【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は、銅系粉末治金製品に使用される偏析
が少なく、成形性良好な原料粉の製造方法に関す
るものである。
〔従来の技術〕
従来、鉛青銅系焼結材を製造する場合の原料粉
として銅粉とすず粉と鉛粉を所定の割合で配合混
合したもの、あるいは銅粉とSn−Pb合金粉とを
所定の割合で配合混合したもの又は銅−すず−鉛
合金粉が用いられ、これを一定の形状に成形、焼
結して製造される。
混合粉を用いて、良質な焼結部品を製造するに
は、各原料粉を均一に混ぜることが重要であるこ
とは一般に良く知られているが、均一な混合粉を
製造することは極めて困難であり、一方合金粉を
用いた場合には粉末粒子の硬さが高くなり混合粉
より成形性が悪い。
均一な混合粉を製造することは実際上かなり困
難なことがよく知られている。すなわち、原料粉
の比重、粒度及び粒形の違つた粉末を混合機によ
り均一に混合しても、この混合粉を次の成形工程
に移動したり、容器に入れて輸送する時の振動な
どによつて、混合粉中の特定の原料粉が局部的に
偏る現象が生じる。
また混合粉を成形装置のホツパーに装入した時
の流れや落下速度の差により各成分粉が分離を起
こし、金型に均一な状態で充填できず、得られた
焼結体製品の組成、寸法、密度、硬さにバラツキ
を生じ、このため強度不良を生じる恐れがある。
さらに、この偏析、分離現象が著しい場合、焼結
製品に層状の模様、巣あき及びパンク現象を起こ
すことがある。
上記のような混合粉の偏析、分離現象を防止す
るため混合粉の移動、輸送そして成形時のホツパ
ーに振動や落下差が生じないように種々工夫され
ているが、完全に偏析、分離を防止することは困
難であつた。さらに原料粉自体に対して以下の
〜の考えがあるがそれぞれ最適とはいいがた
い。
結合剤添加による混合法
この混合法は、配合原料に対して結合剤を添
加、混合し、その結合剤の結合力によつて原料
粉末同志を結合し、偏析、分離を防止しようと
するものであるが、得られる混合粉の流動性が
悪くなり、圧粉体の成形作業が困難となり、添
加された結合剤により焼結が阻害されるという
新たな欠点を生じる。このため、結合剤添加に
よる混合法は、量産性の焼結部品には適用され
ず、一部の特殊部品に限られ適用されているの
が現状である。
アトライター等による強力混合法
ボールミル、アトライター等の機械による混
合法は、軟らかい銅粉、低融点金属粉、合金粉
が互いにどちらかの粉に埋めこまれ、移動、振
動等による偏析、分離現象がなくなり、混合は
ほぼ満足されるが、この方法はバツチ式のため
多量の原料を処理することが出来ない。また、
強力な力が加わるために粉末が変形し、片状粉
や粒子が粗大化するなどにより流動性、成形
性、焼結性が悪化して粉末治金用原料粉として
は不適当なものとなる。
合金粉の適用
合金粉を原料とする方法があるが、従来粉末
治金用として製造されているアトマイズ法によ
り作つた粉末は偏析、分離には問題がないが、
通常、粒子の形状が球形に近く、凹凸に乏しい
合金粉であり、しかも一般的に硬さが単体金属
よりも高く成形性に難点があり、とくに成形体
の強度が低い低密度焼結部品を製造するには難
点がある。
以上のごとく従来の技術では成形性が良くて、
偏析、分離を起さない条件を満足する原料粉がな
かつた。
〔発明が解決しようとする問題点〕
本発明者等は、上述のような従来技術の欠点を
除去し複数種の原料混合粉の取り扱い時や、成形
時の特定の原料粉の偏り、さらには、得られた焼
結体製品の寸法、密度、硬さのバラツキ及び層状
の模様、巣あき、パンク現象を起さず、しかも、
粉末自体の流動性、成形性、焼結性が阻害されな
い粉末治金用原料粉を得るべく種々検討研究を行
つた結果、部分的に合金化をおこなえば解決でき
るとを見出し、本発明を完成したものである。
〔問題点を解決するための手段〕
すなわち本発明は、主成分としての不規則形状
の銅粉に、副成分粉として低融点のSn−Pb合金
粉又はSn−Pb合金粉とすず粉との混合粉を混合
して、その副成分粉の融点より高くて700℃以下
の温度で5〜60分間熱処理を行い部分合金化を進
め、この処理によつて得られた焼結のケーキを粉
砕することを特徴とする、部分合金化した銅部及
び未合金化の銅部及び鉛部とを含む部分合金化銅
粉の製造方法である。
〔作用〕
この発明において副成分としてSn−Pb合金粉
又はSn−Pb合金粉とすず粉との混合粉を用いた
のは、鉛粉単独を用いて製造する場合に比べてい
ずれも低温にて溶融して、主成分粉である不規則
形状の銅粉とよく濡れ、より低温での部分合金化
が進みやすいからである。また、熱処理温度を副
成分粉の融点より高くて700℃以下と限定したの
は副成分粉の融点以下では、不規則形状の銅粉と
の結合が行われず、たとえ少し焼結により付着し
たとしても、次の粉砕工程で粒子間の結合がはず
れ混合のみと大差なく熱処理の効果が得られない
からである。
700℃以下としたのは、完全に合金化まで進ま
ない状態を必要とするからである。完全に合金化
した粉末になると、合金粉と同様粒子が硬くな
り、成形が困難で成形体の強度が低く、低密度焼
