JPH0443978B2 - - Google Patents

Info

Publication number
JPH0443978B2
JPH0443978B2 JP62020406A JP2040687A JPH0443978B2 JP H0443978 B2 JPH0443978 B2 JP H0443978B2 JP 62020406 A JP62020406 A JP 62020406A JP 2040687 A JP2040687 A JP 2040687A JP H0443978 B2 JPH0443978 B2 JP H0443978B2
Authority
JP
Japan
Prior art keywords
sol
less
pressure welding
welding
joint performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62020406A
Other languages
Japanese (ja)
Other versions
JPS62278247A (en
Inventor
Tadaaki Taira
Kozo Fukuda
Nobuo Fukushige
Yoichi Tamura
Takao Gishi
Masahiro Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Publication of JPS62278247A publication Critical patent/JPS62278247A/en
Publication of JPH0443978B2 publication Critical patent/JPH0443978B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 本発明は溶接継手性能の優れた高温圧接用高炭
素鋼材の創案に係り、高温圧接に供され、加圧に
よつて形成されるばりを圧接直後熱間で機械的に
押し抜き剪断除去し使用される高炭素鋼材におい
てマグナ探傷および超音波探傷欠陥が発生せず、
又曲げ試験特性の優れた溶接継手を得しめようと
するものである。 (産業上の利用分野) 高温圧接される溶接継手用高炭素鋼材。 (従来の技術) 高炭素鋼材の溶接法の1つとしてガス圧接、フ
ラツシユ溶接などの高温圧接法があり、この方法
は溶接継手に電気的発熱あるいはガス炎などの
種々の方法で高温に加熱すると同時に機械的加圧
をなすことにより条鋼や鋼板などの種々の形状を
もつた鋼を溶接するものである。斯かる高温圧接
において加圧によるメタルフローで生じたばり
(或いは膨らみ)をそのままで使用する場合と除
去する場合とがあり、除去して使用する場合にお
ける方法はグライダーあるいはガススカーフなど
種々あるが、効率的な方法として圧接直後の熱間
押し抜き剪断加工がある。即ちこの押し抜き剪断
加工による除去法は効率が良好であるという大き
なメリツトを有し、溶接継手のマグナ探傷、超音
波探傷を行い、継手性能を確認して使用されてい
る。 (発明が解決しようとする問題点) しかし上記のようなばり押し抜き剪断加工は、
その加工特性上圧接部に引き裂くような応力が作
用し、継手性能を劣化するので上記のような探傷
試験および曲げ試験特性が劣化するので夫々の試
験により性能の良否を確認して使用しなければな
らない。 「発明の構成」 (問題点を解決するための手段) (1) C:0.60〜0.85wt%、Si:0.01〜1.00wt%、 Mn:0.50〜1.50wt%、 sol.Al:0.012wt%以下、 B:0.0002wt%以下 を含有し、残部がFeおよび不可避的不純物から
なることを特徴とする溶接継手性能の優れた高温
圧接用高炭素鋼材。 (2) C:0.60〜0.85wt%、Si:0.01〜1.00wt%、 Mn:0.50〜1.50wt%、 Sol.Al:0.012wt%以下、 B:0.0002wt%以下 を含有すると共に、 Cr:0.15〜1.00wt%、Mo:0.01〜0.30wt%、 V:0.01〜0.30wt% の何れか1種または2種以上を含有し、残部が
Feおよび不可避的不純物からなることを特徴と
する溶接継手性能の優れた高温圧接用高炭素鋼
材。 (作用) C:0.60wt%以上、Mn:0.50wt%以上含有さ
せることにより強度、硬度、耐摩耗性を得しめ、
C:0.85wt%以下、Mn:1.50wt%以下、Si:
1.00wt%以下とすることにより延靱性の劣化を回
避する。 Si:0.01wt%以上、Siのみで脱酸する場合には
0.15wt%以上とすることにより脱酸を図り、同時
に強化元素として作用する。 Sol.Al:0.002wt%以上で鋼の清浄性を改善し、
又0.012wt%以下、B:0.0003wt%以下とするこ
とにより脆化割れおよび析出脆化を回避する。 Cr:0.15wt%以上、Mo:0.01wt%以上、V:
0.01wt%以上の何れか1種もしくは2種以上の添
加で母材を強化し、溶接熱影響部の強靱化および
継手性能の向上を図る。Cr:1.00wt%以下、
Mo:およびVがそれぞれ0.30wt%以下とされる
ことにより製造時偏析部に島状マルテンサイトの
生成が助長されることなく、延靱性劣化を回避す
る。 「実施例」 上記したような本発明について更に説明する
と、本発明者等は高温圧接におけるばり熱間押し
抜き剪断除去に原因する前記したような継手性能
劣化は高温における圧接面上に生じた脆化現象に
よるものと考察され、種々の元素について検討し
た。即ちこのような検討に当つての具体的な方向
として圧接面は常に大気中の酸素と窒素により汚
染されており、これら両元素と親和性あるいは反
応性の強い元素が脆化に関連しているものと考え
られ、仔細に検討の結果、鋼中のAlとBが圧接
面上に反応生成物を形成して脆化を惹起している
ことを見出し、前述したような特定成分組成を有
する高温圧接用高炭素鋼材を提案するものであ
る。 即ち、先ず本発明における各元素の成分組成限
定理由についてwt%(以下単に%という)によ
り説明すると以下の如くである。 Cは、強度、硬度、耐摩耗性の点から0.60%以
上が必要であり、0.85%を超えると粗いセメンタ
イトの形成を促し、延靱性が劣化することから
0.60〜0.85%に限定した。 Siは、脱酸元素、強化元素として重要であり、
Alなどで脱酸される場合には0.01%以上を強化元
素として使用し、Siで脱酸する場合には0.15%以
上が必要である。強化元素として使用する場合に
おいても0.60%を超えると延靱性の劣化が顕在す
る。更に強化上必要であれば1.00%までの添加で
実用上延靱性を確保し得るが1.00%を超えると劣
化が著しい。 Mnは、強度、延靱性を確保する上において不
可欠の元素であり、下限を0.50%と限定したのは
製造時に低融点硫化物の生成による熱間加工割れ
を防止するため硫化物を高融点のMnSとするの
に必要とされる量である。又その上限はMnの偏
析により製造時に島状マルテンサイトが生成し延
靱性が著しく劣化することから1.50%と限定し
た。 なおP.Sは、通常不可避不純物として0.030%ま
で含有してよい。酸可溶性Al(sol.Al)は本発明
において最も重要な元素である。即ちSiにより脱
酸する場合sol.Al<0.002%でもよいがAlは脱酸
元素として添加する場合に鋼の清浄性を著しく改
善するもので、このsol.Alが0.002%以上の添加に
よりその効果を示す。一方このsol.Al量を増すこ
とは脱酸度を更に高め鋼質は改善されるが、
0.012%を超えて添加すると高温圧接時に圧接面
上の汚染酸素と反応して1μm以下の微細な酸化物
を数多く形成すると共に3MnO・Al2O3・3SiO2
等の低融点酸化物をも形成し、圧接面における粒
界移動を阻止すると共に圧接直後におけるばり熱
間押し抜き剪断加工から受ける引き裂き力により
脆化割れを起す。更にAlは汚染窒素と反応して
圧接面上にAlNを生成して析出脆化を起し曲げ
試験特性を劣化させる。このような作用は溶接継
手性能を劣化させると共にマグナ探傷および超音
波探傷欠陥の原因となるから斯かる高温圧接で優
れた継手特性を得るためには0.012%以下とする
ことが不可欠である。 Bは、SoL.Alと同様に本発明における重要な
元素である。即ち本発明の特徴とするばり熱間押
し抜き剪断加工を受けることによりBの圧接部に
おける拡散が加速されると共に圧接面上の汚染窒
素と反応して相当量のBNが生成し脆化を惹起す
る。通常の母材における脆化とは異なり、微量の
Bによつて溶接継手性能が劣化するもので、この
ようなBNによる脆化が顕著になるB量は0.0003
%以上であり、良好な継手性能を得るためにはB
を0.0002%以下にすることが必要である。 上記のような各元素に対してCr,Mo,Vは強
化元素として有効であり、母材性能の向上ととも
に溶接熱影響部の強靱化に寄与し、継手性能を向
上させるもので、このような効果を得るには
Cr:0.15%以上、Mo:0.01%以上、V:0.01%以
上を何れか1種もしくは2種以上添加することが
必要である。しかしこれらの元素が多量に添加さ
れた場合はその効果が添加量の増加に比し少なく
なり、製造時に偏析部において島状マルテンサイ
トの生成を助長し延靱性が劣化するので、Crに
ついては1.00%以下、MoおよびVについては
夫々0.30%以下とすることが必要である。 上記成分組成の高炭素鋼材は高温圧接に供され
た場合、オーステナイト領域以上に再加熱される
ことから圧延ままであることや熱処理材であると
いうような製造法に特に限定されない性質のもの
であり、同様に形状にもよらない。 本発明によるものの具体的な製造例について説
明すると以下の如くである。 次の第1表には本発明者等が採用した高炭素鋼
材の化学成分例を示すが、ばり除去法は押し抜き
法と共に比較としてはグラインダー除去法を実施
した。なお高炭素鋼材は圧延ままのものと、その
後再加熱スラツク・クエンチ処理されたものであ
り、断面積77.5cm2、断面係数Z=397cm3の条形状
の鋼材である。ガス圧接は還元炎で加熱し、加圧
力2.4Kg/mm2、圧縮量26mmの通常条件で施工した。
なおA,J鋼は熱処理されず、圧延ままでガス圧
接を実施した。
``Purpose of the Invention'' The present invention relates to the creation of a high-carbon steel material for high-temperature pressure welding that has excellent weld joint performance. Magna flaw detection and ultrasonic flaw detection do not generate defects in high carbon steel materials used after shearing and removal.
It is also an attempt to obtain a welded joint with excellent bending test characteristics. (Industrial application field) High carbon steel material for welded joints that are welded under high temperature pressure. (Prior art) One of the welding methods for high carbon steel materials is high temperature pressure welding such as gas pressure welding and flash welding. At the same time, mechanical pressure is applied to weld steel of various shapes, such as long steel and steel plates. The burr (or bulge) generated by the metal flow due to pressure during such high-temperature welding may be used as is or removed.There are various methods for removing it, such as using a glider or gas scarf. An efficient method is hot punching and shearing immediately after pressure welding. That is, this removal method by punching and shearing has the great advantage of being highly efficient, and is used to confirm the joint performance by conducting Magna flaw detection and ultrasonic flaw detection of welded joints. (Problem to be solved by the invention) However, the above-mentioned burr punching and shearing process
Due to its processing characteristics, tearing stress acts on the press-welded part, deteriorating the joint performance, and the above-mentioned flaw detection test and bending test characteristics deteriorate, so the quality of performance must be confirmed by each test before use. No. "Structure of the invention" (Means for solving the problem) (1) C: 0.60 to 0.85wt%, Si: 0.01 to 1.00wt%, Mn: 0.50 to 1.50wt%, sol.Al: 0.012wt% or less , B: A high-carbon steel material for high-temperature pressure welding with excellent weld joint performance, characterized by containing 0.0002 wt% or less, with the remainder consisting of Fe and inevitable impurities. (2) Contains C: 0.60 to 0.85 wt%, Si: 0.01 to 1.00 wt%, Mn: 0.50 to 1.50 wt%, Sol.Al: 0.012 wt% or less, B: 0.0002 wt% or less, and Cr: 0.15 ~1.00wt%, Mo: 0.01~0.30wt%, V: 0.01~0.30wt%, and the remainder is
A high-carbon steel material for high-temperature pressure welding with excellent weld joint performance, characterized by containing Fe and unavoidable impurities. (Function) By containing C: 0.60wt% or more and Mn: 0.50wt% or more, strength, hardness, and wear resistance are obtained.
C: 0.85wt% or less, Mn: 1.50wt% or less, Si:
By setting the content to 1.00wt% or less, deterioration of ductility is avoided. Si: 0.01wt% or more, when deoxidizing with Si only
By setting the content to 0.15wt% or more, deoxidation is achieved and at the same time it acts as a reinforcing element. Sol.Al: improves the cleanliness of steel at 0.002wt% or more,
Also, by setting B to 0.012wt% or less and B: 0.0003wt% or less, embrittlement cracking and precipitation embrittlement are avoided. Cr: 0.15wt% or more, Mo: 0.01wt% or more, V:
The base metal is strengthened by adding 0.01wt% or more of one or more of these to strengthen the weld heat-affected zone and improve joint performance. Cr: 1.00wt% or less,
By setting Mo: and V to 0.30 wt% or less, the formation of island-like martensite in the segregated portion during manufacturing is not promoted, and deterioration of ductility toughness is avoided. ``Example'' To further explain the present invention as described above, the present inventors believe that the deterioration of joint performance caused by hot press-out shear removal during high-temperature pressure welding is due to the embrittlement that occurs on the pressure welding surfaces at high temperatures. It was thought that this phenomenon was caused by chemical reaction, and various elements were investigated. In other words, the specific direction for such an investigation is that the pressure contact surface is always contaminated by oxygen and nitrogen in the atmosphere, and elements that have a strong affinity or reactivity with these two elements are associated with embrittlement. After detailed investigation, it was discovered that Al and B in the steel form a reaction product on the welding surface, causing embrittlement. This paper proposes a high carbon steel material for pressure welding. That is, first, the reason for limiting the composition of each element in the present invention is explained below in terms of wt% (hereinafter simply referred to as %). C is required to be at least 0.60% from the viewpoint of strength, hardness, and wear resistance, and if it exceeds 0.85%, it promotes the formation of coarse cementite and deteriorates ductility.
Limited to 0.60-0.85%. Si is important as a deoxidizing element and a strengthening element.
When deoxidizing with Al etc., 0.01% or more is used as a reinforcing element, and when deoxidizing with Si, 0.15% or more is required. Even when used as a reinforcing element, if the content exceeds 0.60%, deterioration of ductility becomes evident. Furthermore, if necessary for reinforcement, elongation toughness can be ensured in practice by adding up to 1.00%, but if it exceeds 1.00%, deterioration is significant. Mn is an essential element for ensuring strength and elongation toughness, and the reason why the lower limit was set at 0.50% was to prevent hot working cracking due to the formation of low melting point sulfides during manufacturing. This is the amount required to form MnS. In addition, the upper limit was limited to 1.50% because island-shaped martensite is generated during manufacturing due to Mn segregation, which significantly deteriorates ductility. Note that PS may be contained up to 0.030% as an unavoidable impurity. Acid-soluble Al (sol.Al) is the most important element in the present invention. In other words, when deoxidizing with Si, sol.Al < 0.002% is acceptable, but when Al is added as a deoxidizing element, it significantly improves the cleanliness of steel, and the addition of sol.Al of 0.002% or more increases its effect. shows. On the other hand, increasing the amount of sol.Al further increases the degree of deoxidation and improves the steel quality, but
If added in excess of 0.012%, it will react with contaminated oxygen on the pressure welding surface during high-temperature pressure welding, forming many fine oxides of 1 μm or less, and 3MnO・Al 2 O 3・3SiO 2
It also forms low melting point oxides such as oxides, which prevent grain boundary movement on the welding surface and cause embrittlement cracking due to the tearing force received from the flash hot punching and shearing immediately after the welding. Furthermore, Al reacts with contaminated nitrogen to form AlN on the welded surface, causing precipitation embrittlement and deteriorating bending test characteristics. Such effects deteriorate welded joint performance and cause defects in Magna flaw detection and ultrasonic flaw detection, so it is essential to keep the content to 0.012% or less in order to obtain excellent joint properties in such high-temperature pressure welding. B, like SoL.Al, is an important element in the present invention. That is, by undergoing the flash hot extrusion shearing process that is a feature of the present invention, the diffusion of B in the welded area is accelerated, and a considerable amount of BN is generated by reacting with the contaminated nitrogen on the welded surface, causing embrittlement. do. Unlike embrittlement in normal base metals, the performance of welded joints deteriorates due to a small amount of B, and the amount of B at which such BN-induced embrittlement becomes noticeable is 0.0003
% or more, and in order to obtain good joint performance, B
It is necessary to keep it below 0.0002%. Among the above elements, Cr, Mo, and V are effective as reinforcing elements, and they contribute to improving the performance of the base metal and strengthening the weld heat affected zone, improving joint performance. To get the effect
It is necessary to add one or more of Cr: 0.15% or more, Mo: 0.01% or more, and V: 0.01% or more. However, if large amounts of these elements are added, the effect will be less than the increase in the amount added, promoting the formation of island-like martensite in the segregated areas during manufacturing and deteriorating ductility. % or less, and Mo and V each need to be 0.30% or less. When a high carbon steel material having the above composition is subjected to high-temperature pressure welding, it is reheated to a temperature higher than the austenite region, so it is not particularly limited by the manufacturing method, such as being as rolled or heat-treated material. , similarly independent of shape. A specific manufacturing example of the product according to the present invention will be described below. Table 1 below shows examples of the chemical composition of high carbon steel materials adopted by the present inventors, and the burr removal method used was a punching method and a grinder removal method for comparison. The high-carbon steel materials are as-rolled and then reheated and slack-quenched, and are strip-shaped steel materials with a cross-sectional area of 77.5 cm 2 and a section modulus Z = 397 cm 3 . Gas pressure welding was carried out under the normal conditions of heating with a reducing flame and a pressure of 2.4 kg/mm 2 and a compression amount of 26 mm.
Note that steels A and J were not heat treated and gas pressure welding was performed as rolled.

【表】 即ち、A〜H、J〜L鋼はガス圧接後ばりを熱
間押し抜き剪断加工したもので、IおよびM鋼は
HおよびL鋼と同一鋼であるが、ばりを圧接後放
冷し室温でグラインダー除去したものである。 然してこのようなA〜M鋼についての3点曲げ
試験結果を、たわみについては第1図に示し、又
最高荷重については第2図に示すが、それら撓み
および最高荷重の何れもがsol.Al、Bで適切に整
理され、sol.Alが0.013〜0.016%の範囲で遷移現
象を示しており、sol.Al:0.012%以下で良好な継
手性能を示し、0.013%以上では急激な性能劣化
を示す。同時にこのsol.Alが0.013%以上ではマグ
ナ探傷欠陥も発生することが確認された。 Bについては、前記したsol.Al0.013〜0.016%
およびそれ以上ではsol.Alの影響が強く、Bの影
響は若干しか表われない。しかしこのsol.Alが
0.012%以下ではBによる影響が明瞭に分離され、
B:0.0003%以上で劣化が著しく、sol.Alと複合
して悪影響している。 なおIおよびM鋼に示されるように、ばりをグ
ラインダー除去した場合にはsol.Al:0.013%、
B:0.0003%およびsol.Al:0.025%、B:0.0001
%であるにも拘わらず優れた溶接継手性能を示し
ている。 このようにばり除去を効率的に行うことのでき
る熱間押し抜き剪断加工で実施しても本発明の
sol.Al:0.012%以下、B:0.0002%以下の鋼は優
れた溶接継手性能を示すことが確認された。 然して上記した製造例は、ガス圧接についての
ものであるが、フラツシユ溶接あるいはその他の
高温圧接の場合も、その溶接条件が類似している
ことは明らかで、ばりを熱間押し抜き剪断加工に
よつて除去する場合には上述したところと同様の
結果となることが確認されている。 「発明の効果」 以上説明したような本発明によるときは、高温
圧接による加圧で形成されたばりを圧接直後にお
ける熱間で機械的に押し抜き剪断除去し効率的に
処理する条件下においても継手性能を劣化せしめ
ることなく良好な特性を維持し、マグナ探傷、超
音波探傷あるいは曲げ試験の如きにおいて卓越し
た性能を示すものであつて、工業的にその効果の
大きい発明である。
[Table] Namely, steels A to H and J to L are made by hot pressing and shearing the burrs after gas pressure welding, and steels I and M are the same steels as steels H and L, but the burrs are released by shearing after welding by gas pressure. It was cooled and removed by a grinder at room temperature. However, the three-point bending test results for A to M steels are shown in Figure 1 for deflection, and Figure 2 for maximum load, but both the deflection and the maximum load are sol.Al. , B shows a transition phenomenon in the range of 0.013 to 0.016% sol.Al, showing good joint performance at sol.Al of 0.012% or less, and rapid performance deterioration at 0.013% or more. show. At the same time, it was confirmed that Magna flaw detection defects also occur when this sol.Al is 0.013% or more. Regarding B, the above-mentioned sol.Al0.013-0.016%
and above, the influence of sol.Al is strong, and the influence of B is only slight. But this sol.Al
Below 0.012%, the influence of B is clearly separated;
B: At 0.0003% or more, the deterioration is significant, and it is combined with sol.Al and has an adverse effect. As shown in I and M steels, when burrs are removed with a grinder, sol.Al: 0.013%,
B: 0.0003% and sol.Al: 0.025%, B: 0.0001
%, it shows excellent welded joint performance. Even when hot punching and shearing processing, which can efficiently remove burrs, is performed, the present invention is still effective.
It was confirmed that steel with sol.Al: 0.012% or less and B: 0.0002% or less exhibits excellent welded joint performance. However, although the above manufacturing example is for gas pressure welding, it is clear that the welding conditions are similar in the case of flash welding or other high temperature pressure welding, and the burr can be removed by hot pressing and shearing. It has been confirmed that the same results as those described above are obtained when removing the particles. "Effects of the Invention" According to the present invention as explained above, even under conditions where burrs formed by pressure during high-temperature pressure welding are mechanically pushed out and removed by shearing immediately after pressure welding, it is possible to efficiently process the burrs. It maintains good characteristics without deteriorating the joint performance, and shows excellent performance in Magna flaw detection, ultrasonic flaw detection, and bending tests, and is an industrially highly effective invention.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであつ
て、第1図は3点曲げ試験結果で、たわみ量に及
ぼすsol.Al、Bの影響を要約して示した図表、第
2図は同じく3点曲げ試験結果で最高荷重に及ぼ
すsol.AlおよびBの影響を要約して示した図表で
ある。
The drawings show the technical contents of the present invention, and Fig. 1 shows the results of a three-point bending test and is a chart summarizing the effects of sol.Al and B on the amount of deflection, and Fig. 2 shows the same results. It is a chart summarizing the influence of sol.Al and B on the maximum load in the three-point bending test results.

Claims (1)

【特許請求の範囲】 1 C:0.60〜0.85wt%、Si:0.01〜1.00wt%、 Mn:0.50〜1.50wt%、 sol.Al:0.012wt%以下、 B:0.0002wt%以下 を含有し、残部がFe及び不可避的不純物からな
ることを特徴とする溶接継手性能の優れた高温圧
接用高炭素鋼材。 2 C:0.60〜0.85wt%、Si:0.01〜1.00wt%、 Mn:0.50〜1.50wt%、 Sol.Al:0.012wt%以下、 B:0.0002wt%以下 を含有すると共に、 Cr:0.15〜1.00wt%、Mo:0.01〜0.30wt%、 V:0.01〜0.30wt% の何れか1種または2種以上を含有し、残部が
Feおよび不可避的不純物からなることを特徴と
する溶接継手性能の優れた高温圧接用高炭素鋼
材。
[Claims] 1 Contains C: 0.60 to 0.85 wt%, Si: 0.01 to 1.00 wt%, Mn: 0.50 to 1.50 wt%, sol.Al: 0.012 wt% or less, B: 0.0002 wt% or less, A high-carbon steel material for high-temperature pressure welding with excellent weld joint performance, characterized in that the remainder consists of Fe and unavoidable impurities. 2 Contains C: 0.60 to 0.85 wt%, Si: 0.01 to 1.00 wt%, Mn: 0.50 to 1.50 wt%, Sol.Al: 0.012 wt% or less, B: 0.0002 wt% or less, and Cr: 0.15 to 1.00. wt%, Mo: 0.01 to 0.30 wt%, V: 0.01 to 0.30 wt%, and the remainder is
A high-carbon steel material for high-temperature pressure welding with excellent weld joint performance, characterized by containing Fe and unavoidable impurities.
JP2040687A 1986-02-17 1987-02-02 High-carbon steel material for hot-pressure welding excellent in property at welded joint Granted JPS62278247A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-30904 1986-02-17
JP3090486 1986-02-17

Publications (2)

Publication Number Publication Date
JPS62278247A JPS62278247A (en) 1987-12-03
JPH0443978B2 true JPH0443978B2 (en) 1992-07-20

Family

ID=12316710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040687A Granted JPS62278247A (en) 1986-02-17 1987-02-02 High-carbon steel material for hot-pressure welding excellent in property at welded joint

Country Status (1)

Country Link
JP (1) JPS62278247A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783610B2 (en) * 2001-03-05 2004-08-31 Amsted Industries Incorporated Railway wheel alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125231A (en) * 1979-03-17 1980-09-26 Nippon Steel Corp Production of weldable low alloy heat treated hard top rail

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125231A (en) * 1979-03-17 1980-09-26 Nippon Steel Corp Production of weldable low alloy heat treated hard top rail

Also Published As

Publication number Publication date
JPS62278247A (en) 1987-12-03

Similar Documents

Publication Publication Date Title
JP4544589B2 (en) Ferritic stainless steel sheet with excellent spinning processability and spinning process
JPH05195149A (en) Ultrahigh strength cold rolled steel sheet excellent in bendability and shock resistance
JP2001020039A (en) High strength hot rolled steel sheet excellent in stretch flanging property and fatigue characteristic and its production
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JP3731103B2 (en) High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof
JPH0443978B2 (en)
JP3286050B2 (en) High strength hot rolled steel sheet for processing with excellent fatigue properties
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JPS59136418A (en) Preparation of high toughness and high strength steel
JPH0774378B2 (en) Method for producing high strength hot rolled steel sheet with excellent hole expandability
JPH0432143B2 (en)
JP2001064749A (en) Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone
JP3212380B2 (en) Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JPS623214B2 (en)
JPH04135013A (en) High strength steel pipe for reinforcing door of car
JP2820784B2 (en) Method of manufacturing high-strength thin steel sheet for door reinforcement pipe
JP3003495B2 (en) Steel material excellent in workability and method for producing the same
JPH05148582A (en) High tensile strength steel plate for electron beam welding
JPH0581658B2 (en)
JPH049861B2 (en)
JP2810154B2 (en) Hot rolled steel sheet for processing with excellent fatigue resistance of welded joints
JP4608817B2 (en) Cu-containing steel for welded structure having excellent surface properties and method for producing the same
JPS63310939A (en) Extra low carbon steel plate having good spot weldability
JPS6133049B2 (en)