JPS6131302A - Preparation of metal hydride - Google Patents

Preparation of metal hydride

Info

Publication number
JPS6131302A
JPS6131302A JP59152135A JP15213584A JPS6131302A JP S6131302 A JPS6131302 A JP S6131302A JP 59152135 A JP59152135 A JP 59152135A JP 15213584 A JP15213584 A JP 15213584A JP S6131302 A JPS6131302 A JP S6131302A
Authority
JP
Japan
Prior art keywords
metal hydride
hydrogen
metal
electrode
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59152135A
Other languages
Japanese (ja)
Other versions
JPH0444605B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP59152135A priority Critical patent/JPS6131302A/en
Publication of JPS6131302A publication Critical patent/JPS6131302A/en
Publication of JPH0444605B2 publication Critical patent/JPH0444605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prepare a metal hydride having high hydrogen storage density with a simple device by generating discharge between electrodes, in which at least one of the electrodes is made of a hydrogen storage metal, in a medium for contg. the hydride, and converting eliminated particles from the electrode by the generated hydrogen to a metal hydride. CONSTITUTION:A medium 2 contg. a hydrogen compd. such as kerosene is filled in a treating tank 1, and electrodes 3, 4 are installed therein; for example, an anode 4 is made of a hydrogen storage metal such as LaNi5, etc. When electric discharge is caused between the electrodes 3, 4, H2 separated from kerosene reacts with fine particles dissociated from the surface of the anode 4 and forms metal hydride, such as LaNi5H, LaNi5H6.7 on the surface of the anode. Formed metal hydride is eliminated from the surface of the electrode and an interstice by the continuously caused impact of the electric discharge and settled on the bottom of the treating tank 1. In this stage, the reaction at the electrode is prompted by supersonic wave generated by a supersonic wave oscillator 6, and pulverization of the metal hydride and elimination from the electrode surface are prompted simultaneously, and the reaction is continued smoothly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素の貯蔵、輸送手段として利用される金属
水素化物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a metal hydride used as a means for storing and transporting hydrogen.

〔従来の技術〕[Conventional technology]

水素は、燃焼しても有害物質を発生しないため環境汚染
の虞れが皆無であり、また使用できる分野が広い等の理
由によって、新たな二次エネルギー源として近年大いに
注目されている。
Hydrogen has attracted a lot of attention in recent years as a new secondary energy source because it does not generate any harmful substances even when burned, so there is no risk of environmental pollution, and it can be used in a wide range of fields.

然しなから、水素ガスは1−の重さが約90gという最
も軽い気体であるため、量的に嵩張り、貯蔵や輸送の効
率が悪いという欠点がある。そのため橿低温に冷却、液
化して貯蔵、輸送することも可能ではあるが、液化のた
めに大量のエネルギーが必要される詐りでなく保冷設備
も必要とされる、−とから経済性が悪く、特殊な用途以
外では液化水素を一般的に用いることは困難である。
However, since hydrogen gas is the lightest gas with a weight of about 90 g, it has the disadvantage of being bulky and having poor storage and transportation efficiency. Therefore, it is possible to cool it to a low temperature, liquefy it, store it, and transport it, but it is not economical because liquefaction requires a large amount of energy and cold storage equipment is also required. However, it is difficult to use liquefied hydrogen in general except for special purposes.

l−記の如き問題点を解消するものとして、近年、水素
をチタン、マグネシウムその他の金属若しくは合金と化
合させ、金属水素化物とすることによって水素を効率良
く貯蔵する技術が開発されている。この反応は下記の式
で示される可逆反応である。
In order to solve the problems mentioned above, in recent years, a technology has been developed to efficiently store hydrogen by combining hydrogen with titanium, magnesium, and other metals or alloys to form metal hydrides. This reaction is a reversible reaction represented by the following formula.

M + H2−MH2+ Q (ここでMは水素吸着性の金属、Qは熱である。)上記
反応の平衡は温度と水素ガスの圧力によって定まり、成
る一定温度で金属に水素を反応させるとすると、水素ガ
スを連続的に供給していっても水素は金属と反応して金
属水素化物となり、反応室の圧力は特定の範囲内では殆
ど変化しない。
M + H2-MH2+ Q (Here, M is a hydrogen-adsorbing metal and Q is heat.) The equilibrium of the above reaction is determined by the temperature and the pressure of hydrogen gas, and if we let the metal react with hydrogen at a constant temperature, then Even if hydrogen gas is continuously supplied, the hydrogen reacts with the metal to form a metal hydride, and the pressure in the reaction chamber hardly changes within a certain range.

上記圧力は温度が高くなる程高くなり、その特性は金属
によって固有の曲線を描べ。従って、圧力或いは温度を
変えることによって金属内の水素含有量を変化させるこ
とが可能であり、圧力を平衡圧以上にすれば水素は貯蔵
され、また逆に金属から水素を放出させるには若干加熱
すれば良い。
The above pressure increases as the temperature increases, and its characteristics draw a unique curve depending on the metal. Therefore, it is possible to change the hydrogen content in a metal by changing the pressure or temperature; hydrogen can be stored by increasing the pressure above the equilibrium pressure, and conversely, hydrogen can be released from the metal by heating it slightly. Just do it.

金属水素化物による水素の貯蔵は、上記反応の可逆性が
良いこと、水素の貯蔵密度が大きいこと、高圧容器や保
冷容器のような特殊な容器を必要とし7ないこと、長期
間安全に貯蔵できること、規模の大小を問わないこと等
々の多くの利点を有している。また、上記の式から明ら
かな通り、水素貯蔵金属は、水素との反応時には発熱し
、水素放出時には吸熱するので、N熱媒体としても利用
できイ)。
Hydrogen storage using metal hydrides has the following advantages: the above reaction has good reversibility, hydrogen storage density is large, special containers such as high-pressure containers or cold containers are not required, and hydrogen can be stored safely for long periods of time. It has many advantages, such as being able to be used regardless of size. Furthermore, as is clear from the above equation, the hydrogen storage metal generates heat when reacting with hydrogen and absorbs heat when releasing hydrogen, so it can also be used as an N heat medium.

而して、現在実用に供されている水素貯蔵金属としては
、ランタン・ニッケル合金、鉄・チタン合金、マグネシ
ウム・ニッケル合金等があり、ご打らを水素と反応させ
て金属水素化物としたときに当該金属水素化物中に含ま
れる水素の密度は、気体水素の約1000倍、即ち液体
水素と同等若しく番、1それ以上であることが知られて
いる。ミノシュlタル(セリウム、ランタン等のセリウ
ム族希土類の混合物)とニッケル、マンガン、コバルト
などとの合金も水素貯蔵金属として利用できる。
Hydrogen storage metals currently in practical use include lanthanum-nickel alloys, iron-titanium alloys, magnesium-nickel alloys, etc. When hydrogen is reacted with hydrogen to form metal hydrides, It is known that the density of hydrogen contained in the metal hydride is approximately 1000 times that of gaseous hydrogen, that is, equivalent to or more than 1 times that of liquid hydrogen. An alloy of minostal (a mixture of cerium group rare earths such as cerium and lanthanum) and nickel, manganese, cobalt, etc. can also be used as a hydrogen storage metal.

(発明が解決しようとする問題点〕 而して、上記の如き水素貯蔵金属を収納した反応室内へ
水素を送って上記反応を生せしめることにより金属水素
化物を得る方法に於ては、水素の貯蔵密度を増大させる
ためには、水素に曝すべき水素貯蔵金属を予め微粉末化
し、その表面積を容積に対して可能な限り増大させてお
くことが望ましいが、上記の如き合金を微粉末化するこ
とは極めて困難である。更にまた、上記反応に於て水素
貯蔵金属中に占める金属水素化物の比率を増大させるこ
とにより水素貯蔵密度を増大させようとすると、上記反
応室を高圧にする必要があり、装置も大掛りになるとい
う問題もあった。
(Problems to be Solved by the Invention) Therefore, in the method of obtaining a metal hydride by sending hydrogen into a reaction chamber containing a hydrogen storage metal as described above and causing the above reaction, In order to increase the storage density, it is desirable to pulverize the hydrogen storage metal to be exposed to hydrogen in advance and increase its surface area as much as possible relative to its volume. Furthermore, in the above reaction, if one attempts to increase the hydrogen storage density by increasing the proportion of metal hydride in the hydrogen storage metal, it is necessary to increase the pressure in the reaction chamber. There was also the problem that the equipment was too large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の問題点を解決するためなされたもので
あり、その目的とするところは、水素貯蔵金属を予め微
粉末化するという処理を全く必要とせず、高圧の装置も
必要とせず、比較的簡便な装置を用いて水素の貯蔵密度
の高い金属水素化物を製造する方法を提供することにあ
る。
The present invention has been made in order to solve the above problems, and its purpose is to completely eliminate the need for pulverizing the hydrogen storage metal in advance and to eliminate the need for high-pressure equipment. The object of the present invention is to provide a method for producing a metal hydride with a high hydrogen storage density using a relatively simple device.

而して、本発明の要旨とするところは、水素化合物を含
む媒質中に水素貯蔵金属で作製した電極を少なくとも一
方の電極として設置し、上記電極間に放電を生ぜしめ、
当該放電により上記媒質が分解して電極部分に発生する
水素を上記放電により電極から剥離して生成する電極材
粉末と反応さけてこれを粉末状の金属水素化物として回
収することにある。
Therefore, the gist of the present invention is to install an electrode made of a hydrogen storage metal as at least one electrode in a medium containing a hydrogen compound, to generate an electric discharge between the electrodes,
The purpose is to recover hydrogen as a powdered metal hydride by reacting the hydrogen generated in the electrode portion when the medium is decomposed by the discharge with the electrode material powder generated by peeling off from the electrode by the discharge.

」二記媒質としては、ケロシン等の有機物液体、水、或
いは有機ガス等が用いられる。
As the medium, an organic liquid such as kerosene, water, or an organic gas is used.

場合によっては、電極部分に於ける反応を促進し、且つ
また反応によって生じた金属水素化物の微粉末化を助長
させるため、電極部分または放電間隙部分に超音波振動
を付与するようにしても良い。
In some cases, ultrasonic vibrations may be applied to the electrode part or the discharge gap part in order to promote the reaction in the electrode part and also to facilitate the pulverization of the metal hydride produced by the reaction. .

〔作 用〕[For production]

上記の如き方法であると、上記水素化合物は放電によっ
て分解されて水素イオンを発生し、一方、1−記水素貯
蔵金属で作製された電極の表面は放電によって励起され
た状態にあると共に一部は剥離または離脱して微粉末と
なり、分離された水素は速やかに水素貯蔵金属と化合し
て金属水素化物をノ1−成するものである。上記の如く
して電極表面及び間隙に生成介在する微粉と反応生成し
た金原水素化物は、放電衝撃等によって電極表面及び間
隙から粉体となって離脱し、電極表面には宙に少なくと
も一部以」1未反応の水素貯蔵金属が露出して反応及び
放電による微粉末生成が持続されるものである。上記粉
体を回収すれば、水素を極めて高密度に蓄積した微粉末
状の金属水素化物が得られる。
In the above method, the hydrogen compound is decomposed by electric discharge and generates hydrogen ions, while the surface of the electrode made of the hydrogen storage metal described in 1-1 is excited by the electric discharge and partially is exfoliated or separated into fine powder, and the separated hydrogen quickly combines with the hydrogen storage metal to form a metal hydride. The metal hydride produced by reacting with the fine powder formed on the electrode surface and in the gap as described above becomes powder and detaches from the electrode surface and in the gap due to discharge impact, etc., and at least a part of it remains in the air on the electrode surface. 1. The unreacted hydrogen storage metal is exposed and the reaction and discharge continue to produce fine powder. If the above-mentioned powder is collected, a finely powdered metal hydride in which hydrogen is accumulated at an extremely high density can be obtained.

〔実施例〕〔Example〕

以下、図面を参照しつ\、本発明方法の具体的な実施例
について説明する。
Hereinafter, specific embodiments of the method of the present invention will be described with reference to the drawings.

図面は、本発明に係る方法を実施゛するための装置の一
実施例の概要を示す説明図である。
The drawing is an explanatory diagram showing an overview of an embodiment of an apparatus for carrying out the method according to the present invention.

図中、1は処理槽、2は処理槽l内に満たされたケロシ
ン等の水素化合物を含む処理液、3は銅、グラファイト
、銅・タングステン、錫・タングステン等の耐消耗性材
で作製された陰極、4は1.aNi5等の水素貯蔵金属
で作製された陽極、5は上記陰極3及び陽極4間にパル
ス状の放電電圧を印加する電源装置、6は超音波発振器
、7は陽極表面から分離して沈殿した金属水素化物であ
る。
In the figure, 1 is a processing tank, 2 is a processing solution filled in the processing tank l containing hydrogen compounds such as kerosene, and 3 is made of wear-resistant materials such as copper, graphite, copper/tungsten, and tin/tungsten. cathode, 4 is 1. An anode made of a hydrogen storage metal such as aNi5, 5 a power supply device that applies a pulsed discharge voltage between the cathode 3 and anode 4, 6 an ultrasonic oscillator, 7 a metal separated from the anode surface and precipitated. It is a hydride.

而して、陽極4として上記LaNi−、を使用し、これ
を陽極3と微小な間隙を保って対向させた上、両電極間
に電源装置5から、例えば無負荷電圧V−200V、パ
ルス幅TON =  1.8.t+ sec 、ピーク
電流値Ip= 50Aの放電電圧を印加すると、両電極
間に放電が生じる。この放電で、両電極間のケロシンは
、H2、C2H2、C2H4等々に分解され、上記H2
が陽極(LaNi5 ) 4の表面及び陽極から離脱し
た微粒子と反応して陽極表面に金属水素化物LaNi5
 H(、、やLaNi51+電生成する。この電極表面
に生成した金属水素化物LaNi5N6声は、i!続的
に発4tする放電1h撃によって電極表面及び間隙から
離脱し、処理層の底に沈殿する。
The above-mentioned LaNi- is used as the anode 4, and it is opposed to the anode 3 with a small gap maintained, and a power supply 5 is applied between the two electrodes with a no-load voltage of V-200V and a pulse width of, for example, TON=1.8. When a discharge voltage of t+ sec and a peak current value Ip=50 A is applied, a discharge occurs between both electrodes. With this discharge, the kerosene between the two electrodes is decomposed into H2, C2H2, C2H4, etc., and the above H2
reacts with the surface of the anode (LaNi5) 4 and the fine particles separated from the anode, forming metal hydride LaNi5 on the anode surface.
The metal hydride LaNi5N6 generated on the electrode surface is detached from the electrode surface and gap by continuous discharge of 4 tons for 1 hour, and precipitates at the bottom of the treated layer. .

超音波発振器6から発生される超音波は、ケロシン2並
びに陽極4等に振動を付与して電極部分に於ける反応を
促進すると共、に1上記反応によって生じる金属水素化
物の微粉末化並びにその電極表面からの離脱を助長する
。従って、電極表面には常に未反応のLaNi5が露出
して上記反応が円滑に継続される。
The ultrasonic waves generated from the ultrasonic oscillator 6 apply vibrations to the kerosene 2, the anode 4, etc. to promote the reaction at the electrode part, and also to pulverize the metal hydride produced by the above reaction and its Facilitates detachment from the electrode surface. Therefore, unreacted LaNi5 is always exposed on the electrode surface and the above reaction continues smoothly.

実験の結果、上記の如くして得られたLaN15N G
やLaNi51+−粒径は約2.0〜5.0μであり、
その場合ld中の粒子数は約7.6X 102”個とな
って、極めて高い水素貯蔵性能が得られることが判明し
た。
As a result of the experiment, the LaN15N G obtained as above
and LaNi51+- particle size is about 2.0 to 5.0μ,
In this case, the number of particles in ld was approximately 7.6×10 2 ”, and it was found that extremely high hydrogen storage performance could be obtained.

陽極4の材料として用い得る水素貯蔵金属としては、上
記LaNi5のほかMg2 Ni、 FeTi、 Ti
Mn、 M。
Hydrogen storage metals that can be used as materials for the anode 4 include Mg2Ni, FeTi, Ti, in addition to the above LaNi5.
Mn, M.

八1、Ti(またはZr) −Ni、 Ti (または
Zr) −Cu、RCo5 (RはLa、 Ce、 S
m)等々の合金、Mg、 Ti、Zr、 Las Ce
、、Nb等々の金属単体或いはそれらの複合物等が利用
できる。
81, Ti (or Zr) -Ni, Ti (or Zr) -Cu, RCo5 (R is La, Ce, S
m) Alloys such as Mg, Ti, Zr, Las Ce
, , Nb, etc., or a composite thereof can be used.

そして、上記陰極3として、これらの水素貯蔵金属を用
いれば、生成金属水素化物7中に不純物が少なく、陰極
3からも生成されるので、生成効率が増大する。
If these hydrogen storage metals are used as the cathode 3, there will be less impurities in the generated metal hydride 7 and it will also be generated from the cathode 3, so the generation efficiency will increase.

更にまた、放電を行なわせる雰囲気としても、上記ケロ
シンに限らず、放電によって水素が分離されるものであ
ればその他の有機物液体或いは串なる水でも良く、更に
は、水素化合物を含む気体中で放電を行なわせるように
しても良い。
Furthermore, the atmosphere in which the discharge is performed is not limited to the above-mentioned kerosene, but may be any other organic liquid or skewered water as long as hydrogen is separated by the discharge. You may also have them do this.

〔発明の効果〕〔Effect of the invention〕

本発明は紙上の如く構成されるから、本発明方θ、によ
るときは、水素貯蔵金属の微粉末化処理を全く必要とせ
ず、高圧の装置も必要とせず、比較的簡便な装置を用い
て水素貯蔵密度の高い金属水41化物を製造し得る方法
が提供されるものである。
Since the present invention is constructed as shown on paper, when the present invention method θ is used, there is no need for pulverization treatment of the hydrogen storage metal, no high-pressure equipment is required, and a relatively simple equipment is used. A method is provided for producing a metal water 41 compound having a high hydrogen storage density.

なお、本発明は、上記の実施例に限定されるものでなく
、本発明の目的の範囲内に於て上記の説明から当業者が
容易に想到し得る変更実施例のすべてを包摂するもので
ある。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but includes all modified embodiments that can be easily conceived by a person skilled in the art from the above description within the scope of the purpose of the present invention. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る方法を実施するための装置の一実
施例の概要を示す説明図である。 j     −処理槽 2       −水素化合物を含む処理液3    
  −陰極 4−−−   − 水素貯蔵金属製の陽極5−−−−−
− −電源装置 6 −     超音波発振器
The drawing is an explanatory diagram showing an overview of an embodiment of an apparatus for carrying out the method according to the present invention. j - Processing tank 2 - Processing liquid 3 containing hydrogen compounds
-Cathode 4-----Anode 5 made of hydrogen storage metal
− −Power supply device 6 − Ultrasonic oscillator

Claims (1)

【特許請求の範囲】 1)水素化合物を含む媒質中で少なくとも一方を水素貯
蔵金属で作製した電極間に放電を生ぜしめ、電極部分に
発生する水素により上記電極からの離脱粒子を金属水素
化物に変化させることを特徴とする金属水素化物製造方
法。 2)上記媒質が有機物液体である特許請求の範囲第1項
記載の金属水素化物製造方法。 3)上記媒質がケロシンである特許請求の範囲第2項記
載の金属水素化物製造方法。 4)上記媒質が水である特許請求の範囲第1項記載の金
属水素化物製造方法。 5)上記媒質が有機ガスである特許請求の範囲第1項記
載の金属水素化物製造方法。 6)上記電極部分に超音波振動を付与する特許請求の範
囲第1項ないし第5項のうちいずれか一に記載の金属水
素化物製造方法。
[Claims] 1) In a medium containing a hydrogen compound, a discharge is generated between electrodes, at least one of which is made of a hydrogen storage metal, and the hydrogen generated in the electrode portion converts the particles detached from the electrode into metal hydride. A method for producing a metal hydride, characterized by changing the metal hydride. 2) The method for producing a metal hydride according to claim 1, wherein the medium is an organic liquid. 3) The method for producing a metal hydride according to claim 2, wherein the medium is kerosene. 4) The method for producing a metal hydride according to claim 1, wherein the medium is water. 5) The method for producing a metal hydride according to claim 1, wherein the medium is an organic gas. 6) The metal hydride manufacturing method according to any one of claims 1 to 5, wherein ultrasonic vibration is applied to the electrode portion.
JP59152135A 1984-07-24 1984-07-24 Preparation of metal hydride Granted JPS6131302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59152135A JPS6131302A (en) 1984-07-24 1984-07-24 Preparation of metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59152135A JPS6131302A (en) 1984-07-24 1984-07-24 Preparation of metal hydride

Publications (2)

Publication Number Publication Date
JPS6131302A true JPS6131302A (en) 1986-02-13
JPH0444605B2 JPH0444605B2 (en) 1992-07-22

Family

ID=15533808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59152135A Granted JPS6131302A (en) 1984-07-24 1984-07-24 Preparation of metal hydride

Country Status (1)

Country Link
JP (1) JPS6131302A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562809A (en) * 1993-01-22 1996-10-08 Plasma Plus Method for making hydrogen saturated metal compounds
JP2000017472A (en) * 1998-07-01 2000-01-18 Toyota Motor Corp Method for producing hydrogen
KR100446066B1 (en) * 2002-05-21 2004-08-30 대한민국 (경상대학교 총장) A Process for Manufacturing Metallic Hydride by Joule Energy
JP2007502915A (en) * 2003-08-20 2007-02-15 マテリアルズ アンド エレクトロケミカル リサーチ (エムイーアール) コーポレイション Thermal and electrochemical methods for metal production
US7794580B2 (en) 2004-04-21 2010-09-14 Materials & Electrochemical Research Corp. Thermal and electrochemical process for metal production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562809A (en) * 1993-01-22 1996-10-08 Plasma Plus Method for making hydrogen saturated metal compounds
JP2000017472A (en) * 1998-07-01 2000-01-18 Toyota Motor Corp Method for producing hydrogen
KR100446066B1 (en) * 2002-05-21 2004-08-30 대한민국 (경상대학교 총장) A Process for Manufacturing Metallic Hydride by Joule Energy
JP2007502915A (en) * 2003-08-20 2007-02-15 マテリアルズ アンド エレクトロケミカル リサーチ (エムイーアール) コーポレイション Thermal and electrochemical methods for metal production
US7985326B2 (en) 2003-08-20 2011-07-26 Materials And Electrochemical Research Corp. Thermal and electrochemical process for metal production
US9249520B2 (en) 2003-08-20 2016-02-02 Materials & Electrochemical Research Corp. Thermal and electrochemical process for metal production
US7794580B2 (en) 2004-04-21 2010-09-14 Materials & Electrochemical Research Corp. Thermal and electrochemical process for metal production
KR101370007B1 (en) * 2005-12-06 2014-03-04 머티리얼즈 앤드 일렉트로케미칼 리써치 코포레이션 Thermal and electrochemical process for metal production

Also Published As

Publication number Publication date
JPH0444605B2 (en) 1992-07-22

Similar Documents

Publication Publication Date Title
KR101871950B1 (en) Hydrogen-Catalyst Reactor
Gasiorowski et al. Hydriding properties of nanocrystalline Mg2− xMxNi alloys synthesized by mechanical alloying (M= Mn, Al)
KR102292890B1 (en) Power generation systems and methods regarding same
JP3231230B2 (en) Method of forming hydrogen storage active material for electrode
TWI552951B (en) Hydrogen-catalyst reactor
JP3415333B2 (en) Hydrogen storage alloy
El-Eskandarany et al. Bulk nanocomposite MgH2/10 wt%(8 Nb2O5/2 Ni) solid-hydrogen storage system for fuel cell applications
JP2019117792A (en) Power generation system and method regarding to the same system
JPS6131302A (en) Preparation of metal hydride
Sandrock State-of-the-art review of hydrogen storage in reversible metal hydrides for military fuel cell applications
TW200400663A (en) High capacity calcium lithium based hydrogen storage material and method of making the same
JP2003012301A (en) Composition for hydrogen gas generation, production method for hydrogen gas, production apparatus for hydrogen gas and generator
Jurczyk et al. Structure and electrochemical properties of the mechanically alloyed La (Ni, M) 5 materials
JPH06223825A (en) Activation method for metal and manufacture of battery
Bobet et al. Effects of reactive mechanical milling conditions on the physico-chemical properties of Mg+ Cr2O3 mixtures
Sahli et al. Electrochemical hydrogenation of CeZr2Cr4Ni5–based alloys
JP7120098B2 (en) Equipment for producing tetrahydroborate and method for producing tetrahydroborate
JP2021073651A (en) Power generation system and method for the same system
JPS61101401A (en) Production of metal hydride
JPH0480841B2 (en)
CA1177624A (en) Hydrogen storage
CN114087528B (en) Device and method for storing hydrogen in metal hydride by utilizing microwaves
Nomura Fuel Production and Materials Synthesis by In-liquid Plasma
US12012332B1 (en) Dual hydrogen and suspension production system using effervescent tablets containing hydrogen active production metallic particles
CN112174089B (en) Organic liquid hydrogen supply system for closed environment