JPH0613020A - Semiconductor ceramic composition for secondary-electron multiplication device - Google Patents

Semiconductor ceramic composition for secondary-electron multiplication device

Info

Publication number
JPH0613020A
JPH0613020A JP16744092A JP16744092A JPH0613020A JP H0613020 A JPH0613020 A JP H0613020A JP 16744092 A JP16744092 A JP 16744092A JP 16744092 A JP16744092 A JP 16744092A JP H0613020 A JPH0613020 A JP H0613020A
Authority
JP
Japan
Prior art keywords
secondary electron
oxide
semiconductor porcelain
mol
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16744092A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
宏 山本
Junichi Nomura
淳一 野村
Hideaki Niimi
秀明 新見
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16744092A priority Critical patent/JPH0613020A/en
Publication of JPH0613020A publication Critical patent/JPH0613020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To provide a secondary-electron multiplication device of stable operation, which has no possibility of thermal runaway due to heating even when a resistance value is reduced by providing a semiconductor ceramic composition, in which coefficient (delta) of secondary electron emission is high, and which has a flat or positive temperature characteristic of resistance. CONSTITUTION:A fixed amount of nickel oxide is added to a principal component consisting of zinc oxide and titanium oxide, to provide a composition of 55-80mol% of zinc oxide, 12-30mol% of titanium oxide, and 0.2-20mol% of nickel oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電子増倍装置用半導
体磁器組成物に関する。
FIELD OF THE INVENTION The present invention relates to a semiconductor ceramic composition for a secondary electron multiplier.

【0002】[0002]

【従来の技術】従来、半導体磁器を用いた二次電子増倍
装置としては、例えば、円筒状半導体磁器の必要箇所に
電極を設けたもの(特公昭48−18026号公報)、
板状半導体磁器の両端に電極を設け、両電極に垂直に複
数個の孔を設けたもの(特公昭48−18029号公
報)、及び同一長の筒を複数個束ねたもの(特公昭48
−18030号公報)などが提案されているが、その材
料としてチタン酸亜鉛系半導体磁器が採用されている。
2. Description of the Related Art Conventionally, as a secondary electron multiplying apparatus using a semiconductor porcelain, for example, a cylindrical semiconductor porcelain provided with electrodes at necessary places (Japanese Patent Publication No. 48-18026),
Electrodes provided at both ends of a plate-shaped semiconductor porcelain, and a plurality of holes provided perpendicularly to both electrodes (JP-B-48-18029), and a bundle of cylinders of the same length (JP-B-48).
No. 18030), but zinc titanate-based semiconductor porcelain is adopted as the material.

【0003】このチタン酸亜鉛系半導体磁器の具体的な
組成としては、ZnO72.5モル%及びTiO227.5
モル%からなる半導体磁器、およびZnO72.5モル
%、TiO227.5モル%、Al231.25モル%から
なる半導体磁器が示され、前者の材料では抵抗率が8×
106Ω・cmのものが、また、後者の材料では抵抗率が
2.8×106Ω・cmのものが得られるとしている。
Specific compositions of this zinc titanate-based semiconductor porcelain include ZnO 72.5 mol% and TiO 2 27.5.
A semiconductor porcelain composed of mol% and a semiconductor porcelain composed of ZnO 72.5 mol%, TiO 2 27.5 mol% and Al 2 O 3 1.25 mol% are shown, and the former material has a resistivity of 8 ×.
It is said that 10 6 Ω · cm is obtained, and that the latter material has a resistivity of 2.8 × 10 6 Ω · cm.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記チ
タン酸亜鉛系半導体磁器は、二次電子増倍管を主として
極微量の荷電粒子の検出を目的とする限りにおいては十
分適用できるが、近年、使用環境が過酷になり、極微量
から大きな入射電流の検出までを1本の検出器で行うこ
とが要求され、二次電子増倍管に入射電流と出力電流と
の比例性つまりダイナミックレンジの広いことが要求さ
れるようになってきたため、その使用範囲が限定されて
しまうという問題があった。即ち、一般に、チャネルタ
イプの二次電子増倍管では入射電流に対しリニアに取り
出せる出力電流量は、素子を流れる電流、即ち、素子電
流の10%であると言われている。このため出力電流を
大きくするには素子電流を大きくする必要があるが、前
記チタン酸亜鉛系半導体磁器は、負の抵抗温度係数を有
することから、ダイナミックレンジを大きくするため抵
抗値を大幅に下げると、発熱して抵抗値が低下し、それ
によって更に発熱して一段と抵抗値の低下を招くという
悪循環を繰り返し、ついにはいわゆる熱暴走を起こし高
電圧を保持出来なくなる恐れがあり、ダイナミックレン
ジの拡大には限界があり、使用範囲が限定されてしまう
という問題があった。
However, the zinc titanate-based semiconductor porcelain can be sufficiently applied to the secondary electron multiplier as long as the purpose is mainly to detect a very small amount of charged particles, but in recent years, it has been used. The environment becomes harsh, and it is required to perform detection from a very small amount to a large incident current with one detector, and the secondary electron multiplier has a wide proportional range between the incident current and the output current, that is, a wide dynamic range. However, there has been a problem that the range of use is limited because of the increasing demand. That is, it is generally said that in a channel type secondary electron multiplier, the amount of output current that can be taken out linearly with respect to the incident current is 10% of the current flowing through the element, that is, the element current. Therefore, in order to increase the output current, it is necessary to increase the element current. However, since the zinc titanate-based semiconductor porcelain has a negative temperature coefficient of resistance, the resistance value is significantly reduced to increase the dynamic range. Then, a vicious cycle is repeated in which heat is generated and the resistance value decreases, which causes further heat generation and further lowers the resistance value, eventually causing so-called thermal runaway and unable to maintain a high voltage, expanding the dynamic range. However, there is a problem that the range of use is limited.

