造物の固
有周期が短く短周期建造物に該当し、剛構造であ
るとされている。また高層建造物は固有周期が長
く長周期建造物に該当し、柔建造となる、即ち柔
構造は建造物を固有周期を長くして建造物に作用
する地震力を小さくしようとする耐震構造であ
る。
On the other hand, research on flexible and rigid structures as earthquake-resistant structures is also being actively conducted. Medium- and low-rise buildings have a short natural period, fall under the category of short-period buildings, and are considered to have rigid structures. In addition, high-rise buildings have a long natural period and fall under the category of long-period buildings, and are flexible structures.In other words, flexible structures are earthquake-resistant structures that lengthen the natural period of a building to reduce the seismic force acting on the building. be.

従つて従来の耐震構造は建造物の高さによつて
剛構造又は柔構造のいずれかであつた。
Therefore, conventional earthquake-resistant structures have been either rigid structures or flexible structures, depending on the height of the building.

[発明が解決しようとする課題] 従来の耐震構造では、建造物が剛又は柔のいず
れかの構造を有し、その建造物全体が一体化され
かつ固有の周期を有しているため、建造物の該固
有周期が地震動の周期と一致すると共振を起して
大きく揺れて該建造物が破壊されるという問題が
あつた。
[Problem to be solved by the invention] In conventional earthquake-resistant structures, buildings have either a rigid or flexible structure, and the entire building is integrated and has a unique period. When the natural period of an object matches the period of seismic motion, there is a problem that resonance occurs and the building shakes violently, resulting in destruction of the building.

かかる問題を解決するために、前述したように
ロツキングボールを用いた絶縁構造による免震構
造の採用も考えられるが、高層建造物の場合に耐
震安定性及びコスト等の観点から実用性に乏しい
という問題があり、また長周期成分(5〜20秒)
の地震波を受けた場合上記のような共振の際に
は、いかなる免震構造も効果的でないという問題
があつた。
In order to solve this problem, it is possible to adopt a seismic isolation structure using an insulating structure using rocking balls as described above, but this is not practical in terms of seismic stability and cost in the case of high-rise buildings. There is a problem that there is a long-period component (5 to 20 seconds)
When subjected to seismic waves of

また中・低層の剛構造建造物の場合には、鉛直
力を支持する部材で水平力も負担しているため、
地震などにより水平力を受けて、その部材が破壊
した場合、鉛直力を支持する部材も破壊したり、
また鉛直力を支持できなくなつたりしたて、結局
建造物全体が崩壊してしまうという問題があつ
た。
In addition, in the case of mid- to low-rise rigid structures, the members that support vertical forces also bear horizontal forces, so
If a member is damaged due to horizontal force due to an earthquake, the member supporting the vertical force may also be destroyed.
Another problem was that the building could no longer support the vertical force, and the entire building would eventually collapse.

[発明の目的] そこで本発明は耐震安定性に優れ、大地震の際
にも建造物の崩壊を免れることができる建造物の
構築構造を提供することを目的とする。
[Objective of the Invention] Accordingly, an object of the present invention is to provide a construction structure for a building that has excellent seismic stability and can avoid collapse of the building even in the event of a major earthquake.

[課題を解決するための手段] 本発明者は上記目的を達成すべく鋭意検討を重
ねた結果、本発明に至つた。
[Means for Solving the Problems] As a result of extensive studies to achieve the above object, the inventors have arrived at the present invention.

即ち、本発明に係る建造物の構築構造は、単一
の建造物の構築構造であつて、地盤における地震
波に対する建物の加速度応答と地震加速度最大値
とが一致する値である臨界周期よりも固有周期が
長く鉛直力を支持する柔構造部と、前記臨界周期
よりも固有周期が短く水平力を負担する剛構造部
の二種の構造に縦方向の切断線で分割されている
と共に、前記柔構造部の外周部であつて建造物の
内接面に前記構造部が複数配置され、該両構造部
が減衰機構によつて連結されていることを特徴と
する。
That is, the construction structure of a building according to the present invention is a construction structure of a single building, and the construction structure has a characteristic period shorter than the critical period, which is the value at which the acceleration response of the building to seismic waves in the ground and the maximum seismic acceleration value coincide. It is divided by a vertical cutting line into two types of structures: a flexible structure that has a long period and supports vertical forces, and a rigid structure that has a short natural period that is shorter than the critical period and supports horizontal forces. The structure is characterized in that a plurality of the structural parts are arranged on the outer periphery of the structural part and an inscribed surface of the building, and the two structural parts are connected by a damping mechanism.