結部品を製造する時困難である理由による。
700℃以下では、不規則形状の銅粉に副成分粉
が付着、焼結した状態となり原料の分離が起らず
部分的に合金化した不規則形状の銅粉は焼鈍硬化
で軟かく加圧しやすく成形性が良好となるからで
ある。
熱処理時間を5〜60分としたのは、完全に合金
化まで進まない状態を必要とするためで副成分粉
の融点直上では60分間、700℃では5分間が最適
である。
雰囲気としては、特殊なガスを用いてもよいが
通常粉末治金で使用されているガスを用いること
ができ、非酸化性雰囲気であれば真空及び窒素、
アルゴン等の不活性ガス、還元性雰囲気えあれば
水素ガス、窒素ガス、アンモニア分解ガス、天然
ガス及び変成ガス及びそれらの混合ガス等適用で
きる。
熱処理の終了したものはケーキ状となつている
が、これを粉砕することにより、部分合金化銅粉
が得られるが、この粉砕はあまり強く行わない方
が好ましい。強度の粉砕を行うと粉末の粒形がく
ずれ成形性が悪くなる場合がある。
〔実施例〕
以下、本発明の代表的な実施例と比較例を共に
示す。
実施例 1
200μm以下の不規則形状のアトマイズ銅粉5.4
Kgに200μm以下のSn−Pb合金粉(Sn−50%Pb)
0.6Kgを混合機で混合した。この混合粉をステン
レス製ボートに入れ、還元性雰囲気(水素75%+
窒素25%混合ガス)の電気炉に入れて、600℃で
10分間保持し、熱処理した。その後炉内で室温ま
で冷却して取り出した。
ボートから取り出したケーキ状の塊を粉砕しフ
ルイ分けをおこない、100メツシユ以下のSn5%
とPb5%を含む部分合金化した銅部及び未合金化
の銅部と鉛部を含む部分合金化銅粉を製造した。
得られた部分合金化銅粉の偏析、分離現象を調べ
るためにJIS−Z−2502の金属粉の流動試験方法
に用いられているロートから金型へ粉末を充填
し、2.0t/cm2で加圧成形して焼結した部品の外観
を目視観察した。
この結果、本発明による部分合金化銅粉は、圧
粉体、焼結体ともに外観に偏析、分離による異常
は認められず良好な外観状態の部品であつた。
次に、JIS−Z−2504に準じて見掛密度を、ま
たJIS−Z−2502に準じて流動度を測定した。さ
らにこの粉の成形性を見るためにISO3927と
ISO3995に準じて圧粉密度及び圧粉体の抗析力を
測定した。これらの結果を第1表に示す。
なお、本実施例1に用いた、熱処理前の混合粉
について、同じ方法で偏析、分離現象と焼結した
部品の外観を目視観察したところ、加圧成形した
外観にSn−Pb合金粉が、横縞状に分布し、著し
い偏析、分離現象が見られた。またこれを焼結し
た部分の外観は横縞状の部分が黒く変色したり大
きな穴となつて、製品としては明らかに外観不良
品であることが認められた。
実施例 2
200μm以下の電解銅粉5.34Kgに200μm以下の低
融点合金粉であるSn−Pb合金粉(Sn−50%Pb)
0.12Kgとすず粉0.54Kgを混合機で15分混合した。
この混合粉を実施例1と同様にステンレス製ボー
トに入れて還元雰囲気の電気炉で500℃で30分間、
熱処理し、できたケーキを粉砕し100メツシユ以
下のSn10%とPb1%を含む部分合金化銅粉を製造
した。この部分合金化銅粉のSn、Pbの分布状態
を確かめるために少量の粒子を顕微鏡試料埋込み
用樹脂の中に埋込みその断面を研磨してからX線
マイクロアナライザーで調査した。第1図は試料
の反射電子像、第2図、第3、第4図は、それぞ
れ同じ試料、同じ場所のSnLα線、PbLα線、
CuKα線によるSn、Pb、Cuの分布状態を示すX
線マイクロアナライザー写真であり、Sn、Pbが
完全にCu粒子中に拡散、合金化していないこと
が判つた。
つづいて実施例1と同じ方法で、実施例2で得
られた部分合金化銅粉の偏析、分離現象を観察し
た結果、圧粉体、焼結体ともに外観に偏析、分離
による異常は認められず良好な外観状態の焼結体
であつた。またこの部分合金化銅粉の見掛密度、
流動度及び抗析力を実施例1と同じ方法で測定
し、その結果を第1表に示す。
比較例 1
200μm以下の電解銅粉5.4Kgに200μm以下の低
融点金属粉であるすず粉0.3Kgと鉛粉0.3Kgを加え
混合機で15分間混合した。
この混合粉を実施例1と同じ方法で偏析、分離
現象を観察した結果、圧粉体にすず粉と鉛粉によ
る灰色の縞模様の分布が見られた。これを焼結す
ると青銅色(黄色)と銅色(赤色)の縞模様が見
られ明らかに偏析していることが認められた。
この混合粉の見掛密度、流動度及び抗析力を第
1表に示す。
比較例 2
200μm以下の電解銅粉5.4Kgに200μm以下の低
融点の合金粉であるSn−Pb合金粉(Sn−50Pb)
0.6Kgを加え混合機で15分間混合した。
この混合粉を実施例1と同じ方法で偏析、分離
現象を観察した結果、圧粉体にSn−Pb合金粉に
よる灰色の縞模様の分布が見られた。これを焼結
すると青銅色(黄色)と銅色(赤色)の縞模様が
見られ明らかに偏析していることが認められた。
この混合粉の見掛密度、流動度及び抗析力を第
1表に示す。
比較例 3
組成がCu−10Sn−1Pbの200μm以下の不規則
形状のアトマイズ粉6.0Kgを実施例1と同じ方法
で偏析、分離現象を観察した結果、圧粉体は青銅
色(黄色)で外観上問題となる偏析や模様等は見
られず、これを焼結しても青銅色(黄色)で、縞
模様や変色していることが認められなかつた。
この粉の見掛密度、流動度及び抗析力を第1表
に示す。
比較例 4
200μm以下の電解銅粉5.4Kgに200μm以下の低
融点金属粉であるすず粉0.3Kgと鉛粉0.3Kgを加え
混合機で15分間混合した。
この混合粉をステンレス製ボートに入れ、還元
雰囲気(水素75%+窒素混合ガス)の電気炉で
500℃で30分間、熱処理し、できたケーキを粉砕
し100メツシユ以下のSn5%とPb5%を含む部分合
金化銅粉を製造した。
この粉の見掛密度、流動度及び抗析力を第1表
に示す。また、実施例1と同じ方法で偏析、分離
現象を観察した結果、実施例1でのSn−Pb合金
粉を用いて製造したものに比べて、圧粉体、焼結
体とも外観に偏析、分離による異常が多かつた。
[Industrial Field of Application] The present invention relates to a method for producing raw material powder with low segregation and good formability for use in copper-based powder metallurgy products. [Conventional technology] Conventionally, raw material powder for manufacturing lead bronze sintered materials has been a mixture of copper powder, tin powder, and lead powder in a predetermined ratio, or copper powder and Sn-Pb alloy powder. A powder mixed in a predetermined ratio or a copper-tin-lead alloy powder is used, and it is manufactured by molding and sintering this into a certain shape. It is generally well known that in order to manufacture high-quality sintered parts using mixed powder, it is important to mix each raw material powder uniformly, but it is extremely difficult to manufacture a uniform mixed powder. On the other hand, when alloy powder is used, the hardness of the powder particles increases and the moldability is worse than that of mixed powder. It is well known that it is actually quite difficult to produce a uniform mixed powder. In other words, even if powders with different specific gravity, particle size, and particle shape are mixed uniformly using a mixer, the mixed powder may not be affected by vibrations when it is transferred to the next molding process or transported in a container. Therefore, a phenomenon occurs in which specific raw material powders in the mixed powder are locally concentrated. In addition, when the mixed powder is charged into the hopper of the molding device, the component powders separate due to differences in flow and falling speed, making it impossible to fill the mold uniformly, resulting in a change in the composition of the resulting sintered product. Variations occur in dimensions, density, and hardness, which may result in poor strength.