【0005】従って、この発明は、二次電子放出係数
(δ)が大きく、かつ、フラットもしくは正の抵抗温度
特性を有する半導体磁器組成物を得、もって抵抗値を小
さくしても発熱による熱暴走の恐れのない動作の安定な
二次電子増倍装置を得ることを目的とする。
Therefore, the present invention provides a semiconductor porcelain composition having a large secondary electron emission coefficient (δ) and a flat or positive resistance-temperature characteristic, and thermal runaway due to heat generation even if the resistance value is reduced. It is an object of the present invention to obtain a stable secondary electron multiplying device which is free from the fear of operation.

【0006】[0006]

【課題を解決するための手段】この発明は、前記課題を
解決するための手段として、酸化亜鉛及び酸化チタンか
らなる主成分に酸化ニッケルを所定量添加し、酸化亜鉛
55〜80モル%、酸化チタン12〜30モル%、酸化
ニッケル0.2〜20モル%からなる組成とするように
したものである。
[Means for Solving the Problems] As a means for solving the above problems, the present invention comprises adding a predetermined amount of nickel oxide to a main component composed of zinc oxide and titanium oxide to obtain zinc oxide in an amount of 55 to 80 mol% and oxidized. It has a composition of 12 to 30 mol% titanium and 0.2 to 20 mol% nickel oxide.

【0007】[0007]

【作用】酸化亜鉛−酸化チタン系半導体磁器に酸化ニッ
ケルを添加すると、比抵抗及び利得が増大するだけでな
く、零若しくは正の抵抗温度係数を示すようになり、素
子の抵抗値を大幅に下げても熱暴走を起こさず高真空中
での動作が安定する。本発明に係る半導体磁器組成物を
前記組成範囲に限定した理由は、酸化ニッケルの添加量
が0.2モル%未満ではその添加効果が十分に得られ
ず、20モル%を越えると、比抵抗が低下するからであ
る。
[Function] When nickel oxide is added to the zinc oxide-titanium oxide-based semiconductor porcelain, not only the specific resistance and the gain increase, but also the zero or positive temperature coefficient of resistance comes to be exhibited, which significantly reduces the resistance value of the element. However, thermal runaway does not occur and operation in high vacuum is stable. The reason why the semiconductor porcelain composition according to the present invention is limited to the above composition range is that when the amount of nickel oxide added is less than 0.2 mol%, the effect cannot be sufficiently obtained, and when it exceeds 20 mol%, the specific resistance is increased. Is reduced.

【0008】以下、本発明の実施例について説明する。Hereinafter, examples of the present invention will be described.

【0009】[0009]

【実施例】原料として、酸化亜鉛、酸化ニッケル及び酸
化チタンの各粉末を用い、これらを表1に示す組成比率
の半導体磁器が得られるように配合した。得られた混合
物をポリエチレンで内貼りしたポットミルにめのう玉
石、純水と共に入れて、20時間湿式粉砕、混合した
後、脱水、乾燥して50〜200メッシュに粉砕、整粒
した。
[Examples] Powders of zinc oxide, nickel oxide and titanium oxide were used as raw materials, and these were compounded so as to obtain a semiconductor porcelain having a composition ratio shown in Table 1. The obtained mixture was put together with agate stones and pure water in a pot mill internally laminated with polyethylene, wet pulverized for 20 hours, mixed, dehydrated, dried, pulverized to 50 to 200 mesh and sized.

【0010】得られた各粉末に小麦粉糊とパラフィンか
らなるバインダーを加えて可塑物とし、これを押出成形
して管状の成形体を得た。この成形物をアルミナ匣に敷
いた共生地原料の上に並べ、電気炉を用いて自然雰囲気
中、表1に示す温度で約1時間焼成し、外径2.0m
m、内径1.0mm、長さ50.0mmの筒状の半導体磁
器試料を得た。
To each of the obtained powders, a binder made of wheat flour paste and paraffin was added to obtain a plastic, which was extrusion-molded to obtain a tubular molded body. This molded product was lined up on the raw material of the co-fabric laid on an alumina box, and fired for about 1 hour at a temperature shown in Table 1 in an electric furnace in a natural atmosphere to give an outer diameter of 2.0 m.
A cylindrical semiconductor ceramic sample having an m, an inner diameter of 1.0 mm and a length of 50.0 mm was obtained.

【0011】得られた試料について、比抵抗、増倍利
得、抵抗温度特性を測定した。その結果を表1に示す。
なお、比抵抗は、室温で30V/mmの電圧を印加して
常温での比抵抗を求めた。
The specific resistance, multiplication gain and resistance temperature characteristic of the obtained sample were measured. The results are shown in Table 1.
The specific resistance was determined by applying a voltage of 30 V / mm at room temperature to obtain the specific resistance at room temperature.

【0012】また、増倍利得については、図1に示す実
験回路を用い、点線で囲んだように、筒状半導体磁器1
の両端に形成された電極2,3に接続された直流電源
4、フィラメント5を加熱するフィラメント電源6、電
子加速用電源7、コレクタ8に接続されたコレクタ電源
9、及び電子計数器10を除き、すべて真空中に設置
し、真空度を1.0×10-6Torrとした後、直流電源を
3kV、電子加速用電源7を200Vとし、フィラメン
ト5より放出させた電子を筒状半導体磁器1の入射口か
ら導入して、筒内の壁面に衝突させて増倍し、増倍電子
をコレクタ8で受けて、パルス数を電子計数器10で計
数して二次電子増倍利得を測定した。
Regarding the multiplication gain, the experimental circuit shown in FIG. 1 was used, and as shown by the dotted line, the cylindrical semiconductor ceramic 1
Except a DC power source 4 connected to electrodes 2 and 3 formed on both ends of the filament, a filament power source 6 for heating a filament 5, an electron acceleration power source 7, a collector power source 9 connected to a collector 8, and an electron counter 10. All were installed in a vacuum, the degree of vacuum was 1.0 × 10 -6 Torr, the DC power supply was 3 kV, the electron acceleration power supply 7 was 200 V, and the electrons emitted from the filament 5 were cylindrical semiconductor porcelain 1. Of the secondary electron multiplying gain by measuring the number of pulses by the electron counter 10 by receiving the multiplied electrons by the collector 8 and multiplying them by colliding with the wall surface in the cylinder for multiplication. .

【0013】抵抗値の温度特性は、試料を恒温槽内に設
置し、常温から順次10℃づつ温度を上げてゆき各温度
で30V/mmの電圧を印加して測定を行い、温度変化
に対する抵抗値の変化を温度の関数として図9に示す様
にプロットし、抵抗値が温度の上昇とともに増加するも
のを(a)、ほぼフラットになるものを(b)、減少す
るものを(c)として表1に示した。
The temperature characteristic of the resistance value was measured by placing the sample in a constant temperature bath, increasing the temperature by 10 ° C. from room temperature in sequence, applying a voltage of 30 V / mm at each temperature, and measuring the resistance against temperature change. The change of the value is plotted as a function of temperature as shown in FIG. 9, where the resistance value increases as the temperature increases (a), the resistance value becomes almost flat (b), and the resistance value decreases (c). The results are shown in Table 1.

【0014】[0014]