また別なる本発明に係る建造物の構築構造は、
単一の建造物の構築構造であつて、地盤における
地震波に対する建物の加速度応答と地震加速度最
大値とが一致する値である臨界周期よりも固有周
期が長く鉛直力を支持する柔構造部と、前記臨界
周期よりも固有周期が短く水平力を負担する剛構
造部の二種の構造に縦方向の切断線で分割されて
いると共に、前記剛構造部の外周部にあつて建造
物の内接面に前記柔構造部が複数配置され、該両
構造部が減衰機構によつて連結されていることを
特徴とする。
Another construction structure of a building according to the present invention is
A flexible structure that supports vertical force and has a natural period longer than a critical period, which is a value at which the acceleration response of the building to seismic waves in the ground matches the maximum seismic acceleration value, which is the construction structure of a single building; It is divided by a vertical cutting line into two types of structures: a rigid structure that has a natural period shorter than the critical period and bears horizontal force, and a structure that is inscribed in the building at the outer periphery of the rigid structure. A plurality of the flexible structure parts are arranged on the surface, and the two structure parts are connected by a damping mechanism.

[実施例] 以下、本発明の実施例を添付図面に基づき説明
する。
[Example] Hereinafter, an example of the present invention will be described based on the accompanying drawings.

実施例 1 第1図は第1の実施例を示す概略平面図、第2
図はその概略立面図である。
Example 1 Figure 1 is a schematic plan view showing the first example, and Figure 1 is a schematic plan view showing the first example.
The figure is a schematic elevation view thereof.

本実施例は一つの建造物を柔構造部と剛構造部
とに縦方向の切断線で分割して二種の構造とし
て、柔構造部の外周部であつて建造物の内接面に
前記剛構造物を複数配置し、更に該両構造部の間
に間〓を設け、該間〓に減衰機構を設けて前記両
構造部を減衰機構によつて連結するものである。
In this example, one building is divided into a flexible structure part and a rigid structure part along a vertical cutting line, and two types of structures are created. A plurality of rigid structures are arranged, a gap is provided between the two structures, a damping mechanism is provided between the two structures, and the two structures are connected by the damping mechanism.

同図において、1は四角形の建造物(大型ビル
等が好ましい)の内接面である四隅に位置する剛
構造部である。本明細書において形状及び方向は
特に断らない限り平面図を基準とするものであ
る。
In the figure, reference numeral 1 denotes rigid structural parts located at the four corners of the inscribed surface of a rectangular building (preferably a large building or the like). In this specification, shapes and directions are based on plan views unless otherwise specified.

剛構造物1は水平力を負担する固有周期の短い
剛構造を有し、図示しないが部材と部材が剛に接
合され、例えば建物のコーナーに位置することか
ら階段や便所等を設け剛構造部としてもよいし、
あるいは各コーナーに柱を用いて剛構造と成し、
建物全体が大ラーメン構造となるようにしてもよ
い。上記において水平力を負担するとは、地震の
振動により水平力が加わつた場合にその力に対抗
しうる耐性を有するか、あるいはその力を吸収等
して他の構造部分へその力を伝播しないようにす
ることである。また固有周期が短いとは、建造物
の固有周期が臨界周期以下であることを意味す
る。臨界周期の概念は、建築構造設計シリーズ
「建築の構造計画」(丸善発行)第45頁に記載の
「梅村」の定義に基づく。即にある地震波に対す
る建造物の加速度応答スペクトラムを想定し(地
盤、地震波等によつてこのスペクトラムは異なる
ので、ある地震波に対し想定することになる)、
建造物の加速度応答曲線が地震加速度最大値と交
わる点に相当する周期を臨界周期といい、この臨
界周期は固定したものでなく地盤、地震波等によ
つて変動する。そして、建物の固有周期が臨界周
期よりも長くなるものを柔構造、短くなるものを
剛構造と定義している。
The rigid structure 1 has a rigid structure with a short natural period that bears horizontal force, and although not shown in the drawings, the rigid structure 1 is rigidly joined with other members.Since it is located at a corner of a building, for example, stairs and toilets are provided in the rigid structure. You can also
Alternatively, use pillars at each corner to create a rigid structure.
The entire building may have a large rigid-frame structure. In the above, "bearing horizontal force" means having the ability to resist horizontal force when it is applied due to earthquake vibrations, or having the ability to absorb the force and prevent it from propagating to other structural parts. It is to do so. Furthermore, a short natural period means that the natural period of the building is less than or equal to the critical period. The concept of critical period is based on the definition of ``Umemura'' described in page 45 of the Architectural Structural Design Series ``Architectural Structural Planning'' (published by Maruzen). Immediately assume the acceleration response spectrum of the building to a certain seismic wave (this spectrum differs depending on the ground, seismic waves, etc., so it will be assumed for a certain seismic wave),
The period corresponding to the point where the acceleration response curve of a building intersects with the maximum seismic acceleration is called the critical period, and this critical period is not fixed but varies depending on the ground, seismic waves, etc. A building whose natural period is longer than the critical period is defined as a flexible structure, and a building whose natural period is shorter than the critical period is defined as a rigid structure.

2は建物のほとんどのスペースを占める柔構造
部であり、該構造部2と各コーナーに位置する剛
構造部1とは後述する減衰機構3によつて連結さ
れている。該柔構造部2は鉛直力を支持する固有
周期の長い柔構造を有するものであればよい。
Reference numeral 2 denotes a flexible structure that occupies most of the space in the building, and the structure 2 and the rigid structure 1 located at each corner are connected by a damping mechanism 3, which will be described later. The flexible structure portion 2 may have a flexible structure with a long natural period that supports vertical force.

主として鉛直力を支持するとは、床面積の大部
分を支持する構造物で、その鉛直荷重と、地震に
よる水平変形によつて生じる付加曲げモーメント
に抵抗することである。
Primarily supporting vertical forces refers to structures supporting a large portion of the floor area that resist vertical loads and additional bending moments caused by horizontal deformations due to earthquakes.

固有周期が長いとは前述したように建造物の固
有周期が臨界周期以上であることを意味する。
As mentioned above, a long natural period means that the natural period of a building is greater than or equal to the critical period.

本実施例において剛構造部1と柔構造部2の固
有周期の差は、離れていた方が良いが特に限定さ
れる訳ではない。要は固有周期の異なる二種の構
造部分が一つの構造物に構成されればよい。
In this embodiment, the difference in the natural period between the rigid structure part 1 and the flexible structure part 2 is preferably far apart, but is not particularly limited. In short, it is sufficient that two types of structural parts having different natural periods are configured into one structure.

