JPH02250232A - Electron multiplying material and manufacture thereof - Google Patents

Electron multiplying material and manufacture thereof

Info

Publication number
JPH02250232A
JPH02250232A JP1069717A JP6971789A JPH02250232A JP H02250232 A JPH02250232 A JP H02250232A JP 1069717 A JP1069717 A JP 1069717A JP 6971789 A JP6971789 A JP 6971789A JP H02250232 A JPH02250232 A JP H02250232A
Authority
JP
Japan
Prior art keywords
glass
particles
electron multiplying
electron multiplier
oxide conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1069717A
Other languages
Japanese (ja)
Inventor
Satoshi Kitao
智 北尾
Kinzo Nonomura
欽造 野々村
Junpei Hashiguchi
淳平 橋口
Masayuki Takahashi
雅幸 高橋
Kiyoshi Hamada
潔 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1069717A priority Critical patent/JPH02250232A/en
Publication of JPH02250232A publication Critical patent/JPH02250232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE:To provide an electron multiplying material, which is stable in electric properties and easy to fabricate by allowing it to chiefly contain glass and oxide type electroconductive substance, and embodying it in an electroconductive path structure in which particles of the electroconductive substance are continued in meshes. CONSTITUTION:An electron multiplying material concerned contains chiefly glass 1 and an oxide type electroconductive substance 2, being embodies in an electroconductive path structure where particles of the electroconductive substance 2 are continued in meshes. The electroconductive substance 2 consists of RuO2 or pyoclore type Ru compound, or otherwise a mixture thereof. When incident electrons 4 bombard this electron multiplying material 3 with a certain energy, secondary electrons 5 are emitted. At this time, negative electric charges are in shortage on the surface of the electron multiplying material 3, but it is practicable to feed electrons to the surface through RuO2 continued in meshes, which provides a response speed satisfactory for practical service. Thus an electron multiplying material is obtained, which is stable in electric properties and easy to fabricate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、荷電粒子の倍増及び検出に用いる二次電子増
倍器のガラスを用いた電子増倍材料及びその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electron multiplier material using glass for a secondary electron multiplier used for doubling and detecting charged particles, and a method for manufacturing the same.

従来の技術 近年ガラスを用いた二次電子増倍器は、細いガラス管を
多数束ねるなどの方法で形成したマイクロチャンネルプ
レート(以下MCP)が主体である。MCPは従来通り
イメージ管の二次電子増倍器として用いられているほか
、平板型画像表示装置の中の二次電子増倍器としても用
いられっつある。
BACKGROUND OF THE INVENTION In recent years, secondary electron multipliers using glass have mainly been microchannel plates (hereinafter referred to as MCP) formed by bundling a large number of thin glass tubes. MCPs are conventionally used as secondary electron multipliers in image tubes, and are also being used as secondary electron multipliers in flat panel image display devices.

以下従来のガラスを用いた電子増倍材料について説明す
る。ガラスを電子増倍材料として用いるには、二次電子
放出比が大きく、適当な導電性がある安定な材料が望ま
しい。ガラスに導電性をもたせた材料としては従来、 (1)PbOを多く含むガラスを水素還元処理し、表面
にPbの導電層を形成したもの、 (2)通常のガラスに金属酸化物や金属間化合物からな
る導電層を蒸着したもの、 (3)通常のガラスにFe2’s、V2O5、W Og
等の遷移金属化合物を加えたもの、 等がある。
A conventional electron multiplier material using glass will be explained below. In order to use glass as an electron multiplier material, it is desirable to use a stable material with a high secondary electron emission ratio and appropriate conductivity. Conventional materials for making glass conductive include: (1) glass containing a large amount of PbO treated with hydrogen reduction to form a conductive layer of Pb on the surface, and (2) metal oxides and intermetallic materials added to ordinary glass. (3) Ordinary glass with conductive layer deposited on it, such as Fe2's, V2O5, W Og
There are also those containing transition metal compounds such as .

発明が解決しようとする課題 この様な従来の材料は、 (1)PbOを一度還元して導電層を形成しても、その
後の熱処理などで導電率が変化するなど、不安定である
。また安定した導電層を形成する還元処理そのものが難
しい、 (2)ガラス表面が平板でない場合がほとんどであるた
め、均一な導電層を蒸着するのが困難である、 (3)ガラスにFears等を添加すると、ガラスの粘
性など素材自体の性質が変化するため、望む形状の二次
電子増倍器を得ることが困難である、というような課題
を有していた。
Problems to be Solved by the Invention These conventional materials are: (1) Even if a conductive layer is formed by once reducing PbO, the conductivity changes due to subsequent heat treatment, etc., and is unstable. In addition, the reduction process itself to form a stable conductive layer is difficult. (2) Since the glass surface is not flat in most cases, it is difficult to deposit a uniform conductive layer. (3) Fears etc. are applied to the glass. When added, the properties of the material itself, such as the viscosity of the glass, change, making it difficult to obtain a secondary electron multiplier with a desired shape.

本発明は上記従来技術の課題を解消させ、導電率など電
気的性質が非常に安定で、製造、加工の容易な電子増倍
材料及びその製造方法を得ることを目的とするものもの
である。
It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an electron multiplier material that has very stable electrical properties such as conductivity and is easy to manufacture and process, and a method for manufacturing the same.

本発明は、このような従来技術の課題を解決することを
目的とする。
The present invention aims to solve the problems of the prior art.

課題を解決するための手段 本発明は、 (1)ガラスと酸化物導電体とを主原料として含み、前
記酸化物導電体の粒子が網目状に連なった導電路構造を
持つ。
Means for Solving the Problems The present invention includes (1) glass and an oxide conductor as main raw materials, and has a conductive path structure in which particles of the oxide conductor are connected in a network.

(2)酸化物導電体が、RuO2、あるいはパイロクロ
ア型Ru化合物、あるいは両者の混合物である。
(2) The oxide conductor is RuO2, a pyrochlore type Ru compound, or a mixture of both.

(3)ガラスが、PbOが50%以上である低融点ガラ
スである。
(3) The glass is a low melting point glass containing 50% or more of PbO.

(4)ガラスの粒子と酸化物導電体の粒子とが、主原料
として含まれている混合物を300°C以上の高温で焼
成あるいは焼結して形成する。
(4) A mixture containing glass particles and oxide conductor particles as main raw materials is fired or sintered at a high temperature of 300° C. or higher.

(5)混合物をペースト状にし、印刷工程を用いて形作
られた後に焼結する。
(5) The mixture is made into a paste, shaped using a printing process, and then sintered.

作用 本発明は、導電体の材料が網目状に連なっているため、
電気的性質が非常に安定である。また、Ru O2等の
粒子をガラスに混合して焼結しであるためガラス自体の
性質の変化が少ないので、製造、加工の容易な電子増倍
材料が得られる。
Effects of the present invention, since the conductor material is connected in a network,
Its electrical properties are very stable. Further, since particles such as RuO2 are mixed with glass and sintered, there is little change in the properties of the glass itself, so an electron multiplier material that is easy to manufacture and process can be obtained.

実施例 以下に、本発明の実施例について図面を参照しながら説
明する。
Examples Examples of the present invention will be described below with reference to the drawings.

第1図(a)は、フリットガラス1の粉末に、RuO*
2の粉末をビークル中で混合した物、あるいはそこへ更
に若干の添加剤を混合した物を乾燥させたものの断面の
一部の拡大図で、フリットガラス1の粉末とRu 02
2の粉末とが図のように混ざりあっている。この混合物
はペースト状であるため、印刷技術を用いて、電子増倍
材料の必要とする形状・パターンを容易に作ることが出
来る。
FIG. 1(a) shows that RuO* is added to the powder of frit glass 1.
This is an enlarged view of a part of the cross section of the powder obtained by mixing the powders of Frit Glass 1 and Ru 02 in a vehicle, or by drying the powder mixed with some additives.
The powder from No. 2 is mixed as shown in the figure. Since this mixture is in the form of a paste, the desired shape and pattern of the electron multiplier material can be easily created using printing technology.

それだけでなく、印刷工程を用いることにより従来の加
工・形成方法に比べて製造のコストを低く抑えることが
出来る。
In addition, by using the printing process, manufacturing costs can be kept low compared to conventional processing and forming methods.

第1図(b)は、上記の混合物を空気雰囲気中で400
〜500℃で焼成(焼結)したもので、電子増倍材料3
の断面は、焼成条件によって多少違いがあるが、おおか
た本図のようになっている。
Figure 1(b) shows that the above mixture was heated at 400 °C in an air atmosphere.
It is fired (sintered) at ~500℃ and is an electron multiplier material 3.
The cross-section of the material differs slightly depending on the firing conditions, but it generally looks like the one shown in this figure.

焼成後の粒子の状態は、第1図(b)に示すようにフリ
ットガラス1の粒子の周囲をRu(L2の粒子が取り巻
くように網目状に連なっている。このような網目状の構
造は低融点のフリットガラスを用いて、高温で焼成する
ことにより、極めて容易に実現できる。電子増倍材料3
の抵抗値などの電気的性質はこの網目状の導電路の電気
的性質によって決まる。従って、電子増倍材料の抵抗値
はフリットガラス1とRu Oa 2との混合比及び焼
成温度などでコントロールできる。
The state of the particles after firing is as shown in FIG. 1(b), in which the particles of the frit glass 1 are surrounded by the particles of Ru (L2), forming a network. This can be achieved extremely easily by using frit glass with a low melting point and firing at a high temperature.Electron multiplier material 3
The electrical properties such as resistance value are determined by the electrical properties of this mesh-like conductive path. Therefore, the resistance value of the electron multiplier material can be controlled by the mixing ratio of the frit glass 1 and RuOa 2, the firing temperature, etc.

ここで、焼成以前のフリットガラス1の粉末の平均粒径
は0.1〜10μm、Ru0z2の粉末の平均粒径は0
.01〜1μmである。添加剤として、適当な無機質酸
化物を選択して用いることにより、焼成後の電子増倍材
料3の抵抗値やTCR等の電気的性質をある程度コント
ロールすることが出来ることは、ハイブリッドIC用厚
膜抵抗体の研究で周知である。
Here, the average particle size of the frit glass 1 powder before firing is 0.1 to 10 μm, and the average particle size of the Ru0z2 powder is 0.
.. 01-1 μm. By selecting and using an appropriate inorganic oxide as an additive, it is possible to control the electrical properties such as the resistance value and TCR of the electron multiplier material 3 after firing to a certain extent. It is well known for its research on resistors.

焼成後の電子増倍材料3の二次電子放出比δはガラスの
それとほぼ同様である場合が多く、およそ2〜4の間に
ある。従って、ガラスを用いた電子増倍材料としては、
比較的二次電子放出比が大きく、適当な導電性がある材
料である。
The secondary electron emission ratio δ of the electron multiplier material 3 after firing is often approximately the same as that of glass, and is approximately between 2 and 4. Therefore, as an electron multiplication material using glass,
It is a material with a relatively high secondary electron emission ratio and suitable conductivity.

第1図(b)において、入射電子4が電子増倍材料3に
適当なエネルギーをもって衝突すると、二次電子5が発
生する。この時電子増倍材料30表面では負の電荷が不
足するが、網目状に連なっているRu0a2を介して、
電子を表面に供給することが可能であり、実用上十分な
応答速度を持つ。
In FIG. 1(b), when incident electrons 4 collide with electron multiplier material 3 with appropriate energy, secondary electrons 5 are generated. At this time, there is insufficient negative charge on the surface of the electron multiplier material 30, but through the Ru0a2 connected in a network,
It is possible to supply electrons to the surface and has a response speed sufficient for practical use.

発明の詳細 な説明したように、本発明によれば、ガラスと酸化物導
電体とを主原料として含み、酸化物導電体の粒子が網目
状に連なった導電路構造を持つので、電気的性質が非常
に安定で、製造、加工の容易な電子増倍材料が得られる
As described in detail, the present invention contains glass and an oxide conductor as main raw materials, and has a conductive path structure in which particles of the oxide conductor are connected in a network, so that electrical properties are improved. An electron multiplier material that is extremely stable and easy to manufacture and process can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、本発明の1実施例における電子増倍材
料の形成過程の一部の拡大断面図、第1図(b)は、同
実施例における電子増倍材料の一部の拡大断面図である
。 1・・・フリットガラス、2・・・RuO□、3・・・
電子増倍材料、4・・・入射電子、・5・・・二次電子
FIG. 1(a) is an enlarged sectional view of a part of the formation process of the electron multiplier material in one embodiment of the present invention, and FIG. 1(b) is a partial enlarged sectional view of the electron multiplier material in the same embodiment. It is an enlarged sectional view. 1...Frit glass, 2...RuO□, 3...
Electron multiplication material, 4... incident electron, 5... secondary electron.

Claims (5)

【特許請求の範囲】[Claims] (1)ガラスと酸化物導電体とが主原料として含まれ、
前記酸化物導電体の粒子が網目状に連なった導電路構造
を有したことを特徴とする電子増倍材料。
(1) Contains glass and oxide conductor as main raw materials,
An electron multiplier material characterized in that the particles of the oxide conductor have a conductive path structure in which particles of the oxide conductor are connected in a network.
(2)酸化物導電体が、RuO_2、あるいはパイロク
ロア型Ru化合物、あるいは両者の混合物であることを
特徴とする請求項1記載の電子増倍材料。
(2) The electron multiplier material according to claim 1, wherein the oxide conductor is RuO_2, a pyrochlore type Ru compound, or a mixture of both.
(3)ガラスが、PbOが50%以上である低融点ガラ
スであることを特徴とする請求項1又は2記載の電子増
倍材料。
(3) The electron multiplier material according to claim 1 or 2, wherein the glass is a low melting point glass containing 50% or more of PbO.
(4)ガラスが、PbOが50%以上である低融点ガラ
スであり、前記ガラスの粒子と前記酸化物導電体の粒子
とが、主原料として含まれている混合物を300℃以上
の高温で焼成あるいは焼結して形成することを特徴とす
る電子増倍材料の製造方法。
(4) The glass is a low melting point glass containing 50% or more of PbO, and a mixture containing particles of the glass and particles of the oxide conductor as main raw materials is fired at a high temperature of 300°C or more. Alternatively, a method for producing an electron multiplier material characterized by forming it by sintering.
(5)ガラスの粒子と前記酸化物導電体の粒子とが、主
原料として含まれている混合物をペースト状にし、印刷
工程を用いて形作られた後に焼結することを特徴とする
請求項4記載の電子増倍材料の製造方法。
(5) A mixture containing glass particles and particles of the oxide conductor as main raw materials is made into a paste, shaped using a printing process, and then sintered. A method for manufacturing the electron multiplier material described above.
JP1069717A 1989-03-22 1989-03-22 Electron multiplying material and manufacture thereof Pending JPH02250232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069717A JPH02250232A (en) 1989-03-22 1989-03-22 Electron multiplying material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069717A JPH02250232A (en) 1989-03-22 1989-03-22 Electron multiplying material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02250232A true JPH02250232A (en) 1990-10-08

Family

ID=13410863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069717A Pending JPH02250232A (en) 1989-03-22 1989-03-22 Electron multiplying material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02250232A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399515A3 (en) * 1989-05-24 1992-05-13 Matsushita Electric Industrial Co., Ltd. Flat tube display apparatus
US5227691A (en) * 1989-05-24 1993-07-13 Matsushita Electric Industrial Co., Ltd. Flat tube display apparatus
EP0592186A1 (en) * 1992-10-05 1994-04-13 Hamamatsu Photonics K.K. Cathode for photoelectric emission, cathode for secondary electron emission, electron multiplier tube, and photomultiplier tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140468A (en) * 1975-05-30 1976-12-03 Hitachi Ltd Gas discharge display panel
JPS62176023A (en) * 1986-01-28 1987-08-01 Murata Mfg Co Ltd Manufacture of channel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140468A (en) * 1975-05-30 1976-12-03 Hitachi Ltd Gas discharge display panel
JPS62176023A (en) * 1986-01-28 1987-08-01 Murata Mfg Co Ltd Manufacture of channel plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399515A3 (en) * 1989-05-24 1992-05-13 Matsushita Electric Industrial Co., Ltd. Flat tube display apparatus
US5227691A (en) * 1989-05-24 1993-07-13 Matsushita Electric Industrial Co., Ltd. Flat tube display apparatus
EP0592186A1 (en) * 1992-10-05 1994-04-13 Hamamatsu Photonics K.K. Cathode for photoelectric emission, cathode for secondary electron emission, electron multiplier tube, and photomultiplier tube
US5463272A (en) * 1992-10-05 1995-10-31 Hamamatsu Photonics K.K. Cathode for photoelectric emission, cathode for secondary electron emission, electron multiplier tube, and photomultiplier tube

Similar Documents

Publication Publication Date Title
US4518890A (en) Impregnated cathode
US4599076A (en) Method of producing discharge display device
US20110146781A1 (en) Process of forming a grid cathode on the front-side of a silicon wafer
US2530546A (en) Electrophoretic deposition of insulating coating
US4746838A (en) Ink for forming resistive structures and display panel containing the same
US4600397A (en) Method of producing discharge display device
JPH02250232A (en) Electron multiplying material and manufacture thereof
US2557372A (en) Manufacture of thoria cathodes
DE2228770A1 (en) Solid electrolyte with electrode
KR101196927B1 (en) Method for producing plasma display panel
KR20130027008A (en) Method for producing plasma display panel
JPS6318834B2 (en)
JPS593826B2 (en) Manufacturing method of secondary electron multiplier
US3641382A (en) Channel intensifier glass compositions
JPS60221569A (en) Target for electrical vapor deposition
JPS6142815A (en) Method of producing dielectric film
US2526574A (en) Secondary emitter
US2373752A (en) Picture transmitter tube mosaic screen
JP2525278B2 (en) Direct current type discharge display tube and method of manufacturing oxide cathode for discharge display tube
Kerr et al. Oxidic semiconducting glass continuous dynode electron multipliers
JP3016537B2 (en) Manufacturing method of cold cathode for display discharge tube
JPH03145030A (en) Manufacture of gas discharge type display panel
EP4121986A1 (en) Electron-emitting ceramic
JPS6255265B2 (en)
JPH04342927A (en) Gas discharge type display panel and electroconductive paste