【表1】 主成分(モル%) 焼成温度 比抵抗 利得 特性 No. ZnO TiO2 NiO ℃ (Ω・cm) at 3KV 曲線 1 74 26 0 1380 2.8×105 2.0×106 c 2 55 31 14 1330 ∞ 3 55 28 17 1330 6.3×108 2.5×108 a 4 55 25 20 1320 3.8×108 3.3×106 a 5 60 32 8 1360 ∞ 6 60 29 11 1360 1.5×109 2.1×106 a 7 60 26 14 1320 7.7×108 2.8×106 a 8 60 23 17 1320 3.4×108 3.1×106 a 9 60 20 20 1320 9.2×107 3.0×106 a 10 60 17 23 1300 4.6×107 3.2×106 a 11 65 32 3 1360 ∞ 12 65 30 5 1360 1.1×109 1.5×106 b 13 65 27 8 1360 8.7×108 2.4×106 b 14 65 24 11 1360 1.3×108 3.2×106 a 15 65 21 14 1320 2.4×107 2.8×106 a 16 65 18 17 1320 6.7×106 2.4×106 a 17 65 15 20 1320 4.0×105 3.6×106 a 18 65 12 23 1300 3.8×104 3.2×106 a 19 70 27 3 1360 3.6×104 1.0×106 b 20 70 25 5 1360 8.7×107 2.1×106 b 21 70 22 8 1360 2.5×107 3.0×106 b 22 70 19 11 1320 8.9×106 3.2×106 a 23 70 16 14 1320 1.5×106 4.5×106 a 24 70 13 17 1320 9.6×106 3.8×106 a 25 70 10 20 1320 印加不能 26 75 21.9 0.1 1360 7.6×107 1.8×106 a 27 75 21.8 0.2 1360 8.7×107 1.4×106 a 28 75 22 3 1360 9.0×107 2.6×106 b 29 75 20 5 1360 4.3×107 3.1×106 b 30 75 17 8 1360 1.2×107 2.8×106 b 31 75 14 11 1320 8.9×106 4.2×106 a 32 75 11 14 1320 1.0×104 5.3×106 a 33 75 8 17 1320 印加不能 34 80 17 3 1360 8.7×105 9.5×10535 80 15 5 1360 3.3×105 2.8×106 [Table 1] Main component (mol%) Firing temperature Resistivity Gain characteristics No. ZnO TiO 2 NiO ℃ (Ω ・ cm) at 3KV Curve 1 74 26 0 1380 2.8 × 10 5 2.0 × 10 6 c 2 55 31 14 1330 ∞ 3 55 28 17 1330 6.3 × 10 8 2.5 × 10 8 a 4 55 25 20 20 1320 3.8 × 10 8 3.3 × 10 6 a 5 60 32 32 8 1360 ∞ 6 60 29 11 11 1360 1.5 × 10 9 2.1 × 10 6 a 7 60 26 14 14 1320 7.7 x 10 8 2.8 x 10 6 a 8 60 23 23 17 1320 3.4 x 10 8 3.1 x 10 6 a 9 60 20 20 1320 9.2 x 10 7 3.0 x 10 6 a 10 60 17 23 23 1300 4.6 x 10 7 3.2 x 10 6 a 11 65 32 3 1360 ∞ 12 12 65 30 5 1360 1.1 × 10 9 1.5 × 10 6 b 13 65 27 27 8 1360 8.7 × 10 8 2.4 × 10 6 b 14 65 24 11 1360 1.3 × 10 8 3.2 × 10 6 a 15 65 21 14 1320 2.4 x 10 7 2.8 x 10 6 a 16 65 18 17 1320 6.7 × 10 6 2.4 × 10 6 a 17 65 15 20 1320 4.0 × 10 5 3.6 × 10 6 a 18 65 12 12 23 1300 3.8 × 10 4 3.2 × 10 6 a 19 70 273 3 1360 3.6 × 10 4 1.0 × 10 6 b 20 70 25 5 1360 8.7 × 10 7 2.1 × 10 6 b 21 70 22 22 1360 2.5 × 10 7 3.0 × 10 6 b 22 70 19 19 11 1320 8.9 × 10 6 3.2 × 10 6 a 23 70 16 14 1320 1.5 × 10 6 4.5 × 10 6 a 24 70 13 17 17 1320 9.6 × 10 6 3.8 × 10 6 a 25 70 10 20 1320 Not applicable 26 75 21.9 0.1 0.1 1360 7.6 × 10 7 1.8 × 10 6 a 27 75 21.8 0.2 1360 8.7 × 10 7 1.4 × 10 6 a 28 75 75 2 3 1360 9.0 × 10 7 2.6 × 10 6 b 29 75 20 5 1360 4.3 × 10 7 3.1 × 10 6 b 30 75 75 178 1360 1.2 x 10 7 2.8 x 10 6 b 31 75 14 11 1320 8.9 x 10 6 4.2 × 10 6 a 32 75 75 11 14 1320 1.0 × 10 4 5.3 × 10 6 a 33 75 8 17 1320 Not applicable 34 80 17 3 1360 8.7 × 10 5 9.5 × 10 5 b 35 80 15 15 5 1360 3.3 × 10 5 2.8 × 10 6 b

【0015】表1の結果から明らかなように、この発明
にかかる二次電子増倍装置用半導体磁器組成物は、広い
範囲に渡り抵抗値が温度変化に対してフラットもしくは
正であり、その上高利得を示し、高真空中でダイナミッ
クレンジが広く動作の安定な二次電子増倍管の製造を可
能にしている。
As is clear from the results shown in Table 1, the semiconductor porcelain composition for a secondary electron multiplying device according to the present invention has a resistance value which is flat or positive with respect to temperature change over a wide range. This makes it possible to manufacture stable secondary electron multipliers that exhibit high gain and have a wide dynamic range and stable operation in a high vacuum.

【0016】なお、前記実施例では、原料として酸化物
を用いたが、焼成により酸化物となるものであれば、炭
酸塩、水酸化物、硝酸塩、塩化物などの無機化合物、カ
ルボン酸塩、アルコキシドなどの有機化合物を用いても
よい。また、酸化ニッケルは必ずしも原料粉末に添加す
る必要は無く、酸化亜鉛と酸化チタンとの混合粉末に焼
成して得た所定形状の半導体磁器に、熱処理により酸化
ニッケルとなるニッケル化合物の溶液を浸漬その他の手
段により含浸させ、その後熱処理してもよい。
In the above examples, oxides were used as the raw materials, but if they become oxides by firing, inorganic compounds such as carbonates, hydroxides, nitrates, chlorides, carboxylates, You may use organic compounds, such as an alkoxide. Further, nickel oxide is not necessarily added to the raw material powder, and a semiconductor compound having a predetermined shape obtained by firing a mixed powder of zinc oxide and titanium oxide is dipped with a solution of a nickel compound to be nickel oxide by heat treatment. It may be impregnated by the above means and then heat treated.

【0017】また、二次電子増倍装置の構造としては、
図1に示す円筒状に限定されるものでは無く、図2〜図
8に示す構造としてもよい。
Further, as the structure of the secondary electron multiplier,
The structure is not limited to the cylindrical shape shown in FIG. 1, and the structure shown in FIGS.

【0018】図2に示す二次電子増倍装置は、両端に電
極21、22を形成した2枚の平板状半導体磁器20を
平行状に配置して連続通路を23を形成したものであ
る。平板20の外面は絶縁されていてもよいが、内面は
全部又は部分的に平板20の一端から他端にかけて露出
している。なお、電極は平板の両端のみならず、必要に
より平板20の途中の所要個所に複数形成しても良く、
これによりさらに増倍能率を向上させることができる。
In the secondary electron multiplying device shown in FIG. 2, two flat plate-shaped semiconductor ceramics 20 having electrodes 21 and 22 formed at both ends are arranged in parallel to form a continuous passage 23. The outer surface of the flat plate 20 may be insulated, but the inner surface is wholly or partially exposed from one end to the other end of the flat plate 20. It should be noted that a plurality of electrodes may be formed not only at both ends of the flat plate but also at required places in the middle of the flat plate 20, if necessary.
Thereby, the multiplication efficiency can be further improved.

【0019】図3に示す二次電子増倍装置は、二次電子
増倍能を有する半導体磁器を円筒状に形成し、両端に電
極31,32を形成した単位筒30を複数本束ねたもの
である。この場合、筒30全体が二次電子増倍能を有す
る半導体磁器で構成されているため、筒30の内面およ
び外面とも二次電子増倍能を有しており、筒30の連続
通路33の内面のみならず、相隣接する筒30の間に生
ずる間隙34も二次電子増倍面として利用することがで
きる。
The secondary electron multiplying apparatus shown in FIG. 3 is formed by bundling a plurality of unit cylinders 30 each having a semiconductor porcelain having a secondary electron multiplying ability formed in a cylindrical shape and electrodes 31 and 32 formed at both ends. Is. In this case, since the entire cylinder 30 is made of a semiconductor porcelain having a secondary electron multiplying ability, both the inner surface and the outer surface of the cylinder 30 have a secondary electron multiplying ability, and the continuous passage 33 of the cylinder 30 has Not only the inner surface but also the gap 34 formed between the adjacent cylinders 30 can be used as the secondary electron multiplication surface.

【0020】図4に示す二次電子増倍装置は、半導体磁
器からなる三角柱状中空体40をピラミッド形に複数個
束ねたもので、両端に電極41、42を形成したもので
ある。この構造によれば、図3のものと同様に、三角柱
状中空体40の連続通路43の内面のみならず、相隣接
する複数個の中空体40の間に生じる間隙44をも二次
電子増倍面として利用できる。
The secondary electron multiplying device shown in FIG. 4 comprises a plurality of triangular prism-shaped hollow bodies 40 made of semiconductor porcelain, which are bundled in a pyramid shape, and electrodes 41 and 42 are formed at both ends thereof. According to this structure, as in the case of FIG. 3, not only the inner surface of the continuous passage 43 of the triangular columnar hollow body 40 but also the gap 44 generated between the adjacent hollow bodies 40 is increased in the secondary electron. Available as double side.

【0021】図5に示す二次電子増倍装置は、複数の筒
状半導体磁器50を捩り合せて構成したもので、両端に
は電極51、52が形成されている。この筒状半導体磁
器50からなる二次電子増倍装置は図1に示した直線状
の二次電子増倍管1にくらべてコレクタ側からの反極性
粒子(たとえば入来電子に対して陽イオン)の正帰還が
抑制でき、さらに見掛長に対して連続通路53の有効長
を長くすることができ、動作をさらに安定させ、かつ二
次電子増倍利得を高めることができる。
The secondary electron multiplying apparatus shown in FIG. 5 is constructed by twisting a plurality of cylindrical semiconductor porcelains 50, and electrodes 51 and 52 are formed at both ends. The secondary electron multiplier made up of the cylindrical semiconductor porcelain 50 has an antipolar particle (for example, cations for incoming electrons with respect to incoming electrons) from the collector side as compared with the linear secondary electron multiplier 1 shown in FIG. 2) can be suppressed, the effective length of the continuous passage 53 can be made longer than the apparent length, the operation can be further stabilized, and the secondary electron multiplication gain can be increased.

【0022】図6に示す二次電子増倍装置は、外径がほ
ぼ断面八角形の筒状半導体磁器60を多数束ねたもの
で、両端には電極61、62が形成されている。この筒
状半導体磁器60の外面には軸方向に八角形の辺が一す
みおきに断面1/4円と成る溝が形成されている。した
がって、筒状半導体磁器60の連続通路63のみなら
ず、相隣接する筒状半導体磁器60の間に生ずる円筒状
間隙64も二次電子増倍面として利用でき、しかも横断
面が均一に揃っているため、たとえば、絵素の均一性と
規則性を必要とする影像増倍管などの用途に特に適合す
る。
The secondary electron multiplying device shown in FIG. 6 is a bundle of a large number of cylindrical semiconductor porcelains 60 having an outer diameter of an octagonal cross section, and electrodes 61 and 62 are formed at both ends. On the outer surface of the cylindrical semiconductor porcelain 60, grooves each having an octagonal side in the axial direction and having a cross section of 1/4 circle are formed. Therefore, not only the continuous passage 63 of the cylindrical semiconductor porcelain 60 but also the cylindrical gap 64 generated between the adjacent cylindrical semiconductor porcelains 60 can be used as the secondary electron multiplying surface, and moreover, the cross section is uniform. Therefore, it is particularly suitable for applications such as image intensifier tubes that require the uniformity and regularity of picture elements.

【0023】図7に示す二次電子増倍装置は、連続通路
73を有し、外径が横断面六角形の筒状半導体磁器70
を多数束ねたもので、両端には電極71、72が形成さ
れており、相隣接する筒状半導体磁器70間に隙間をな
くしたものである。
The secondary electron multiplying device shown in FIG. 7 has a continuous passage 73, and a cylindrical semiconductor ceramic 70 having an outer diameter of hexagonal cross section.
Are bundled together, and electrodes 71 and 72 are formed at both ends thereof so that a gap is eliminated between adjacent cylindrical semiconductor ceramics 70.

【0024】なお、図6、図7の各種の例についても、
必要に応じて図5のように、捩って使用してもよい。
The various examples shown in FIG. 6 and FIG.
If necessary, it may be twisted as shown in FIG.

【0025】図8に示す二次電子増倍装置は、両端に電
極81、82を形成した板状若しくは直方体状半導体磁
器80に、電極81、82に垂直に複数個の連続通路8
3を形成したものである。
In the secondary electron multiplying device shown in FIG. 8, a plate-like or rectangular parallelepiped semiconductor porcelain 80 having electrodes 81 and 82 formed at both ends is provided with a plurality of continuous passages 8 perpendicular to the electrodes 81 and 82.
3 is formed.

【0026】[0026]

【発明の効果】この発明によれば、二次電子放出係数が
大きく、高抵抗でフラット若しくは正の温度特性を有す
る二次電子増倍装置用半導体磁器組成物が得られるの
で、抵抗値を従来の1/10以上に下げても熱暴走を起
こさず、長時間、高真空中で動作するため、従来よりも
一桁以上広いリニアリテーが得られ応用範囲が格段に広
くなるという効果が得られる。さらに従来では困難であ
った100から200℃の高温雰囲気下での動作が可能
になる。また素子抵抗を大幅に下げられるため素子の発
熱量が増加し、その結果素子温度が高くなるため素子表
面にガス化された被分析試料が吸着されにくくなり、結
果として素子表面がクリーンなまま保たれる為、寿命が
従来よりも長くなると言うメリットが生じる。
According to the present invention, a semiconductor porcelain composition for a secondary electron multiplier having a large secondary electron emission coefficient, a high resistance and a flat or positive temperature characteristic can be obtained. Even if it is reduced to 1/10 or more of that, thermal runaway does not occur, and since it operates in a high vacuum for a long time, it is possible to obtain a linear retainer that is one digit or more wider than the conventional one, and the application range is significantly widened. Further, it becomes possible to operate in a high temperature atmosphere of 100 to 200 ° C., which was difficult in the past. In addition, since the element resistance can be greatly reduced, the amount of heat generated by the element increases, and as a result, the element temperature rises, making it difficult for the gasified sample to be adsorbed to the element surface, and as a result, keeping the element surface clean. Since it drips, there is an advantage that the life is longer than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】 二次電子増倍利得を測定するための実験回路
図である。
FIG. 1 is an experimental circuit diagram for measuring a secondary electron multiplication gain.

【図2】 この発明に係る半導体磁器を用いた二次電子
増倍装置の構造の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of the structure of a secondary electron multiplying device using a semiconductor ceramic according to the present invention.

【図3】 この発明に係る半導体磁器を用いた二次電子
増倍装置の構造の他の例を示す斜視図である。
FIG. 3 is a perspective view showing another example of the structure of the secondary electron multiplying device using the semiconductor porcelain according to the present invention.

【図4】 この発明に係る半導体磁器を用いた二次電子
増倍装置の構造の他の例を示す斜視図である。
FIG. 4 is a perspective view showing another example of the structure of the secondary electron multiplying device using the semiconductor porcelain according to the present invention.

【図5】 この発明に係る半導体磁器を用いた二次電子
増倍装置の構造の他の例を示す斜視図である。
FIG. 5 is a perspective view showing another example of the structure of the secondary electron multiplying device using the semiconductor porcelain according to the present invention.

【図6】 この発明に係る半導体磁器を用いた二次電子
増倍装置の構造の他の例を示す斜視図である。
FIG. 6 is a perspective view showing another example of the structure of the secondary electron multiplying device using the semiconductor porcelain according to the present invention.

【図7】 この発明に係る半導体磁器を用いた二次電子
増倍装置の構造の他の例を示す斜視図である。
FIG. 7 is a perspective view showing another example of the structure of the secondary electron multiplying device using the semiconductor porcelain according to the present invention.

【図8】 この発明に係る半導体磁器を用いた二次電子
増倍装置の構造の他の例を示す斜視図である。
FIG. 8 is a perspective view showing another example of the structure of the secondary electron multiplying device using the semiconductor porcelain according to the present invention.

【図9】 温度変化に対する抵抗値の変化を温度の関数
として示した図である。
FIG. 9 is a diagram showing a change in resistance value with respect to a change in temperature as a function of temperature.

【符号の説明】[Explanation of symbols]

1、30、40、50、60、70:筒状半導体磁器、
20、80:平板状半導体磁器。
1, 30, 40, 50, 60, 70: Cylindrical semiconductor porcelain,
20, 80: Flat semiconductor porcelain.

【手続補正書】[Procedure amendment]

【提出日】平成5年7月8日[Submission date] July 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【課題を解決するための手段】この発明は、前記課題を
解決するための手段として、酸化亜鉛及び酸化チタンか
らなる主成分に酸化ニッケルを所定量添加し、酸化亜鉛
55〜80モル%、酸化チタン12〜30モル%、酸化
ニッケル0.2〜20モル%からなる組成、好ましく
は、酸化亜鉛60〜70モル%、酸化チタン20〜29
モル%、酸化ニッケル5〜20モル%からなる組成とす
るようにしたものである。
[Means for Solving the Problems] As a means for solving the above problems, the present invention comprises adding a predetermined amount of nickel oxide to a main component composed of zinc oxide and titanium oxide to obtain zinc oxide in an amount of 55 to 80 mol% and oxidized. Composition consisting of 12 to 30 mol% titanium and 0.2 to 20 mol% nickel oxide, preferably 60 to 70 mol% zinc oxide, 20 to 29 titanium oxide.
The composition is made up of mol% and nickel oxide 5 to 20 mol%.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

【表1】 主成分(モル%) 焼成温度 比抵抗 利得 特性 No. ZnO TiO2 NiO ℃ (Ω・cm) at 3KV 曲線 1 74 26 0 1380 2.8×105 2.0×106 c 2 55 31 14 1330 ∞ 3 55 28 17 1330 6.3×108 2.5×108 a 4 55 25 20 1320 3.8×108 3.3×106 a 5 60 32 8 1360 ∞ 6 60 29 11 1360 1.5×109 2.1×106 a 7 60 26 14 1320 7.7×108 2.8×106 a 8 60 23 17 1320 3.4×108 3.1×106 a 9 60 20 20 1320 9.2×107 3.0×106 a 10 60 17 23 1300 4.6×107 3.2×106 c 11 65 32 3 1360 ∞ 12 65 30 5 1360 1.1×109 1.5×106 b 13 65 27 8 1360 8.7×108 2.4×106 b 14 65 24 11 1360 1.3×108 3.2×106 a 15 65 21 14 1320 2.4×107 2.8×106 a 16 65 18 17 1320 6.7×106 2.4×106 a 17 65 15 20 1320 4.0×105 3.6×106 a 18 65 12 23 1300 3.8×104 3.2×106 c 19 70 27 3 1360 3.6×104 1.0×106 b 20 70 25 5 1360 8.7×107 2.1×106 b 21 70 22 8 1360 2.5×107 3.0×106 b 22 70 19 11 1320 8.9×106 3.2×106 a 23 70 16 14 1320 1.5×106 4.5×106 a 24 70 13 17 1320 9.6×106 3.8×106 a 25 70 10 20 1320 印加不能 26 75 21.9 0.1 1360 7.6×107 1.8×106 c 27 75 21.8 0.2 1360 8.7×107 1.4×106 a 28 75 22 3 1360 9.0×107 2.6×106 b 29 75 20 5 1360 4.3×107 3.1×106 b 30 75 17 8 1360 1.2×107 2.8×106 b 31 75 14 11 1320 8.9×106 4.2×106 a 32 75 11 14 1320 1.0×104 5.3×106 a 33 75 8 17 1320 印加不能 34 80 17 3 1360 8.7×105 9.5×10535 80 15 5 1360 3.3×105 2.8×106 [Table 1] Main component (mol%) Firing temperature Resistivity Gain characteristics No. ZnO TiO 2 NiO ℃ (Ω ・ cm) at 3KV Curve 1 74 26 0 1380 2.8 × 10 5 2.0 × 10 6 c 2 55 31 14 1330 ∞ 3 55 28 17 1330 6.3 × 10 8 2.5 × 10 8 a 4 55 25 20 20 1320 3.8 × 10 8 3.3 × 10 6 a 5 60 32 32 8 1360 ∞ 6 60 29 11 11 1360 1.5 × 10 9 2.1 × 10 6 a 7 60 26 14 14 1320 7.7 x 10 8 2.8 x 10 6 a 8 60 60 23 17 1320 3.4 x 10 8 3.1 x 10 6 a 9 60 20 20 1320 9.2 x 10 7 3.0 x 10 6 a 10 60 17 17 23 1300 4.6 x 10 7 3.2 x 10 6 c 11 65 32 3 1360 ∞ 12 12 65 30 5 1360 1.1 × 10 9 1.5 × 10 6 b 13 65 27 27 8 1360 8.7 × 10 8 2.4 × 10 6 b 14 65 24 11 1360 1.3 × 10 8 3.2 × 10 6 a 15 65 21 14 1320 2.4 x 10 7 2.8 x 10 6 a 16 65 18 17 1320 6.7 x 10 6 2.4 x 10 6 a 17 65 15 20 1320 4.0 x 10 5 3.6 x 10 6 a 18 65 12 12 23 1300 3.8 x 10 4 3.2 x 10 6 c 19 70 27 273 1360 3.6 x 10 4 1.0 × 10 6 b 20 70 25 5 1360 8.7 × 10 7 2.1 × 10 6 b 21 70 22 22 1360 2.5 × 10 7 3.0 × 10 6 b 22 70 19 19 11 1320 8.9 × 10 6 3.2 × 10 6 a 23 70 16 14 1320 1.5 × 10 6 4.5 × 10 6 a 24 70 13 13 17 1320 9.6 × 10 6 3.8 × 10 6 a 25 70 10 20 1320 Not applicable 26 75 21.9 0.1 0.1 1360 7.6 × 10 7 1.8 × 10 6 c 27 75 21.8 0.2 1360 8.7 × 10 7 1.4 × 10 6 a 28 75 75 2 3 1360 9.0 × 10 7 2.6 × 10 6 b 29 75 20 5 1360 4.3 × 10 7 3.1 × 10 6 b 30 75 75 178 1360 1.2 x 10 7 2.8 x 10 6 b 31 75 14 11 1320 8.9 x 10 6 4.2 × 10 6 a 32 75 75 11 14 1320 1.0 × 10 4 5.3 × 10 6 a 33 75 8 17 1320 Not applicable 34 80 17 3 1360 8.7 × 10 5 9.5 × 10 5 b 35 80 15 15 5 1360 3.3 × 10 5 2.8 × 10 6 b

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】なお、前記実施例では、原料として酸化物
を用いたが、焼成により酸化物となるものであれば、炭
酸塩、水酸化物、硝酸塩、塩化物などの無機化合物、カ
ルボン酸塩、アルコキシドなどの有機化合物を用いても
よい。また、酸化ニッケルは必ずしも原料粉末に添加す
る必要は無く、酸化亜鉛と酸化チタンとの混合粉末を所
定形状に成形した後、仮焼し、この仮焼物を熱処理によ
り酸化ニッケルとなるニッケル化合物の溶液に浸漬して
又はその他の手段により仮焼物にニッケル化合物を含浸
させ、その後焼成してもよい。
In the above examples, oxides were used as the raw materials, but if they become oxides by firing, inorganic compounds such as carbonates, hydroxides, nitrates, chlorides, carboxylates, You may use organic compounds, such as an alkoxide. Further, nickel oxide is not necessarily added to the raw material powder, a mixed powder of zinc oxide and titanium oxide is molded into a predetermined shape, then calcined, and the calcined product is a solution of a nickel compound that becomes nickel oxide by heat treatment. Alternatively, the calcined product may be impregnated with the nickel compound by immersing in or by other means, and then calcined.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 康信 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunobu Yoneda 2-26-10 Tenjin, Nagaokakyo City, Kyoto Prefecture Murata Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛55〜80モル%、酸化チタン
12〜30モル%、及び酸化ニッケル0.2〜20モル
%からなることを特徴とする二次電子増倍装置用半導体
磁器組成物。
1. A semiconductor porcelain composition for a secondary electron multiplier, comprising 55-80 mol% zinc oxide, 12-30 mol% titanium oxide, and 0.2-20 mol% nickel oxide.
JP16744092A 1992-06-25 1992-06-25 Semiconductor ceramic composition for secondary-electron multiplication device Pending JPH0613020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16744092A JPH0613020A (en) 1992-06-25 1992-06-25 Semiconductor ceramic composition for secondary-electron multiplication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16744092A JPH0613020A (en) 1992-06-25 1992-06-25 Semiconductor ceramic composition for secondary-electron multiplication device

Publications (1)

Publication Number Publication Date
JPH0613020A true JPH0613020A (en) 1994-01-21

Family

ID=15849753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16744092A Pending JPH0613020A (en) 1992-06-25 1992-06-25 Semiconductor ceramic composition for secondary-electron multiplication device

Country Status (1)

Country Link
JP (1) JPH0613020A (en)

Similar Documents

Publication Publication Date Title
US4357426A (en) Humidity sensitive ceramics
US3612946A (en) Electron multiplier device using semiconductor ceramic
US6380118B1 (en) Nonlinear dielectric ceramic, pulse generating capacitor, high-pressure vapor discharge lamp circuit, and high-pressure vapor discharge lamp
US4582813A (en) Sintered alumina product
US6356037B1 (en) Dielectric ceramic and a capacitor using the same
US5294577A (en) Semiconductor ceramic composition for secondary electron multipliers
JPH0613020A (en) Semiconductor ceramic composition for secondary-electron multiplication device
US3790840A (en) Secondary electron multiplying device using semiconductor ceramic
JP2623920B2 (en) Semiconductor porcelain composition for secondary electron multiplier
Kanayama et al. C–Al Parallel Plate Dynode Electron Multiplier
GB979866A (en) Improvements in or relating to ceramic materials and to electrical capacitors comprising them
JP2001064021A (en) Complex oxide having high seebeck coefficient and high electroconductivity
JPS6286656A (en) Manufacture of channel plate
KR20010039802A (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
JP2002175902A (en) Semiconducting ceramic, degaussing circuit for positive temperature coefficient thermistor for demagnetization, and method of manufacturing the ceramic
JP2944697B2 (en) Voltage non-linear resistor ceramic composition
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JPH057835B2 (en)
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JPS5992503A (en) Semiconductor porcelain unit with voltage depending nonlinear resistance property
Bera et al. Structural and electrical properties of (Pb1xCaX)(Li1/4La1/4W1/2) O3
JPS598947B2 (en) Secondary electron multiplier
CN1065219C (en) Semiconductor ceramics and manufacturing method thereof
Kerr et al. Oxidic semiconducting glass continuous dynode electron multipliers
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition