JPH0444605B2 - - Google Patents

Info

Publication number
JPH0444605B2
JPH0444605B2 JP59152135A JP15213584A JPH0444605B2 JP H0444605 B2 JPH0444605 B2 JP H0444605B2 JP 59152135 A JP59152135 A JP 59152135A JP 15213584 A JP15213584 A JP 15213584A JP H0444605 B2 JPH0444605 B2 JP H0444605B2
Authority
JP
Japan
Prior art keywords
hydrogen
metal
metal hydride
hydrogen storage
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59152135A
Other languages
Japanese (ja)
Other versions
JPS6131302A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP59152135A priority Critical patent/JPS6131302A/en
Publication of JPS6131302A publication Critical patent/JPS6131302A/en
Publication of JPH0444605B2 publication Critical patent/JPH0444605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素の貯蔵、輸送手段として利用さ
れる金属水素化物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a metal hydride used as a means for storing and transporting hydrogen.

〔従来の技術〕[Conventional technology]

水素は、燃焼しても有害物質を発生しないため
環境汚染の虞れが皆無であり、また使用できる分
野が広い等の理由によつて、新たな二次エネルギ
ー源として近年大いに注目されている。
Hydrogen has attracted a lot of attention in recent years as a new secondary energy source because it does not generate any harmful substances even when burned, so there is no risk of environmental pollution, and it can be used in a wide range of fields.

然しながら、水素ガスは1m3の重さが約90gと
いう最も軽い気体であるため、量的に嵩張り、貯
蔵や輸送の効率が悪いという欠点がある。そのた
め極低温に冷却、液化して貯蔵、輸送することも
可能ではあるが、液化のために大量のエネルギー
が必要される許りでなく保冷設備も必要とされる
ことから経済性が悪く、特殊な用途以外では液化
水素を一般的に用いることは困難である。
However, since hydrogen gas is the lightest gas, weighing approximately 90 g per cubic meter , it has the disadvantage of being bulky and inefficient in storage and transportation. For this reason, it is possible to cool to extremely low temperatures, liquefy, store, and transport, but it is not economical because a large amount of energy is required for liquefaction, and cold storage equipment is also required. It is difficult to use liquefied hydrogen in general except for specific purposes.

上記の如き問題点を解消するものとして、近
年、水素をチタン、マグネシウムその他の金属若
しくは合金と化合させ、金属水素化物とすること
によつて水素を効率良く貯蔵する技術が開発され
ている。この反応は下記の式で示される可逆反応
である。
In order to solve the above-mentioned problems, in recent years, technology has been developed to efficiently store hydrogen by combining hydrogen with titanium, magnesium, or other metals or alloys to form metal hydrides. This reaction is a reversible reaction represented by the following formula.

M+H2〓MH2+Q (ここでMは水素吸着性の金属、Qは熱である。) 上記反応の平衡は温度と水素ガスの圧力によつ
て定まり、或る一定温度で金属に水素を反応させ
るとすると、水素ガスを連続的に供給していつて
も水素は金属と反応して金属水素化物となり、反
応室の圧力は特定の範囲内では殆ど変化しない。
上記圧力は温度が高くなる程高くなり、その特性
は金属によつて固有の曲線を描く。従つて、圧力
或いは温度を変えることによつて金属内の水素含
有量を変化させることが可能であり、圧力を平衡
圧以上にすれば水素は貯蔵され、また逆に金属か
ら水素を放出させるには若干加熱すれば良い。
M+H 2 〓MH 2 +Q (Here, M is a hydrogen-adsorbing metal and Q is heat.) The equilibrium of the above reaction is determined by the temperature and the pressure of hydrogen gas, and hydrogen reacts with the metal at a certain temperature. In this case, even if hydrogen gas is continuously supplied, the hydrogen reacts with the metal to form a metal hydride, and the pressure in the reaction chamber hardly changes within a certain range.
The above pressure increases as the temperature increases, and its characteristics draw a unique curve depending on the metal. Therefore, by changing the pressure or temperature, it is possible to change the hydrogen content in the metal.If the pressure is raised above the equilibrium pressure, hydrogen will be stored, or conversely, hydrogen can be released from the metal. You just need to heat it up a little.

金属水素化物による水素の貯蔵は、上記反応の
可逆性が良いこと、水素の貯蔵密度が大きいこ
と、高圧容器や保冷容器のような特殊な容器を必
要としないこと、長期間安全に貯蔵できること、
規模の大小を問わないこと等々の多くの利点を有
している。また、上記の式から明らかな通り、水
素貯蔵金属は、水素との反応時には発熱し、水素
放出時には吸熱するので、蓄熱媒体としても利用
できる。
Hydrogen storage using metal hydrides has the following advantages: the above reaction has good reversibility, hydrogen storage density is large, special containers such as high-pressure containers or cold storage containers are not required, and hydrogen can be stored safely for long periods of time.
It has many advantages, such as being able to be used regardless of size. Further, as is clear from the above equation, the hydrogen storage metal generates heat when reacting with hydrogen and absorbs heat when releasing hydrogen, so it can also be used as a heat storage medium.

而して、現在実用に供されている水素貯蔵金属
としては、ランタン・ニツケル合金、鉄・チタン
合金、マグネシウム。ニツケル合金等があり、こ
れらを水素と反応させて金属水素化物としたとき
に当該金属水素化物中に含まれる水素の密度は、
気体水素の約1000倍、即ち液体水素と同等若しく
はそれ以上であることが知られている。ミツシユ
メタル(セリウム、ランタン等のセリウム族希土
類の混合物)とニツケル、マンガン、コバルトな
どとの合金も水素貯蔵金属として利用できる。
The hydrogen storage metals currently in practical use include lanthanum-nickel alloys, iron-titanium alloys, and magnesium. There are nickel alloys, etc., and when these are reacted with hydrogen to form a metal hydride, the density of hydrogen contained in the metal hydride is:
It is known to be about 1000 times more powerful than gaseous hydrogen, or equivalent to or more than liquid hydrogen. An alloy of Mitsushimetal (a mixture of cerium group rare earths such as cerium and lanthanum) with nickel, manganese, cobalt, etc. can also be used as a hydrogen storage metal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

而して、上記の如き水素貯蔵金属を収納した反
応室内へ水素を送つて上記反応を生ぜしめること
により金属水素化物を得る方法に於ては、水素の
貯蔵密度を増大させるためには、水素に曝すべき
水素貯蔵金属を予め微粉末化し、その表面積を容
積に対して可能な限り増大させておくことが望ま
しいが、上記の如き合金を微粉末化することは極
めて困難である。更にまた、上記反応に於て水素
貯蔵金属中に占める金属水素化物の比率を増大さ
せることにより水素貯蔵密度を増大させようとす
ると、上記反応室を高圧にする必要があり、装置
も大掛りになるという問題もあつた。
Therefore, in the method of obtaining a metal hydride by sending hydrogen into a reaction chamber containing a hydrogen storage metal to cause the above reaction, in order to increase the storage density of hydrogen, it is necessary to Although it is desirable to previously pulverize the hydrogen storage metal to be exposed to the hydrogen storage metal and increase its surface area as much as possible relative to its volume, it is extremely difficult to pulverize the above-mentioned alloys. Furthermore, if we attempt to increase the hydrogen storage density by increasing the proportion of metal hydride in the hydrogen storage metal in the above reaction, it is necessary to increase the pressure in the reaction chamber, and the equipment will also need to be large-scale. There was also the issue of becoming.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の問題点を解決するためなされ
たものであり、その目的とするところは、水素貯
蔵金属を予め微粉末化するという処理を全く必要
とせず、高圧の装置も必要とせず、比較的簡便な
装置を用いて水素の貯蔵密度の高い金属水素化物
を製造する方法を提供することにある。
The present invention has been made in order to solve the above problems, and its purpose is to completely eliminate the need for pulverizing the hydrogen storage metal in advance and to eliminate the need for high-pressure equipment. The object of the present invention is to provide a method for producing a metal hydride with a high hydrogen storage density using a relatively simple device.

而して、本発明の要旨とするところは、水素化
合物を含む媒質中に水素貯蔵金属で作製した電極
を少なくとも一方の電極として設置し、上記電極
間に放電を生ぜしめ、当該放電により上記媒質が
分解して電極部分に発生する水素を上記放電によ
り電極から剥離して生成する電極材粉末と反応さ
せてこれを粉末状の金属水素化物として回収する
ことにある。
Therefore, the gist of the present invention is to install an electrode made of a hydrogen storage metal as at least one electrode in a medium containing a hydrogen compound, to generate an electric discharge between the electrodes, and to cause a discharge to occur in the medium. The purpose is to cause the hydrogen generated in the electrode portion by decomposition to react with the electrode material powder produced by peeling off from the electrode by the above-mentioned discharge, and to recover this as a powdered metal hydride.

上記媒質としては、ケロシン等の有機物液体、
水、或いは有機ガス等が用いられる。
Examples of the medium include organic liquids such as kerosene,
Water, organic gas, etc. are used.

場合によつては、電極部分に於ける反応を促進
し、且つまた反応によつて生じた金属水素化物の
微粉末化を助長させるため、電極部分または放電
間隙部分に超音波振動を付与するようにしても良
い。
In some cases, ultrasonic vibrations may be applied to the electrode part or the discharge gap in order to accelerate the reaction at the electrode part and also to facilitate the pulverization of the metal hydride produced by the reaction. You can also do it.

〔作用〕[Effect]

上記の如き方法であると、上記水素化合物は放
電によつて分解されて水素イオンを発生し、一
方、上記水素貯蔵金属で作製された電極の表面は
放電によつて励起された状態であると共に一部は
剥離または離脱して微粉末となり、分離された水
素は速やかに水素貯蔵金属と化合して金属水素化
物を生成するものである。上記の如くして電極表
面及び間隙に生成介在する微粉と反応生成した金
属水素化物は、放電衝撃等によつて電極表面及び
間隙から粉体となつて離脱し、電極表面には常に
少なくとも一部以上未反応の水素貯蔵金属が露出
して反応及び放電による微粉末生成が持続される
ものである。上記粉体を回収すれば、水素を極め
て高密度に蓄積した微粉末状の金属水素化物が得
られる。
In the above method, the hydrogen compound is decomposed by electric discharge and generates hydrogen ions, while the surface of the electrode made of the hydrogen storage metal is excited by electric discharge. A portion of the hydrogen is peeled off or separated into fine powder, and the separated hydrogen quickly combines with the hydrogen storage metal to produce metal hydride. The metal hydride produced by reacting with the fine powder generated on the electrode surface and in the gap as described above becomes powder and detaches from the electrode surface and in the gap due to discharge shock, etc., and at least a portion of the metal hydride is always left on the electrode surface. The unreacted hydrogen storage metal is exposed and the generation of fine powder through reaction and discharge is continued. If the above-mentioned powder is collected, a finely powdered metal hydride in which hydrogen is accumulated at an extremely high density can be obtained.

〔実施例〕〔Example〕

以下、図面を参照しつゝ、本発明方法の具体的
な実施例について説明する。
Hereinafter, specific embodiments of the method of the present invention will be described with reference to the drawings.

図面は、本発明に係る方法を実施するための装
置の一実施例の概要を示す説明図である。
The drawing is an explanatory diagram showing an overview of an embodiment of an apparatus for carrying out the method according to the present invention.

図中、1は処理槽、2は処理槽1内に満たされ
たケロシン等の水素化合物を含む処理液、3は
銅、グラフアイト、銅・タングステン、銀・タン
グステン等の耐消耗性材で作製された陰極、4は
LaNi5等の水素貯蔵金属で作製された陽極、5は
上記陰極3及び陽極4間にパルス状の放電電圧を
印加する電源装置、6は超音波発振器、7は陽極
表面から分離して沈殿した金属水素化物である。
In the figure, 1 is a processing tank, 2 is a processing solution containing hydrogen compounds such as kerosene filled in the processing tank 1, and 3 is made of wear-resistant materials such as copper, graphite, copper/tungsten, silver/tungsten, etc. The cathode 4 is
An anode made of a hydrogen storage metal such as LaNi 5 , 5 a power supply device that applies a pulsed discharge voltage between the cathode 3 and anode 4, 6 an ultrasonic oscillator, and 7 a precipitate separated from the anode surface. It is a metal hydride.

而して、陽極4として上記LaNi5を使用し、こ
れを陽極3と微小な間隙を保つて対向させた上、
両電極間に電源装置5から、例えば無負荷電圧V
=200V、パルス幅τON=1.8μsec、ピーク電流値Ip
=50Aの放電電圧を印加すると、両電極間に放電
が生じる。この放電で、両電極間のケロシンは、
H2、C2H2、C2H4等々に分解され、上記H2が陽
極(LaNi5)4の表面及び陽極から離脱した微粒
子と反応して陽極表面に金属水素化物LaNi5H6
やLaNi5H6.7を生成する。この電極表面に生成し
た金属水素化物LaNi5H6.7等は、連続的に発生す
る放電衝撃によつて電極表面及び間隙から離脱
し、処理層の底に沈殿する。
Therefore, the above LaNi 5 was used as the anode 4, and this was placed facing the anode 3 with a small gap maintained,
For example, a no-load voltage V is applied from the power supply device 5 between both electrodes.
=200V, pulse width τ ON =1.8μsec, peak current value Ip
When a discharge voltage of =50A is applied, a discharge occurs between both electrodes. With this discharge, the kerosene between the two electrodes is
It is decomposed into H 2 , C 2 H 2 , C 2 H 4 , etc., and the above H 2 reacts with the surface of the anode (LaNi 5 ) 4 and the fine particles released from the anode, forming metal hydride LaNi 5 H 6 on the surface of the anode.
and produce LaNi 5 H 6.7 . Metal hydrides such as LaNi 5 H 6.7 generated on the electrode surface are detached from the electrode surface and the gap by the continuously generated discharge shock, and precipitate at the bottom of the treatment layer.

超音波発振器6から発生される超音波は、ケロ
シン2並びに陽極4等に振動を付与して電極部分
に於ける反応を促進すると共に、上記反応によつ
て生じる金属水素化物の微粉末化並びにその電極
表面からの離脱を助長する。従つて、電極表面に
は常に未反応のLaNi5が露出して上記反応が円滑
に継続される。
The ultrasonic waves generated from the ultrasonic oscillator 6 apply vibrations to the kerosene 2, the anode 4, etc. to promote the reaction in the electrode portion, and also to pulverize the metal hydride produced by the above reaction and to Facilitates detachment from the electrode surface. Therefore, unreacted LaNi 5 is always exposed on the electrode surface and the above reaction continues smoothly.

実験の結果、上記の如くして得られたLaNi5
H6やLaNi5H6.7の粒径は約2.0〜5.0μであり、その
場合1cm3中の粒子数は約7.6×1022個となつて、
極めて高い水素貯蔵性能が得られることが判明し
た。
As a result of the experiment, LaNi 5 obtained as above
The particle size of H 6 and LaNi 5 H 6.7 is about 2.0 to 5.0 μ, and in that case, the number of particles in 1 cm 3 is about 7.6 × 10 22 ,
It has been found that extremely high hydrogen storage performance can be obtained.

陽極4の材料として用い得る水素貯蔵金属とし
ては、上記LaNi5のほかMg2Ni,FeTi,TiMn,
MoAl,Ti(またはZr)−Ni,Ti(またはZr)−
Cu,RCo5(RはLa,Ce,Sm)等々の合金、
Mg,Ti,Zr,La,Ce,Nb等々の金属単体或い
はそれらの複合物等が利用できる。
In addition to the above-mentioned LaNi 5 , hydrogen storage metals that can be used as materials for the anode 4 include Mg 2 Ni, FeTi, TiMn,
MoAl, Ti (or Zr) − Ni, Ti (or Zr) −
Alloys such as Cu, RCo 5 (R is La, Ce, Sm),
Single metals such as Mg, Ti, Zr, La, Ce, Nb, etc. or composites thereof can be used.

そして、上記陰極3として、これらの水素貯蔵
金属を用いれば、生成金属水素化物7中に不純物
が少なく、陰極3からも生成されるので、生成効
率が増大する。
If these hydrogen storage metals are used as the cathode 3, there will be less impurities in the generated metal hydride 7 and it will also be generated from the cathode 3, so the generation efficiency will increase.

更にまた、放電を行なわせる雰囲気としても、
上記ケロシンに限らず、放電によつて水素が分離
されるものであればその他の有機物液体或いは単
なる水でも良く、更には、水素化合物を含む気体
中で放電を行なわせるようにしても良い。
Furthermore, as an atmosphere for discharging,
The present invention is not limited to the above-mentioned kerosene, but may be any other organic liquid or simple water as long as hydrogen can be separated by discharge, and furthermore, discharge may be carried out in a gas containing a hydrogen compound.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上の如く構成されるから、本発明方
法によるときは、水素貯蔵金属の微粉末化処理を
全く必要とせず、高圧の装置も必要とせず、比較
的簡便な装置を用いて水素貯蔵密度の高い金属水
素化物を製造し得る方法が提供されるものであ
る。
Since the present invention is constructed as described above, the method of the present invention does not require any pulverization treatment of the hydrogen storage metal, does not require a high-pressure device, and can hydrogenate hydrogen using a relatively simple device. A method for producing metal hydrides with high storage density is provided.

なお、本発明は、上記の実施例に限定されるも
のでなく、本発明の目的の範囲内に於て上記の説
明から当業者が容易に想到し得る変更実施例のす
べてを包摂するものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but includes all modified embodiments that can be easily conceived by a person skilled in the art from the above description within the scope of the purpose of the present invention. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る方法を実施するための装
置の一実施例の概要を示す説明図である。 1……処理槽、2……水素化合物を含む処理
液、3……陰極、4……水素貯蔵金属製の陽極、
5……電源装置、6……超音波発振器、7……金
属水素化物。
The drawing is an explanatory diagram showing an overview of an embodiment of an apparatus for carrying out the method according to the present invention. 1... Processing tank, 2... Processing liquid containing a hydrogen compound, 3... Cathode, 4... Anode made of hydrogen storage metal,
5...Power supply device, 6...Ultrasonic oscillator, 7...Metal hydride.

Claims (1)

【特許請求の範囲】 1 水素化合物を含む媒質中で少なくとも一方を
水素貯蔵金属で作製した電極間に放電を生ぜし
め、電極部分に発生する水素により上記電極から
の離脱粒子を金属水素化物に変化させることを特
徴とする金属水素化物製造方法。 2 上記媒質が有機物液体である特許請求の範囲
第1項記載の金属水素化物製造方法。 3 上記媒質がケロシンである特許請求の範囲第
2項記載の金属水素化物製造方法。 4 上記媒質が水である特許請求の範囲第1項記
載の金属水素化物製造方法。 5 上記媒質が有機ガスである特許請求の範囲第
1項記載の金属水素化物製造方法。 6 上記電極部分に超音波振動を付与する特許請
求の範囲第1項ないし第5項のうちいずれか一に
記載の金属水素化物製造方法。
[Scope of Claims] 1. In a medium containing a hydride compound, a discharge is generated between electrodes, at least one of which is made of a hydrogen storage metal, and the hydrogen generated in the electrode portion changes particles separated from the electrode into metal hydrides. A method for producing a metal hydride, characterized in that: 2. The method for producing a metal hydride according to claim 1, wherein the medium is an organic liquid. 3. The method for producing a metal hydride according to claim 2, wherein the medium is kerosene. 4. The method for producing a metal hydride according to claim 1, wherein the medium is water. 5. The method for producing a metal hydride according to claim 1, wherein the medium is an organic gas. 6. The metal hydride manufacturing method according to any one of claims 1 to 5, wherein ultrasonic vibration is applied to the electrode portion.
JP59152135A 1984-07-24 1984-07-24 Preparation of metal hydride Granted JPS6131302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59152135A JPS6131302A (en) 1984-07-24 1984-07-24 Preparation of metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59152135A JPS6131302A (en) 1984-07-24 1984-07-24 Preparation of metal hydride

Publications (2)

Publication Number Publication Date
JPS6131302A JPS6131302A (en) 1986-02-13
JPH0444605B2 true JPH0444605B2 (en) 1992-07-22

Family

ID=15533808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59152135A Granted JPS6131302A (en) 1984-07-24 1984-07-24 Preparation of metal hydride

Country Status (1)

Country Link
JP (1) JPS6131302A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562809A (en) * 1993-01-22 1996-10-08 Plasma Plus Method for making hydrogen saturated metal compounds
JP3405205B2 (en) * 1998-07-01 2003-05-12 トヨタ自動車株式会社 Hydrogen production method
KR100446066B1 (en) * 2002-05-21 2004-08-30 대한민국 (경상대학교 총장) A Process for Manufacturing Metallic Hydride by Joule Energy
US7410562B2 (en) 2003-08-20 2008-08-12 Materials & Electrochemical Research Corp. Thermal and electrochemical process for metal production
US7794580B2 (en) 2004-04-21 2010-09-14 Materials & Electrochemical Research Corp. Thermal and electrochemical process for metal production

Also Published As

Publication number Publication date
JPS6131302A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
KR101871950B1 (en) Hydrogen-Catalyst Reactor
KR102292890B1 (en) Power generation systems and methods regarding same
JP3231230B2 (en) Method of forming hydrogen storage active material for electrode
TWI233949B (en) High storage capacity alloys enabling a hydrogen-based ecosystem
JP3415333B2 (en) Hydrogen storage alloy
Semboshi et al. Degradation of hydrogen absorbing capacity in cyclically hydrogenated TiMn2
El-Eskandarany et al. Bulk nanocomposite MgH2/10 wt%(8 Nb2O5/2 Ni) solid-hydrogen storage system for fuel cell applications
EP1243041A2 (en) Modified magnesium based hydrogen storage alloys
Li et al. Structural, hydrogen storage, and electrochemical performance of LaMgNi4 alloy and theoretical investigation of its hydrides
JP2019117792A (en) Power generation system and method regarding to the same system
JPH0444605B2 (en)
US6593017B1 (en) High capacity calcium lithium based hydrogen storage material and method of making the same
JP3164579B2 (en) Hydrogen storage
EP1297193A1 (en) High storage capacity, fast kinetics, long cycle-life, hydrogen storage alloys
WO2002000950A2 (en) Compositions for use as electrode materials and for hydrogen production
Jurczyk et al. Structure and electrochemical properties of the mechanically alloyed La (Ni, M) 5 materials
JPH06223825A (en) Activation method for metal and manufacture of battery
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
JP2021073651A (en) Power generation system and method for the same system
JPH0480841B2 (en)
JPS61101401A (en) Production of metal hydride
JPS5445608A (en) Hydrogen occlusion material
Sahli et al. Elaboration and electrochemical characterization of CeZr2Ni4. 5Al0. 2Mn0. 3Cr4-based metal hydride alloys
CN114087528B (en) Device and method for storing hydrogen in metal hydride by utilizing microwaves
JP2004011003A (en) Hydrogen storage material and hydrogen storage vessel using the same