Furthermore, if this segregation and separation phenomenon is significant, layered patterns, voids, and punctures may occur in the sintered product. In order to prevent the above-mentioned segregation and separation of the mixed powder, various measures have been taken to prevent vibrations and drop differences in the hopper during movement, transportation, and molding of the mixed powder, but segregation and separation cannot be completely prevented. It was difficult to do so. Furthermore, although there are the following ideas for the raw material powder itself, it is difficult to say that each of them is optimal. Mixing method by adding a binder In this mixing method, a binder is added to and mixed with the raw materials, and the raw material powders are bound together by the binding force of the binder to prevent segregation and separation. However, new drawbacks arise in that the fluidity of the resulting mixed powder becomes poor, making it difficult to form a green compact, and the added binder inhibits sintering. For this reason, the mixing method by adding a binder is not applied to mass-produced sintered parts, but is currently applied only to some special parts. Intense mixing method using attritor, etc. Mixing method using machines such as ball mills and attritor, soft copper powder, low melting point metal powder, and alloy powder are embedded in one of the powders, and segregation and separation phenomena due to movement, vibration, etc. However, since this method is a batch method, it is not possible to process a large amount of raw materials. Also,
Due to the application of strong force, the powder is deformed, causing flaky powder and coarse particles, resulting in poor fluidity, formability, and sinterability, making it unsuitable as a raw material powder for powder metallurgy. . Application of alloy powder There is a method using alloy powder as a raw material, but the powder made by the atomization method, which is conventionally manufactured for powder metallurgy, has no problems with segregation and separation.
It is usually an alloy powder whose particle shape is close to spherical and has few irregularities. Moreover, it is generally harder than a single metal and has difficulty in formability, especially for low-density sintered parts with low strength compacts. There are difficulties in manufacturing it. As mentioned above, the conventional technology has good moldability,
There was no raw material powder that satisfied the conditions of not causing segregation or separation. [Problems to be Solved by the Invention] The present inventors have solved the above-mentioned drawbacks of the prior art and have solved the problem of handling multiple types of mixed raw material powders, unbalanced use of specific raw material powders during molding, and , the obtained sintered product does not have variations in dimensions, density, hardness, layered patterns, cavities or puncture phenomena, and
As a result of conducting various studies to obtain raw material powder for powder metallurgy that does not inhibit the fluidity, moldability, and sinterability of the powder itself, we discovered that the problem could be solved by partially alloying it, and completed the present invention. This is what I did. [Means for solving the problem] That is, the present invention combines irregularly shaped copper powder as the main component with low melting point Sn-Pb alloy powder or Sn-Pb alloy powder and tin powder as sub-component powders. The mixed powders are mixed and heat treated for 5 to 60 minutes at a temperature higher than the melting point of the subcomponent powder but below 700°C to promote partial alloying, and the sintered cake obtained by this treatment is crushed. This is a method for producing partially alloyed copper powder including a partially alloyed copper part and an unalloyed copper part and a lead part. [Function] In this invention, the Sn-Pb alloy powder or the mixed powder of Sn-Pb alloy powder and tin powder is used as a subcomponent. This is because it melts and wets well with the irregularly shaped copper powder, which is the main component powder, making it easier for partial alloying to proceed at lower temperatures. In addition, the heat treatment temperature was limited to 700°C or higher, which is higher than the melting point of the sub-component powder.If the temperature is below the melting point of the sub-component powder, bonding with the irregularly shaped copper powder will not take place, even if it is slightly attached due to sintering. This is because the bonds between the particles are broken in the next pulverization step, and the effect of heat treatment cannot be obtained, much like mixing alone. The reason why the temperature is 700°C or lower is that it is necessary to maintain a state in which alloying does not proceed completely. When the powder is completely alloyed, the particles become hard like the alloy powder, making it difficult to mold and the strength of the compact is low, which is why it is difficult to manufacture low-density sintered parts. At temperatures below 700℃, the subcomponent powder adheres to the irregularly shaped copper powder and becomes sintered, and the separation of raw materials does not occur, and the partially alloyed irregularly shaped copper powder becomes soft and pressurized by annealing and hardening. This is because it is easy to form and has good moldability. The reason why the heat treatment time is set to 5 to 60 minutes is because it is necessary to ensure that alloying does not proceed completely, so 60 minutes is optimal at just above the melting point of the subcomponent powder, and 5 minutes at 700°C. Although special gases may be used as the atmosphere, gases normally used in powder metallurgy can be used.If the atmosphere is non-oxidizing, vacuum, nitrogen,
Inert gas such as argon, hydrogen gas, nitrogen gas, ammonia decomposition gas, natural gas, metamorphosed gas, and mixed gases thereof can be applied as long as there is a reducing atmosphere. The product after heat treatment is in the form of a cake, and by pulverizing it, partially alloyed copper powder can be obtained, but it is preferable not to crush it too vigorously. If intense pulverization is performed, the particle shape of the powder may collapse, resulting in poor moldability. [Example] Representative examples of the present invention and comparative examples are shown below. Example 1 Atomized copper powder with irregular shape of 200 μm or less 5.4
Sn-Pb alloy powder (Sn-50%Pb) less than 200μm per kg
0.6Kg was mixed in a mixer. This mixed powder was placed in a stainless steel boat in a reducing atmosphere (75% hydrogen +
Place in an electric furnace containing 25% nitrogen mixed gas and heat at 600℃.
It was held for 10 minutes and heat treated. Thereafter, it was cooled to room temperature in the furnace and taken out. The cake-like mass taken out from the boat is crushed and separated through a sieve, and Sn5% of less than 100 mesh is obtained.
and partially alloyed copper powders containing a partially alloyed copper part containing 5% Pb and an unalloyed copper part and a lead part.
In order to investigate the segregation and separation phenomena of the obtained partially alloyed copper powder, the powder was filled into a mold from the funnel used in the metal powder flow test method of JIS-Z-2502, and the powder was heated at 2.0t/ cm2 . The appearance of the pressure-formed and sintered parts was visually observed. As a result, the partially alloyed copper powder according to the present invention was a part with a good appearance, with no abnormality due to segregation or separation observed in the appearance of both the green compact and the sintered compact. Next, the apparent density was measured according to JIS-Z-2504, and the fluidity was measured according to JIS-Z-2502. Furthermore, in order to check the moldability of this powder, we
The density of the green compact and the anti-destruction strength of the green compact were measured in accordance with ISO3995. These results are shown in Table 1. In addition, when the mixed powder used in Example 1 before heat treatment was visually observed for segregation and separation phenomena and the appearance of the sintered parts using the same method, it was found that Sn-Pb alloy powder was present in the press-formed appearance. It was distributed in horizontal stripes, and significant segregation and separation phenomena were observed. In addition, the appearance of the sintered part was such that the horizontal stripes turned black and there were large holes, and it was clearly recognized that the product had a poor appearance. Example 2 5.34 kg of electrolytic copper powder of 200 μm or less and Sn-Pb alloy powder (Sn-50%Pb), which is a low melting point alloy powder of 200 μm or less
0.12Kg and 0.54Kg of tin powder were mixed in a mixer for 15 minutes.
As in Example 1, this mixed powder was placed in a stainless steel boat and heated at 500°C for 30 minutes in an electric furnace in a reducing atmosphere.
After heat treatment, the resulting cake was crushed to produce partially alloyed copper powder containing 10% Sn and 1% Pb with less than 100 meshes. In order to confirm the distribution of Sn and Pb in this partially alloyed copper powder, a small amount of particles was embedded in resin for embedding microscopic specimens, and the cross section was polished and then examined using an X-ray microanalyzer. Figure 1 is a backscattered electron image of a sample, Figures 2, 3, and 4 are SnLα rays, PbLα rays, and PbLα rays of the same sample and same location, respectively.
X showing the distribution state of Sn, Pb, and Cu due to CuKα rays
The line microanalyzer photograph shows that Sn and Pb have not completely diffused and alloyed into the Cu particles. Subsequently, the segregation and separation phenomena of the partially alloyed copper powder obtained in Example 2 were observed using the same method as in Example 1. As a result, no abnormalities due to segregation or separation were observed in the appearance of both the green compact and the sintered compact. The sintered body had a good appearance. Also, the apparent density of this partially alloyed copper powder,
The fluidity and anti-deposition strength were measured in the same manner as in Example 1, and the results are shown in Table 1. Comparative Example 1 0.3 kg of tin powder and 0.3 kg of lead powder, which are low melting point metal powders of 200 μm or less, were added to 5.4 kg of electrolytic copper powder of 200 μm or less and mixed for 15 minutes with a mixer. As a result of observing the segregation and separation phenomena of this mixed powder using the same method as in Example 1, a gray striped pattern distribution due to tin powder and lead powder was observed on the compact. When this was sintered, bronze-colored (yellow) and copper-colored (red) striped patterns were observed, clearly indicating segregation. Table 1 shows the apparent density, fluidity, and anti-deposition strength of this mixed powder. Comparative Example 2 5.4 kg of electrolytic copper powder of 200 μm or less and Sn-Pb alloy powder (Sn-50Pb), which is a low melting point alloy powder of 200 μm or less
0.6Kg was added and mixed for 15 minutes using a mixer. As a result of observing the segregation and separation phenomena of this mixed powder using the same method as in Example 1, a gray striped pattern distribution due to the Sn--Pb alloy powder was observed in the compact. When this was sintered, bronze-colored (yellow) and copper-colored (red) striped patterns were observed, clearly indicating segregation. Table 1 shows the apparent density, fluidity, and anti-deposition strength of this mixed powder. Comparative Example 3 As a result of observing the segregation and separation phenomena of 6.0 kg of irregularly shaped atomized powder with a composition of Cu-10Sn-1Pb of 200 μm or less using the same method as in Example 1, the green compact had a bronze-colored (yellow) appearance. No segregation or patterns were observed, and even after sintering, the material was bronze (yellow) with no striped patterns or discoloration. Table 1 shows the apparent density, fluidity and anti-deposition strength of this powder. Comparative Example 4 0.3 kg of tin powder and 0.3 kg of lead powder, which are low melting point metal powders of 200 μm or less, were added to 5.4 kg of electrolytic copper powder of 200 μm or less and mixed for 15 minutes using a mixer. This mixed powder was placed in a stainless steel boat and heated in an electric furnace in a reducing atmosphere (75% hydrogen + nitrogen mixed gas).
Heat treatment was performed at 500°C for 30 minutes, and the resulting cake was crushed to produce partially alloyed copper powder containing 5% Sn and 5% Pb with less than 100 meshes. Table 1 shows the apparent density, fluidity and anti-deposition strength of this powder. In addition, as a result of observing segregation and separation phenomena using the same method as in Example 1, it was found that, compared to the product manufactured using the Sn-Pb alloy powder in Example 1, both the green compact and the sintered compact showed segregation and separation in the appearance. There were many abnormalities due to separation.
〔発明の効果〕〔Effect of the invention〕
以上のように、本発明は複数種の原料粉相互間
に比重差や粒度差がある場合においてもこの製造
方法により得られた部分合金化銅粉は次の工程に
移動したり、輸送する時の振動、ホツパーに装入
した時の流れや落下差による偏析、分離現象の発
生はきわめて少なく、その取り扱いに際して偏
析、分離現象防止のため手段を施す必要がなく、
また従来の混合粉に比べて極めて良好で、欠陥の
ない焼結体の製造が可能となり、成形性において
もアトマイズ粉で得られる合金粉に比べ良好で産
業上すぐれた効果がもたらされるものである。
As described above, even when there is a difference in specific gravity or particle size between multiple types of raw material powder, the partially alloyed copper powder obtained by this manufacturing method can be transferred to the next process or transported. The occurrence of segregation and separation phenomena due to vibration, flow and drop difference when charged into the hopper is extremely low, and there is no need to take measures to prevent segregation and separation phenomena when handling.
In addition, it is extremely superior to conventional mixed powders, making it possible to produce defect-free sintered bodies, and its formability is also better than that of alloy powders obtained from atomized powders, resulting in excellent industrial effects. .
【図面の簡単な説明】[Brief explanation of drawings]
第1図は本実施例2の部分合金化銅粉粒子の構
造を示し、反射電子像のX線マイクロアナライザ
ー写真である。第2図はSn像、第3図はPb像、
第4図はCu像で、Sn、Pb、Cuの分布を示すX線
マイクロアナライザー写真である。
FIG. 1 shows the structure of partially alloyed copper powder particles of Example 2, and is an X-ray microanalyzer photograph of a backscattered electron image. Figure 2 is a Sn image, Figure 3 is a Pb image,
Figure 4 is a Cu image, which is an X-ray microanalyzer photograph showing the distribution of Sn, Pb, and Cu.