JPH0140082B2 - - Google Patents

Info

Publication number
JPH0140082B2
JPH0140082B2 JP56138593A JP13859381A JPH0140082B2 JP H0140082 B2 JPH0140082 B2 JP H0140082B2 JP 56138593 A JP56138593 A JP 56138593A JP 13859381 A JP13859381 A JP 13859381A JP H0140082 B2 JPH0140082 B2 JP H0140082B2
Authority
JP
Japan
Prior art keywords
copper
boron
sintering
iron
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56138593A
Other languages
Japanese (ja)
Other versions
JPS5842702A (en
Inventor
Tadao Hayasaka
Kunihiko Masubuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP56138593A priority Critical patent/JPS5842702A/en
Publication of JPS5842702A publication Critical patent/JPS5842702A/en
Publication of JPH0140082B2 publication Critical patent/JPH0140082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は、粉末冶金におけるシンターブレー
ジング法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement in the sinter brazing process in powder metallurgy.

粉末冶金法によつて機械部品を作る際に、その
形状が金型での一体成形は不可能なものが往々に
してある。このような場合、その部品をある部分
から切り離して2個以上の部材片に分割して成形
し、焼結前にそれらを密着させて焼結を行なつて
あたかも1個の成形品の如くにする方法があり、
シンターブレージング法(Sinter brazing)の名
で知られている。(日刊工業新聞社刊「金属粉の
成形」参照) この方法を図解して説明すると、第1図に示す
Vプーリーの場合は、V溝に当たる凹部は成形す
ることができない。しかしこの場合でも、第2図
に示す如くボス部を具える圧粉体1と孔部を具え
る圧粉体2とに分割して成形し、グリーンの状態
で組合わせて焼結することによつてVプーリーの
完成品が得られる。これがシンターブレージング
の基本的な考え方である。
When making mechanical parts using powder metallurgy, the shape of the parts often makes it impossible to integrally mold them with a mold. In such cases, the part is cut off from a certain part, divided into two or more pieces, molded, and then sintered by bringing them into close contact with each other before sintering, so that they appear as if they were a single molded product. There is a way to
This method is known as sinter brazing. (Refer to "Forming of Metal Powder" published by Nikkan Kogyo Shimbun) To illustrate and explain this method, in the case of the V pulley shown in FIG. 1, the concave portion corresponding to the V groove cannot be formed. However, even in this case, as shown in Fig. 2, the compact 1 having the boss portion and the compact 2 having the hole are formed separately, and then combined in a green state and sintered. Thus, a completed V-pulley product is obtained. This is the basic idea of sinter brazing.

ただし、この方法を適用する際には焼結に伴う
各部材の寸法変化を考慮することが必要で、上記
Vプーリーの場合、もしも孔部を具える部材2の
膨張率の方が大きいと、ボスを具える部材1との
接合が不可能または不十分になるおそれがある。
However, when applying this method, it is necessary to consider the dimensional changes of each member due to sintering, and in the case of the above V pulley, if the expansion coefficient of the member 2 with the hole is larger, There is a possibility that joining with the member 1 including the boss may become impossible or insufficient.

そこで両部材の適切な材質選択が重要であり、
特公昭45−11606号の発明ではボスのある側に鉄
粉と銅粉の混合粉(焼結時に膨張)を、孔のある
側に鉄粉とニツケル粉の混合物(焼結時に収縮)
を用い、両部材の圧接ならびにそれによる拡散接
合の促進によつて目的を達している。
Therefore, it is important to select appropriate materials for both parts.
The invention disclosed in Japanese Patent Publication No. 45-11606 uses a mixture of iron powder and copper powder (expands during sintering) on the side with the boss, and a mixture of iron powder and nickel powder (shrinks during sintering) on the side with the hole.
The purpose is achieved by pressing the two members together and thereby promoting diffusion bonding.

また別の方法としては、圧粉体または焼結体を
組み合わせた状態で基材より低融点の金属、一般
には銅を溶浸させて接合する方法もある。しかし
これらの方法には材質面の制約とか、接合作用が
単一で必ずしも十分な強度が得られないなど種々
の問題があつた。
Another method is to join the green compacts or sintered compacts by infiltrating them with a metal having a lower melting point than the base material, generally copper. However, these methods have various problems, such as limitations in terms of material quality and the fact that sufficient strength cannot always be obtained with a single bonding action.

本件発明者はさきに、鉄−銅系焼結材における
焼結時の「銅膨張」がホウ素によつて抑制される
ことを見出し、この知見に基づく「鉄銅系高密度
焼結合金の製造法」を特願昭54−96389号(特開
昭56−20142号参照)に開示した。
The inventor of the present invention previously discovered that "copper expansion" during sintering in iron-copper-based sintered materials was suppressed by boron, and based on this knowledge, "Manufacturing of iron-copper-based high-density sintered alloys" The method was disclosed in Japanese Patent Application No. 54-96389 (see Japanese Patent Application Laid-open No. 56-20142).

本件発明はこの先発明の技術の応用に係るもの
なので、先ず順序として、銅膨張とホウ素による
その抑制現象について略述する。第3図、第4図
はそれぞれ上記先願の第1図、第2図を、同じく
第5図、第6図はそれぞれ先願の第5図、第6図
を引用したもので、第3図からは、鉄銅系の焼結
合金はその焼結時に銅量8%前後をピークとして
著しく膨張することが解る。これが「銅膨張」と
呼ばれる現象である。これに対して、予め圧粉体
にホウ素を添加しておけば膨張が抑制され、逆に
収縮することも同図に示されている。
Since the present invention relates to the application of the technology of the previous invention, first, copper expansion and its suppression phenomenon by boron will be briefly described. Figures 3 and 4 are taken from Figures 1 and 2 of the earlier application, respectively, and Figures 5 and 6 are taken from Figures 5 and 6 of the earlier application, respectively. From the figure, it can be seen that the iron-copper-based sintered alloy expands significantly during sintering, with a peak of around 8% copper content. This is a phenomenon called "copper expansion." On the other hand, the figure also shows that if boron is added to the powder compact in advance, the expansion will be suppressed, and conversely, the compact will shrink.

次の第4図は銅膨張現象の抑制に必要なホウ素
含有量の下限値を求めるために、膨張率の大きい
8%銅についてホウ素含有量と焼結による寸法変
化率との関係を示したものであるが、この結果に
よれば、銅膨張の抑制に有効なホウ素の下限値は
0.03%であり、それ以下の微量の添加では有意差
は認められない。第5図は銅の含有率と部材の密
度比との関係を示したもので、ホウ素を無添加の
場合は、比重の大きな銅の割合が増加しても或る
範囲(約40%)までは密度比は逆に低下するのに
対して、ホウ素を添加した場合は銅の増加につれ
て密度比がほぼ一様に高くなり、その作用が鉄銅
系における銅の含有率:0<Cu≦50%の全範囲
に亙つて有効なことを示している。また、第6図
はホウ素の添加量と焼結材の機械的性質との関係
を示したもので、前掲第4図から推定されるよう
に、ホウ素の上限値は銅膨張の抑制作用について
はとくに考慮しなくてもよいが、焼結材の機械的
性質とくに引つ張り強さを重視する場合は0.9%
以内がよいことを示している。なお本明細書中の
%は重量%であり、また第3図〜第6図の各試料
は、アンモニア分解ガスを雰囲気とする焼結炉に
おいて温度1130℃で30分間焼結したものである。
The following Figure 4 shows the relationship between the boron content and the dimensional change rate due to sintering for 8% copper, which has a large expansion coefficient, in order to find the lower limit of the boron content necessary to suppress the copper expansion phenomenon. However, according to these results, the lower limit of boron effective in suppressing copper expansion is
The amount is 0.03%, and no significant difference is observed when adding a trace amount below that amount. Figure 5 shows the relationship between the copper content and the density ratio of the material.If boron is not added, even if the proportion of copper, which has a large specific gravity, increases, it will remain within a certain range (approximately 40%). On the contrary, the density ratio decreases, whereas when boron is added, the density ratio increases almost uniformly as copper increases, and this effect is due to the copper content in iron-copper systems: 0<Cu≦50 It shows that it is valid over the entire range of %. In addition, Figure 6 shows the relationship between the amount of boron added and the mechanical properties of the sintered material.As estimated from Figure 4 above, the upper limit of boron has an effect on suppressing copper expansion. There is no need to take this into account, but if the mechanical properties of the sintered material, especially the tensile strength, are important, then 0.9%
This indicates that it is better to be within the range. Note that % in this specification is % by weight, and each sample shown in FIGS. 3 to 6 was sintered at a temperature of 1130° C. for 30 minutes in a sintering furnace with an atmosphere of ammonia decomposition gas.

ところで、以上は鉄−銅−ホウ素の混合圧粉体
を焼結する際に認められる現象であるが、その後
の研究の結果、上述の現象は、ホウ素を含有する
鉄系圧粉体に銅を溶浸しながら焼結する場合にも
同様に生じることが判明した。
By the way, the above phenomenon is observed when sintering an iron-copper-boron mixed green compact, but as a result of subsequent research, the above phenomenon was observed when copper was added to an iron-based green compact containing boron. It has been found that the same phenomenon occurs when sintering is performed while infiltrating.

この発明は上述の新たな知見を複合焼結部品の
製造に応用したものであつて、接合しようとする
二つの圧粉体の内、ボスを具える方は鉄を主成分
としホウ素は含有しないか、多くとも0.03%未満
の組成とし、一方孔部を具える方は鉄を主成分と
し0.03%以上のホウ素を含有する組成とし、両者
を組み合わせた状態で銅溶浸と焼結を同時に施す
ことをその骨子としている。
This invention applies the above-mentioned new knowledge to the production of composite sintered parts. Of the two compacts to be joined, the one with the boss is mainly composed of iron and does not contain boron. or at most less than 0.03%, while the one with holes has a composition mainly composed of iron and contains 0.03% or more of boron, and copper infiltration and sintering are performed simultaneously in a combination of both. This is the main point.

この発明の構成によれば、銅溶浸によつて前者
の圧粉体は鉄−銅系となつて焼結により膨張し、
一方後者は鉄−銅−ホウ素系となつて焼結により
相対的に収縮し、両者の接合面が密着した状態で
焼結が進行することに加えて、銅溶浸による接合
作用との相乗効果によつて強固に一体化した複合
焼結部品を得ることができる。なお第4図につい
て前述したように、0.03%未満の微量であればホ
ウ素がボス側の圧粉体に存在しても、ボス部の銅
膨張を抑制する作用はなく、従つてボスが収縮し
て接合不良を起こすことはない。
According to the structure of this invention, the former green compact becomes iron-copper based due to copper infiltration and expands due to sintering.
On the other hand, the latter becomes an iron-copper-boron system and shrinks relatively due to sintering, and in addition to sintering proceeding with the bonding surfaces of the two in close contact, there is a synergistic effect with the bonding effect of copper infiltration. By this method, a strongly integrated composite sintered part can be obtained. As mentioned above with reference to Fig. 4, even if boron is present in the green compact on the boss side in a trace amount of less than 0.03%, it will not have the effect of suppressing copper expansion in the boss portion, and therefore the boss will shrink. This will not cause poor bonding.

実施例 粒度100メツシユ以下のアトマイズ鉄粉に粒度
200メツシユ以下の黒鉛粉を重量比で0.7%配合し
た混合粉で直径20mm、長さ40mmの円柱状圧粉体
を、また、上記混合粉に0.3%相当量のホウ素を
フエロボロン粉の形で添加した混合粉で内径20
mm、外径50mm、長さ30mmの円筒状圧粉体を、それ
ぞれ圧粉密度7.1g/cm3に成形し、両者を嵌め合
わせてCu−2.5%Coの組成の溶浸材をセツトし、
分解アンモニアガス中温度1120℃で20分間焼結し
た。溶浸された銅の量は9.2%である。
Example Particle size of atomized iron powder with particle size of 100 mesh or less
A cylindrical green compact with a diameter of 20 mm and a length of 40 mm is made of a mixed powder containing 0.7% by weight of graphite powder of 200 mesh or less, and an amount of boron equivalent to 0.3% is added to the above mixed powder in the form of ferroboron powder. Inner diameter 20 with mixed powder
A cylindrical compact with a diameter of 50 mm, an outer diameter of 50 mm, and a length of 30 mm is formed into a powder density of 7.1 g/cm 3 , and the two are fitted together to set an infiltration material having a composition of Cu-2.5% Co.
Sintering was carried out in decomposed ammonia gas at a temperature of 1120°C for 20 minutes. The amount of infiltrated copper is 9.2%.

かくして得られた複合焼結体にアムスラー材料
試験機を用いて押し出し試験を行なつたところ、
荷重60.3tonで接合面以外の個所から破断する結
果が得られ、両部材が確実に一体化していること
が確認された。これに対して円柱状圧粉体、円筒
状圧粉体の両者ともにホウ素を添加せず、他の条
件は上記と同一にした比較例の場合には37.7ton
の荷重で抜けてしまい、この発明とは明らかな差
が認められた。
When the thus obtained composite sintered body was subjected to an extrusion test using an Amsler material testing machine, it was found that
At a load of 60.3 tons, the fracture occurred at a location other than the joint surface, confirming that both components were reliably integrated. On the other hand, in the case of a comparative example in which boron was not added to both the cylindrical green compact and the cylindrical green compact, and the other conditions were the same as above, the amount was 37.7 tons.
It came off at a load of

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は一体成形できない形状の
焼結部品のシンターブレージングによる製造法を
説明する図面、第3図は鉄銅系の焼結材における
銅含有率と寸法変化率との関係に対するホウ素の
影響を示すグラフ、第4図はホウ素の含有量と寸
法変化率との関係を示すグラフ、第5図は焼結材
の密度比と銅含有率との関係を示すグラフ、第6
図は焼結材の機械的性質とホウ素添加量との関係
を示すグラフである。
Figures 1 and 2 are drawings explaining the method of manufacturing sintered parts with shapes that cannot be integrally formed by sinter brazing, and Figure 3 shows the relationship between copper content and dimensional change rate in iron-copper-based sintered materials. Graph showing the influence of boron, Figure 4 is a graph showing the relationship between boron content and dimensional change rate, Figure 5 is a graph showing the relationship between density ratio of sintered material and copper content, Figure 6 is a graph showing the relationship between the density ratio of sintered material and copper content.
The figure is a graph showing the relationship between the mechanical properties of the sintered material and the amount of boron added.

Claims (1)

【特許請求の範囲】[Claims] 1 ボス部を具える鉄系の圧粉体と、このボスと
嵌合する孔部を具える鉄系の圧粉体とを組み合わ
せて焼結するにあたり、ボス部を具える圧粉体に
はホウ素を添加しないかまたは多くとも0.03%未
満に止め、孔部を具える圧粉体には重量比にて
0.03%以上のホウ素を添加し、両者を組み合わせ
た状態で銅溶浸と焼結を同時に施すことを特徴と
する複合焼結部品の製造法。
1. When sintering a combination of an iron-based powder compact with a boss and a steel-based powder compact with a hole that fits into the boss, the green compact with a boss should be Boron is not added or is limited to less than 0.03% at most, and boron is added to powder compacts with holes by weight.
A manufacturing method for composite sintered parts, characterized by adding 0.03% or more of boron and performing copper infiltration and sintering at the same time in a combination of both.
JP56138593A 1981-09-04 1981-09-04 Production of composite sintered parts Granted JPS5842702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56138593A JPS5842702A (en) 1981-09-04 1981-09-04 Production of composite sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56138593A JPS5842702A (en) 1981-09-04 1981-09-04 Production of composite sintered parts

Publications (2)

Publication Number Publication Date
JPS5842702A JPS5842702A (en) 1983-03-12
JPH0140082B2 true JPH0140082B2 (en) 1989-08-25

Family

ID=15225716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56138593A Granted JPS5842702A (en) 1981-09-04 1981-09-04 Production of composite sintered parts

Country Status (1)

Country Link
JP (1) JPS5842702A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169350A (en) * 1984-09-10 1986-04-09 Hitachi Ltd Commutator type rotary electric machine
JPS63134603A (en) * 1986-11-25 1988-06-07 Kato Hatsujo Kaisha Ltd Production of pulley
JP2521778B2 (en) * 1987-11-24 1996-08-07 日立粉末冶金株式会社 Method for manufacturing infiltration-bonded sintered machine parts
CA2927484A1 (en) * 2015-05-19 2016-11-19 Spx Flow, Inc. A multi-part, manifold and method of making the manifold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501330A (en) * 1973-05-11 1975-01-08
JPS5620142A (en) * 1979-07-28 1981-02-25 Hitachi Powdered Metals Co Ltd Manufacture of high density sintered iron-copper alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501330A (en) * 1973-05-11 1975-01-08
JPS5620142A (en) * 1979-07-28 1981-02-25 Hitachi Powdered Metals Co Ltd Manufacture of high density sintered iron-copper alloy

Also Published As

Publication number Publication date
JPS5842702A (en) 1983-03-12

Similar Documents

Publication Publication Date Title
US4029476A (en) Brazing alloy compositions
JPS5813603B2 (en) Joining method of shaft member and its mating member
KR870006225A (en) Process for producing copper-nickel-tin spinodal alloy products
US4412643A (en) Method for bonding of a porous body and a fusion-made body
KR900007785B1 (en) Tin coating ferrous composite powder and method of producing same
US4456577A (en) Methods for producing composite rotary dresser
US3795511A (en) Method of combining iron-base sintered alloys and copper-base sintered alloys
JPH0140082B2 (en)
WO2000027571A1 (en) Sintering of metal powder mixture
DE2340018C2 (en) Method for connecting sintered permanent magnets made of rare earth cobalt compounds
US4824734A (en) Tin-containing iron base powder and process for making
US5925836A (en) Soft magnetic metal components manufactured by powder metallurgy and infiltration
US2196875A (en) Bronze bearing and method of manufacture
JPH0215875A (en) Joining method for iron compound sintered parts by brazing
US3335001A (en) Production of composite metallic billets by powder metallurgy
JPS6021306A (en) Manufacture of composite reinforced member
JPH01165702A (en) Manufacture of alloy steel sintered compact having high density and high strength
JP2733684B2 (en) Joined sintered friction material
US4603028A (en) Method of manufacturing sintered components
US3552955A (en) Method of making tools from metal particles
JP3694968B2 (en) Mixed powder for powder metallurgy
JPS59209473A (en) Production of bonding member for sintered hard alloy and sintered steel
JPH066721B2 (en) Method for producing self-lubricating sintered copper alloy
JP3954214B2 (en) Manufacturing method of composite sintered machine parts
JPS63154291A (en) Brazing filler metal for sintered parts