減衰機構3は、地震のエネルギーを消費する機
能を有するものであり、該減衰機構3としては、
免振機構として知られる絶縁法やエネルギー消費
法に用いられる各種装置を用いることができ、例
えばスプリングや第5図及び第6図に示す装置を
用いることができる。第5図に示す装置は、剛構
造部1と柔構造部2が鉄筋入スラブ面を共通にし
て連結された状態にあり、該剛構造部1のスラブ
面と柔構造部2のスラブ面との間にスリツト4を
設けて両構造を事実上分離し、鉄筋5を露出して
その部分の降伏を免振に利用するようにしたもの
である。第6図に示す装置は、剛構造部1のスラ
ブ面と柔構造部2のスラブ面を各々所定間隔の距
離を隔てて上下に重なるようにし、両スラブ面の
先端に筒7A及び7Bを固定し、該筒7A及び7
Bの中に芯棒6を挿入し、該芯棒6の降伏を免振
に利用するようにしたものである。同図において
Gは間〓である。この装置において芯棒6の材質
としては鉄、鋼、鉛、鉄筋コンクリート(RC)、
グラスフアイバー補強コンクリート(GFRC)、
スチールフアイバー補強コンクリート(SFRC)
などを用いることができ、また筒7A,7Bの材
質としては鋼、セラミツク等を用いることができ
る。なお芯棒6と筒7A及び7Bの間は密着して
いることが好ましい。
The damping mechanism 3 has the function of consuming earthquake energy, and the damping mechanism 3 includes the following:
Various devices used in isolation methods and energy consumption methods known as vibration isolation mechanisms can be used, such as springs and the devices shown in FIGS. 5 and 6. In the device shown in FIG. 5, a rigid structure part 1 and a flexible structure part 2 are connected to each other using a common reinforcing slab surface, and the slab surface of the rigid structure part 1 and the slab surface of the flexible structure part 2 are A slit 4 is provided between the two structures to effectively separate the two structures, exposing the reinforcing bars 5 and utilizing the yielding of that portion for vibration isolation. In the device shown in FIG. 6, the slab surface of the rigid structure section 1 and the slab surface of the flexible structure section 2 are vertically overlapped with a predetermined distance between them, and tubes 7A and 7B are fixed to the tips of both slab surfaces. The cylinders 7A and 7
A core rod 6 is inserted into B, and the yielding of the core rod 6 is used for vibration isolation. In the figure, G is between. In this device, the material of the core rod 6 is iron, steel, lead, reinforced concrete (RC),
glass fiber reinforced concrete (GFRC),
Steel fiber reinforced concrete (SFRC)
Steel, ceramic, etc. can be used as the material for the tubes 7A and 7B. Note that it is preferable that the core rod 6 and the tubes 7A and 7B are in close contact with each other.

また上記以外の減衰機構としては、例えば金属
板とラバーを多層に積層して成るシヨツクアブソ
ーバー等を用いることもできる。
Further, as a damping mechanism other than the above, for example, a shock absorber formed by laminating metal plates and rubber in multiple layers, etc. can also be used.

本実施例は以上のように構成されているため、
比較的頻繁に起る中小地震に対しては、固有周期
の短い剛構成部が剛性抵抗型の耐震機能を発揮
し、極めて稀に起こる大地震に対しては、固有周
期の長い柔構造部が靱性抵抗型の耐震機能を発揮
して、いずれの規模の地震によつても建造物の崩
壊を免れることができる。また、両構造部1,2
同志は減衰機構3によつて連結されているので、
地震時の衝突を避けることができ、また地震エネ
ルギーを消費することができるので振動の小さい
建造物を実現でき、且つ建造物の崩壊を免れるこ
とができる。さらに剛構造部が各コーナーであつ
て建造物の内接面に配置されているので、柔構造
部の鉛直力支持機能が剛構造部に十分行き届くた
め、該剛構造部の鉛直力変動を小さくすることが
できる。さらにまた剛構造部を柱と成して建物全
体を大ラーメン構造とすることができるので、大
型ビル等の構築法に効果を発揮することができ
る。
Since this embodiment is configured as described above,
For small and medium-sized earthquakes that occur relatively frequently, rigid structural parts with a short natural period provide a rigid resistance-type seismic function, while for large earthquakes that occur extremely rarely, flexible structural parts with a long natural period provide a seismic resistance function. It exhibits a toughness-resistance type of earthquake resistance function, allowing buildings to avoid collapse due to earthquakes of any size. In addition, both structural parts 1 and 2
Since the comrades are connected by the damping mechanism 3,
Since collisions during earthquakes can be avoided and earthquake energy can be consumed, buildings with low vibration can be realized and buildings can be prevented from collapsing. Furthermore, since the rigid structure is located at each corner and on the internal surface of the building, the vertical force support function of the flexible structure reaches the rigid structure, reducing vertical force fluctuations in the rigid structure. can do. Furthermore, since the rigid structural parts can be formed into pillars and the entire building can be made into a large rigid frame structure, it can be effective in the construction of large buildings and the like.

なお以上の実施例において両構造部1,2の配
置構成を逆、即ち各コーナーを柔構造部とし、内
側を剛構造部とすることもできる。例えば各コー
ナーにエレベータ等を設ける場合には好ましい。
In the embodiments described above, the arrangement of both structural parts 1 and 2 can be reversed, that is, each corner can be a flexible structural part and the inner side can be a rigid structural part. For example, this is preferable when an elevator or the like is provided at each corner.

実施例 2 第3図は第2の実施例を示す概略平面図であ
り、本実施例は建造物の形状が方形以外の、例え
ば図示の如き円形の建造物に本発明を適用する場
合を示す。本発明は本実施例以外の種々の形状の
建造物に対しても適用可能である。尚、図面では
減衰機構3を省略して示している。
Embodiment 2 FIG. 3 is a schematic plan view showing a second embodiment, and this embodiment shows a case where the present invention is applied to a building whose shape is other than square, for example, circular as shown in the figure. . The present invention is also applicable to buildings of various shapes other than the present embodiment. Note that the damping mechanism 3 is omitted in the drawings.

実施例 3 第4図は第3の実施例を示す概略平面図であ
り、本実施例は剛構造部1が柔構造部2の外周部
の各辺の中心付近であつて建造物の内接面に設け
られた場合を示すものである。尚、図面では減衰
機構3を省略して示している。
Embodiment 3 FIG. 4 is a schematic plan view showing a third embodiment. In this embodiment, the rigid structure section 1 is located near the center of each side of the outer periphery of the flexible structure section 2, and is inscribed in the building. This shows the case where it is provided on the surface. Note that the damping mechanism 3 is omitted in the drawings.

[発明の効果] 本発明によれば、剛構造部と柔構造部とを減衰
機構によつて連結することにより、固有周期の異
なる二種の構造体を意図的に造ることができ、比
較的頻繁に起る中小地震や稀に起る大地震のいず
れにも耐震機能を発揮し、即ち耐震安定性を有
し、また機能の異なる二種の構造部の相互作用に
よつて建造物の崩壊を防ぐことができる。
[Effects of the Invention] According to the present invention, by connecting a rigid structure part and a flexible structure part by a damping mechanism, it is possible to intentionally create two types of structures with different natural periods. It exhibits seismic function against both small and medium-sized earthquakes that occur frequently and large earthquakes that occur rarely, that is, it has seismic stability, and the interaction of two types of structural parts with different functions prevents buildings from collapsing. can be prevented.

特に本発明によれば、一方の構造部の外周部で
あつて建造物の内接面に他方の構造部を複数配置
せしめられるので、大型ビル等へ好ましく適用さ
れる。
In particular, according to the present invention, a plurality of structural parts can be disposed on the outer periphery of one structural part and on the inscribed surface of the building, so it is preferably applied to large buildings and the like.

なお、例えば第1図に鎖線で示す如く、両構造
部1,2の一方又は両方が中庭等の中空部8を有
していてもよい。
Note that, for example, as shown by the chain line in FIG. 1, one or both of the structural parts 1 and 2 may have a hollow part 8 such as a courtyard.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例を示す概略平面図、第2
図はその概略立面図、第3図は第2の実施例を示
す概略平面図、第4図は第3の実施例を示す概略
平面図、第5図及び第6図は減衰機構の例を示す
概略側面図である。 1:剛構造部、2:柔構造部、3:減衰機構。
FIG. 1 is a schematic plan view showing the first embodiment;
The figure is a schematic elevational view, FIG. 3 is a schematic plan view showing the second embodiment, FIG. 4 is a schematic plan view showing the third embodiment, and FIGS. 5 and 6 are examples of the damping mechanism. FIG. 1: rigid structure, 2: flexible structure, 3: damping mechanism.

Claims (1)

【特許請求の範囲】 1 単一の建造物の構築構造であつて、地盤にお
ける地震波に対する建物の加速度応答と地震加速
度最大値とが一致する値である臨界周期よりも固
有周期が長く鉛直力を支持する柔構造部と、前記
臨界周期よりも固有周期が短く水平力を負担する
剛構造部の二種の構造に縦方向の切断線で分割さ
れていると共に、前記柔構造部の外周部であつて
構造物の内接面に前記剛構造部が複数配置され、
該両構造部が減衰機構によつて連結されているこ
とを特徴とする建造物の構築構造。 2 単一の建造物の構築構造であつて、地盤にお
ける地震波に対する建物の加速度応答と地震加速
度最大値とが一致する値である臨界周期よりも固
有周期が長く鉛直力を支持する柔構造部と、前記
臨界周期よりも固有周期が短く水平力を負担する
剛構造部の二種の構造に縦方向の切断線で分割さ
れていると共に、前記剛構造部の外周部であつて
建造物の内接面に前記柔構造部が複数配置され、
該両構造部が減衰機構によつて連結されているこ
とを特徴とする建造物の構築構造。
[Scope of Claims] 1. A construction structure of a single building, which has a natural period longer than the critical period, which is the value at which the acceleration response of the building to seismic waves in the ground and the maximum value of seismic acceleration coincides with each other, and which does not absorb vertical force. It is divided into two types of structures: a supporting flexible structure and a rigid structure that bears horizontal force and whose natural period is shorter than the critical period. A plurality of the rigid structural parts are arranged on the inscribed surface of the structure,
A construction structure of a building, characterized in that both the structural parts are connected by a damping mechanism. 2. A flexible structure that supports vertical force and has a natural period longer than the critical period, which is the value at which the acceleration response of the building to seismic waves in the ground and the maximum seismic acceleration match, in the construction structure of a single building. , is divided by a vertical cutting line into two types of structures: a rigid structure that has a natural period shorter than the critical period and bears horizontal force, and is divided into two types of structures by a vertical cutting line, and is located at the outer periphery of the rigid structure and inside the building. A plurality of the flexible structure parts are arranged on the contact surface,
A construction structure of a building, characterized in that both the structural parts are connected by a damping mechanism.
JP3047686A 1986-02-14 1986-02-14 Construction of building Granted JPS62189265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047686A JPS62189265A (en) 1986-02-14 1986-02-14 Construction of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047686A JPS62189265A (en) 1986-02-14 1986-02-14 Construction of building

Publications (2)

Publication Number Publication Date
JPS62189265A JPS62189265A (en) 1987-08-19
JPH0444668B2 true JPH0444668B2 (en) 1992-07-22

Family

ID=12304904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047686A Granted JPS62189265A (en) 1986-02-14 1986-02-14 Construction of building

Country Status (1)

Country Link
JP (1) JPS62189265A (en)

Also Published As

Publication number Publication date
JPS62189265A (en) 1987-08-19

Similar Documents

Publication Publication Date Title
JP3728650B2 (en) Column base support structure and earthquake-resistant building
JP2733917B2 (en) Damping device
JPH11200659A (en) Base isolation structure
JPH0444668B2 (en)
JPH0426385B2 (en)
JP2003155838A (en) Vibration-isolated structure of building
JP4057195B2 (en) Seismic isolation building
JPH0444667B2 (en)
JP3807065B2 (en) Soft-rigid mixed structure
JPH0339575A (en) Vibration control viscoelastic wall
JP3629674B2 (en) Building vibration control structure
JPH0374747B2 (en)
JPH01102182A (en) Earthquakeproof wall
JP2004278002A (en) Unit building with base-isolating device
JPH0450366Y2 (en)
JP2000204790A (en) Vibration damping building
JP3612573B2 (en) Suspended floor structure
JPS63293284A (en) Vibration damping building
JPS62288270A (en) Damper
JP2740881B2 (en) Pedestal for base isolation device and base isolation structure
JP3814748B2 (en) High attenuation frame of building
JP2816818B2 (en) Seismic bearing device
JP3218527B2 (en) Damping structure
JP3704445B2 (en) Seismic isolation structure
JPH1162310A (en) Base-isolated building

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees