JPH0443544A - Semiconductor ceramic composite for secondary electron multiplying device - Google Patents

Semiconductor ceramic composite for secondary electron multiplying device

Info

Publication number
JPH0443544A
JPH0443544A JP2148160A JP14816090A JPH0443544A JP H0443544 A JPH0443544 A JP H0443544A JP 2148160 A JP2148160 A JP 2148160A JP 14816090 A JP14816090 A JP 14816090A JP H0443544 A JPH0443544 A JP H0443544A
Authority
JP
Japan
Prior art keywords
secondary electron
semiconductor ceramic
oxide
zinc oxide
copper oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2148160A
Other languages
Japanese (ja)
Other versions
JP2623920B2 (en
Inventor
Hiroshi Yamamoto
宏 山本
Shuji Watabe
修司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP14816090A priority Critical patent/JP2623920B2/en
Publication of JPH0443544A publication Critical patent/JPH0443544A/en
Application granted granted Critical
Publication of JP2623920B2 publication Critical patent/JP2623920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE:To obtain stable operation in ultra-high vacuum environment by subjecting a semiconductor ceramic having a suitable composition ratio of zinc oxide-titanium oxide-copper oxide to a baking process. CONSTITUTION:Zinc oxide, oxide copper and titanium oxide are prepared, and so blended as to obtain a semiconductor ceramic having a suitable composition ratio thereof. Then, the aforesaid materials are wet grindered and mixed, and further subjected to processes of dehydration, drying, pulverization and grading. A product so molded is baked in natural atmosphere, using an electric furnace, and a cylindrical semiconductor ceramic sample is thereby obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、2次電子増倍装置に用いられる半導体磁器
組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semiconductor ceramic composition used in a secondary electron multiplier.

(従来の技術) 半導体磁器からなる2次電子増倍装置としては、たとえ
ば、特公昭48−18026号公報、特公昭48−18
029号公報、特公昭48−18030号公報に記載さ
れているように、チタン酸亜鉛系半導体磁器からなるも
のが知られている。
(Prior Art) As a secondary electron multiplier made of semiconductor ceramics, for example, Japanese Patent Publication No. 18026/1983 and Japanese Patent Publication No. 48-18
As described in Japanese Patent Publication No. 029 and Japanese Patent Publication No. 48-18030, ceramics made of zinc titanate-based semiconductor ceramics are known.

このうち、特公昭48−18026号公報のものは、必
要個所に電極を設けた筒よりなるものである。また、特
公昭48−18029号公報のものは、両端に電極を設
けた板状体に、画電極に垂直に複数個の孔を設けたもの
である。さらに、特公昭48−18030号公報のもの
は、同一長の筒を複数個束ねたものである。
Among these, the one disclosed in Japanese Patent Publication No. 48-18026 consists of a cylinder with electrodes provided at necessary locations. Furthermore, the device disclosed in Japanese Patent Publication No. 48-18029 is a plate-shaped body provided with electrodes at both ends, and a plurality of holes are provided perpendicularly to the picture electrodes. Furthermore, the one disclosed in Japanese Patent Publication No. 48-18030 is one in which a plurality of tubes of the same length are bundled together.

これらの2次電子増倍装置を構成するチタン酸亜鉛系半
導体磁器の具体的な組成としては、Zn072.5モル
、T i 0227.5モルのもの、およびZn072
.5モル、T10227.5モル、A1.0.1.25
モルからなるものが示されている。そして、これら2種
類の半導体磁器では、8X10’Ω・cm、2.8X1
0’Ω”cmの抵抗率のものが得られるとしている。
Specific compositions of the zinc titanate semiconductor ceramics constituting these secondary electron multipliers include Zn072.5 mol, Ti0227.5 mol, and Zn072.
.. 5 moles, T10227.5 moles, A1.0.1.25
Consisting of moles is shown. In these two types of semiconductor porcelain, 8X10'Ω・cm, 2.8X1
It is said that a resistivity of 0'Ω"cm can be obtained.

(解決しようとする問題点) 2次電子増倍装置は、真空装置系に設置され、各種の荷
電粒子を検出する前に、この増倍装置に付着している不
要な物質を除去するために、真空中でベーキング処理が
行われる。この処理は通常、100〜350℃、数時間
から24時間程度かけて行われる。このとき”、特に、
300℃以上で処理すると、上記した従来のチタン酸亜
鉛系半導体磁器では、抵抗値が初期の値に対して1/1
00〜1/1000低下するという現象がみられた。
(Problem to be solved) A secondary electron multiplier is installed in a vacuum system, and before detecting various charged particles, it is used to remove unnecessary substances attached to the multiplier. , a baking process is performed in a vacuum. This treatment is usually carried out at 100 to 350°C for several hours to about 24 hours. At this time, especially
When treated at 300°C or higher, the resistance value of the above-mentioned conventional zinc titanate-based semiconductor porcelain decreases to 1/1 of the initial value.
A phenomenon of a decrease of 0.00 to 1/1000 was observed.

このため、このような増倍装置には高い電圧を印加する
ことができず、利用範囲が狭められていたという問題が
あった。
For this reason, there was a problem in that a high voltage could not be applied to such a multiplier, and its range of use was narrowed.

(問題点を解決する手段) したがって、この発明は、真空中でのベーキング処理を
行っても、抵抗値の変化、増倍利得の変化の少ない2次
電子増倍装置を提供することを目的とする。
(Means for Solving the Problems) Therefore, an object of the present invention is to provide a secondary electron multiplier that exhibits little change in resistance value and multiplication gain even when subjected to baking treatment in vacuum. do.

すなわち、この発明は、酸化亜鉛−酸化銅系半導体磁器
からなることを特徴とする2次電子増倍装置用半導体磁
器組成物である。
That is, the present invention is a semiconductor ceramic composition for a secondary electron multiplier, characterized by being made of zinc oxide-copper oxide semiconductor ceramic.

また、この発明は、酸化亜鉛−酸化チタン−酸化銅系半
導体磁器からなることを特徴とする2次電子増倍装置用
半導体磁器組成物である。
The present invention also provides a semiconductor ceramic composition for a secondary electron multiplier, characterized by comprising a zinc oxide-titanium oxide-copper oxide semiconductor ceramic.

ここで、酸化亜鉛−酸化銅系半導体磁器の具体的組成と
しては、酸化亜鉛を主成分として、これに酸化銅を0.
 2モル%以上から50モル%以下の範囲で添加したも
のからなる。
Here, the specific composition of the zinc oxide-copper oxide semiconductor porcelain is zinc oxide as the main component, and 0.00% copper oxide added thereto.
It consists of a substance added in a range of 2 mol% or more and 50 mol% or less.

また、酸化亜鉛−酸化チタン−酸化銅系半導体磁器の具
体的組成としては、酸化亜鉛か65モル%以上から80
モル%以下、酸化チタンが20モル%以上から35モル
%以下からなるものを主成分とし、これに酸化銅を0.
2モル%以上から50モル%以下の範囲で添加したもの
からなる。
In addition, the specific composition of the zinc oxide-titanium oxide-copper oxide semiconductor porcelain ranges from 65 mol% or more to 80 mol% zinc oxide.
The main component is titanium oxide of 20 mol% or more and 35 mol% or less of titanium oxide, and 0.0 mol% of copper oxide.
It consists of a substance added in a range of 2 mol% or more and 50 mol% or less.

上記した組成範囲に限定した理由は、酸化亜鉛−酸化銅
系半導体磁器の2成分系において、また、酸化亜鉛−酸
化チタン−酸化銅系半導体磁器の3成分系においても、
いずれもベーキング処理した後、抵抗率の変化が小さく
、超高真空での動作が安定するからである。
The reason for limiting the composition to the above-mentioned range is that in the two-component system of zinc oxide-copper oxide semiconductor porcelain, and also in the three-component system of zinc oxide-titanium oxide-copper oxide semiconductor porcelain,
This is because after baking, the change in resistivity is small and operation in ultra-high vacuum is stable.

(発明の効果) この発明にかかる2次電子増倍装置用半導体磁器組成物
によれば、ベーキング処理後の抵抗率の変化が小さく、
ベーキング処理後においても実用レベルの利得が十分に
得られ、超高真空での動作も安定するという効果が得ら
れる。
(Effects of the Invention) According to the semiconductor ceramic composition for a secondary electron multiplier according to the present invention, the change in resistivity after baking treatment is small;
Even after the baking process, a sufficient gain for practical use can be obtained, and operation in an ultra-high vacuum is also stable.

(実施例) 使用原料として、酸化亜鉛、酸化銅、および酸化チタン
を準備し、これらを第1表に示す組成比率の半導体磁器
が得られるように配合した。配合原料をポリエチレン内
貼りポットミルにめのう玉石、純水とともに入れて、2
0時時間式粉砕、混合した。こののち、脱水、乾燥して
50〜200メツシユに粉砕、整粒した。
(Example) Zinc oxide, copper oxide, and titanium oxide were prepared as raw materials to be used, and these were blended so as to obtain semiconductor porcelain having the composition ratio shown in Table 1. Put the blended raw materials into a polyethylene-lined pot mill along with agate boulders and pure water, and
At 0 o'clock, the mixture was ground and mixed. Thereafter, it was dehydrated, dried, and pulverized into 50 to 200 meshes.

得られた粉末に小麦粉糊とパラフィンからなるバインダ
ーを加えて可塑物とした後、これを押出成形法によって
、管状に成形した。この成形物をアルミナ匣に共生地原
料を敷いた上に並べて、電気炉により第1表に示した温
度にて自然雰囲気中で約1時間焼成し、外径2.0mm
、内径1. 0mm、長さ50.Ommの筒状の半導体
導体磁器試料を得た。
A binder consisting of wheat flour paste and paraffin was added to the obtained powder to make a plastic material, which was then molded into a tube shape by extrusion molding. This molded product was placed on an alumina box spread with the material for the symbiotic material, and fired in an electric furnace at the temperature shown in Table 1 in a natural atmosphere for about 1 hour, resulting in an outer diameter of 2.0 mm.
, inner diameter 1. 0mm, length 50. A cylindrical semiconductor conductor ceramic sample of 0 mm was obtained.

得られた試料について、室温で30V/mmの電圧を印
加して常温での比抵抗を測定し、その結果を第1表に示
した。
Regarding the obtained samples, a voltage of 30 V/mm was applied at room temperature to measure the specific resistance at room temperature, and the results are shown in Table 1.

また、増倍利得については、第1図に示す実験回路にて
測定した。
Further, the multiplication gain was measured using the experimental circuit shown in FIG.

第1図において、1は筒状の半導体磁器、2.3は筒の
両端に形成された電極、4は電極2.3に接続された直
流電源、5はフィラメント、6はフィラメント電源、7
は電子加速用電源、8はコレクタ、9はコレクタ電源、
loは電子計数器である。以上の回路において、点線で
囲んだように、電源4.6.7.9、電子計数器1oを
除き、すべて真空中に設置し、真空度を1.0X10−
’T。
In Figure 1, 1 is a cylindrical semiconductor porcelain, 2.3 is an electrode formed at both ends of the cylinder, 4 is a DC power supply connected to the electrode 2.3, 5 is a filament, 6 is a filament power supply, 7
is a power supply for electron acceleration, 8 is a collector, 9 is a collector power supply,
lo is an electronic counter. In the above circuit, all except the power supply 4.6.7.9 and the electronic counter 1o are installed in a vacuum, and the degree of vacuum is 1.0X10-
'T.

rrとした。次いで、直流電源を4kV、電子加速用電
源7を200Vとし、フィラメント5より放出させた電
子を筒状半導体磁器1の入射口がら導入して、筒内の壁
面に衝突させて増倍し、増倍電子をコレクタ8で受けて
、パルス数を電子計数器10で計数して、2次電子増倍
利得を測定した。
It was set as rr. Next, by setting the DC power source to 4 kV and the electron acceleration power source 7 to 200 V, the electrons emitted from the filament 5 are introduced through the entrance of the cylindrical semiconductor porcelain 1, collide with the wall surface of the cylinder, and are multiplied. The collector 8 received the double electrons, and the number of pulses was counted by the electronic counter 10 to measure the secondary electron multiplication gain.

その結果を第1表に示した。The results are shown in Table 1.

次いで、1 、 6 X 10−’Torrの真空度で
、4゜0℃、4時間の条件でベーキング処理を行い、各
試料について、比抵抗、および2次電子増倍利得を上記
と同じ条件で測定した。その結果も第1表に併せて示し
た。
Next, baking was performed at 4°0°C for 4 hours in a vacuum of 1,6 x 10-' Torr, and the resistivity and secondary electron multiplication gain of each sample were determined under the same conditions as above. It was measured. The results are also shown in Table 1.

第1表の結果から明らかなように、この発明にかかる2
次電子増倍装置用半導体磁器組成物によれば、ベーキン
グ処理の前後で比抵抗、増倍利得に大きな変化が見られ
ず、実用上問題のない特性が得られるものである。
As is clear from the results in Table 1, 2
According to the semiconductor ceramic composition for a secondary electron multiplier, there is no significant change in specific resistance or multiplication gain before and after baking treatment, and characteristics that are satisfactory in practice can be obtained.

(以下、余白) なお、原料として、上記実施例では酸化物を用いたが、
焼成により酸化物となるものであれば、炭酸塩、塩化物
、硝酸塩などを用いてもよい。また、焼成後の半導体磁
器に熱処理により酸化銅となる溶液を含浸させ、その後
熱処理してもよい。
(Hereinafter, blank space) In addition, although oxides were used as raw materials in the above examples,
Carbonates, chlorides, nitrates, etc. may be used as long as they become oxides upon firing. Alternatively, the fired semiconductor porcelain may be impregnated with a solution that becomes copper oxide through heat treatment, and then heat treated.

また、構造としては、第1図に示したように、筒状で直
線状としたものの他に、第2図〜第8図に示したような
構造としてもよい。
In addition to the cylindrical and linear structure shown in FIG. 1, the structure may be as shown in FIGS. 2 to 8.

つまり、第2図において、20は酸化亜鉛−酸化銅系半
導体磁器または酸化亜鉛−酸化チタン−酸化銅系半導体
磁器よりなる平板で、2枚の平板20を平行状に配置し
て連続通路を23を形成したものである。平板20の外
面は絶縁されていてもよいが、内面は全部又は部分的に
平板20の一端から他端にかけて露出している。また、
平板20の両端には電極21.22が形成されている。
That is, in FIG. 2, 20 is a flat plate made of zinc oxide-copper oxide semiconductor porcelain or zinc oxide-titanium oxide-copper oxide semiconductor porcelain, and two flat plates 20 are arranged in parallel to form a continuous path 23. was formed. Although the outer surface of the flat plate 20 may be insulated, the inner surface is exposed in whole or in part from one end of the flat plate 20 to the other. Also,
Electrodes 21 and 22 are formed at both ends of the flat plate 20.

なお、この他、電極は平板の両端のみならず、必要によ
り平板20の途中の所要個所に複数形成すれば、さらに
増倍能率を向上させることができる。
In addition, if a plurality of electrodes are formed not only at both ends of the flat plate but also at required locations in the middle of the flat plate 20 if necessary, the multiplication efficiency can be further improved.

第3図は、単位筒30を複数本束ねたもので、両端には
電極31.32が形成されている。筒30は全体が2次
電子増倍能を有する半導体磁器で構成されているため、
筒30の内面および外面とも2次電子増倍能を有してお
り、筒30の連続通路33の内面のみならず、相隣接す
る筒30の間に生ずる間隙34も2次電子増倍面として
利用することができる。
FIG. 3 shows a bundle of a plurality of unit tubes 30, with electrodes 31 and 32 formed at both ends. Since the cylinder 30 is entirely composed of semiconductor porcelain having secondary electron multiplication ability,
Both the inner and outer surfaces of the tube 30 have a secondary electron multiplication ability, and not only the inner surface of the continuous passage 33 of the tube 30 but also the gap 34 formed between adjacent tubes 30 serves as a secondary electron multiplication surface. can be used.

第4図は、断面三角形の筒40をピラミッド形に複数個
束ねたもので、両端に電極41.42を形成したもので
ある。この構造によれば、第3図のものと同様に、筒4
0の連続通路43の内面のみならず、相隣接する複数個
の筒40の間に生じる間隙44もまた2次電子増倍面と
して利用できる。
FIG. 4 shows a plurality of tubes 40 having a triangular cross section bundled together in a pyramid shape, with electrodes 41 and 42 formed at both ends. According to this structure, like the one in FIG.
Not only the inner surface of the continuous passage 43 of 0, but also the gap 44 formed between the plurality of adjacent cylinders 40 can be used as a secondary electron multiplication surface.

第5図は、複数の筒50を捩り合せたもので、両端には
電極51.52が形成されている。この筒50は第1図
に示した直線状の筒1にくらべてコレクタ側からの反極
性粒子(たとえば入来電子に対して陽イオン)の正帰還
が抑制でき、さらに見掛長に対して連続通路53の有効
長を長くすることができ、動作をさらに安定させ、かつ
2次電子増倍利得を高めることができる。
FIG. 5 shows a plurality of cylinders 50 twisted together, with electrodes 51 and 52 formed at both ends. Compared to the linear tube 1 shown in FIG. 1, this tube 50 can suppress positive feedback of opposite polarity particles (for example, cations with respect to incoming electrons) from the collector side, and also has a smaller apparent length. The effective length of the continuous path 53 can be increased, the operation can be further stabilized, and the secondary electron multiplication gain can be increased.

第6図は、外径がほぼ断面六角形の筒60を多数束ねた
もので、両端には電極61.62が形成されている。こ
の筒60の外面には軸方向に六角形の辺が−すみおきに
断面1/4円と成る溝が形成されている。したがって、
筒60の連続通路63のみならず、相隣接する筒60の
間に生ずる間隙64も2次電子増倍面として利用でき、
しかも横断面か均一に揃っているため、たとえば、絵素
の均一性と規則性を必要とする影像増倍管などの用途に
特に適合する。
FIG. 6 shows a bundle of tubes 60 having a substantially hexagonal outer diameter in cross section, and electrodes 61 and 62 are formed at both ends. On the outer surface of this cylinder 60, grooves each having a hexagonal side with a cross section of 1/4 circle are formed at every corner in the axial direction. therefore,
Not only the continuous passage 63 of the cylinder 60 but also the gap 64 formed between adjacent cylinders 60 can be used as a secondary electron multiplication surface.
Furthermore, since the cross section is uniform, it is particularly suitable for applications such as image intensifier tubes, which require uniformity and regularity of picture elements.

第7図は、連続通路73を有し、外径が横断面六角形の
筒70を多数束ねたもので、両端には電極71.72が
形成されており、相隣接する筒70間に隙間をなくした
ものである。
FIG. 7 shows a bundle of tubes 70 having a continuous passage 73 and a hexagonal outer diameter in cross section. Electrodes 71 and 72 are formed at both ends, and there is a gap between adjacent tubes 70. It is the one that has been eliminated.

なお、第6図、第7図の各種の例についても、必要に応
じて第5図のように、捩って使用してもよい。
Note that the various examples shown in FIGS. 6 and 7 may also be used by being twisted as shown in FIG. 5, if necessary.

第8図は、両端に電極81.82を形成した半導体磁器
よりなる板状体80に、電極81,82に垂直に複数個
の連続通路83を形成したものである。
In FIG. 8, a plurality of continuous passages 83 are formed perpendicularly to the electrodes 81 and 82 in a plate-like body 80 made of semiconductor ceramics with electrodes 81 and 82 formed at both ends.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2次電子増倍利得を測定するための実験回路図
である。 第2図〜第8図はこの発明にかかる2次電子増倍装置用
半導体磁器を用いた2次電子増倍装置の構造例を示す斜
視図である。 1.30.40.50.60.70は酸化亜鉛−酸化銅
系半導体磁器または酸化亜鉛−酸化チタン−酸化銅系半
導体磁器よりなる筒、 20は酸化亜鉛−酸化銅系半導
体磁器または酸化亜鉛−酸化チタン−酸化銅系半導体磁
器よりなる平板、80は酸化亜鉛−酸化銅系半導体磁器
または酸化亜鉛−酸化チタン−酸化銅系半導体磁器より
なる板状体。
FIG. 1 is an experimental circuit diagram for measuring secondary electron multiplication gain. FIGS. 2 to 8 are perspective views showing structural examples of a secondary electron multiplier using the semiconductor ceramic for a secondary electron multiplier according to the present invention. 1.30.40.50.60.70 is a cylinder made of zinc oxide-copper oxide semiconductor porcelain or zinc oxide-titanium oxide-copper oxide semiconductor porcelain, 20 is zinc oxide-copper oxide semiconductor porcelain or zinc oxide- A flat plate made of titanium oxide-copper oxide semiconductor porcelain, and 80 a plate-shaped body made of zinc oxide-copper oxide semiconductor porcelain or zinc oxide-titanium oxide-copper oxide semiconductor porcelain.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化亜鉛−酸化銅系半導体磁器からなることを特
徴とする2次電子増倍装置用半導体磁器組成物。
(1) A semiconductor ceramic composition for a secondary electron multiplier, characterized by comprising a zinc oxide-copper oxide semiconductor ceramic.
(2)酸化亜鉛−酸化チタン−酸化銅系半導体磁器から
なることを特徴とする2次電子増倍装置用半導体磁器組
成物。
(2) A semiconductor ceramic composition for a secondary electron multiplier, characterized by comprising a zinc oxide-titanium oxide-copper oxide semiconductor ceramic.
JP14816090A 1990-06-06 1990-06-06 Semiconductor porcelain composition for secondary electron multiplier Expired - Fee Related JP2623920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14816090A JP2623920B2 (en) 1990-06-06 1990-06-06 Semiconductor porcelain composition for secondary electron multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14816090A JP2623920B2 (en) 1990-06-06 1990-06-06 Semiconductor porcelain composition for secondary electron multiplier

Publications (2)

Publication Number Publication Date
JPH0443544A true JPH0443544A (en) 1992-02-13
JP2623920B2 JP2623920B2 (en) 1997-06-25

Family

ID=15446600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14816090A Expired - Fee Related JP2623920B2 (en) 1990-06-06 1990-06-06 Semiconductor porcelain composition for secondary electron multiplier

Country Status (1)

Country Link
JP (1) JP2623920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797872A (en) * 1993-04-20 1995-04-11 Atsushi Itai Underground sports facility utilizing tunnel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561443A (en) * 1979-06-15 1981-01-09 Murata Mfg Co Ltd Method of manufacturing secondary electron multiplier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561443A (en) * 1979-06-15 1981-01-09 Murata Mfg Co Ltd Method of manufacturing secondary electron multiplier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797872A (en) * 1993-04-20 1995-04-11 Atsushi Itai Underground sports facility utilizing tunnel

Also Published As

Publication number Publication date
JP2623920B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US4357426A (en) Humidity sensitive ceramics
US6380118B1 (en) Nonlinear dielectric ceramic, pulse generating capacitor, high-pressure vapor discharge lamp circuit, and high-pressure vapor discharge lamp
US3612946A (en) Electron multiplier device using semiconductor ceramic
JPH0443544A (en) Semiconductor ceramic composite for secondary electron multiplying device
US5294577A (en) Semiconductor ceramic composition for secondary electron multipliers
US3790840A (en) Secondary electron multiplying device using semiconductor ceramic
Kanayama et al. C–Al Parallel Plate Dynode Electron Multiplier
JP3087657B2 (en) Dielectric porcelain composition
JPH0613020A (en) Semiconductor ceramic composition for secondary-electron multiplication device
EP0533162A1 (en) BaO-xTiO2 dielectric ceramic composition
JPS6286656A (en) Manufacture of channel plate
JP2976702B2 (en) Semiconductor porcelain composition
JP2002175902A (en) Semiconducting ceramic, degaussing circuit for positive temperature coefficient thermistor for demagnetization, and method of manufacturing the ceramic
KR940004669B1 (en) Ceramic moisture sensor and manufacturing method thereof
JP3772912B2 (en) Dielectric porcelain, dielectric substrate and phase shifter
JPH0590878U (en) Electric field device for ion source
JP2696118B2 (en) Manufacturing method of nonlinear dielectric element
JPS61215247A (en) Infrared radiator
JPH0656556A (en) Production of porous electrode
JP2580283B2 (en) Electronic conductive ceramics
JPH11121202A (en) Manufacture of ptc ceramics element
Kerr et al. Oxidic semiconducting glass continuous dynode electron multipliers
JPS6050007B2 (en) High dielectric constant porcelain composition
JPH02250232A (en) Electron multiplying material and manufacture thereof
CN116947487A (en) Antiferroelectric ceramic material with high saturation polarization and preparation method and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees