JPH0442609A - Automatic clear circuit - Google Patents

Automatic clear circuit

Info

Publication number
JPH0442609A
JPH0442609A JP15076490A JP15076490A JPH0442609A JP H0442609 A JPH0442609 A JP H0442609A JP 15076490 A JP15076490 A JP 15076490A JP 15076490 A JP15076490 A JP 15076490A JP H0442609 A JPH0442609 A JP H0442609A
Authority
JP
Japan
Prior art keywords
circuit
current
nmos
potential
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15076490A
Other languages
Japanese (ja)
Inventor
Masami Kurosaki
正己 黒崎
Hiroyuki Sugino
杉野 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15076490A priority Critical patent/JPH0442609A/en
Publication of JPH0442609A publication Critical patent/JPH0442609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To reduce the circuit scale by connecting the output of a clock generating means to 1st and 2nd current transfer means, transferring the current of a 1st level to the 1st current transfer means by the detection of the signal of the clock generating means, and transferring the current of a 2nd level to the 2nd current transfer means by the detection of the same signal of the clock generating means. CONSTITUTION:The difference of a current transfer circuit 3 from the current transfer circuit of a conventional circuit resides in that an NMOS is eliminated from the conventional circuit but an NMOS 31 and a PMOS 32 are added instead. Moreover, the gate of the NMOS 31 is connected to the output terminal of a clock generating circuit 2, the source is connected to, a ground level poser supply Vss and the gate of the PMOS 32 is connected to the output terminal of the clock generating circuit 2 and the source is connected to the drain of the NMOS 31 and the drain is connected to the source of the NMOS 33. When the NMOS 31 and the PMOS 32 are in an energized state and also the NMOS 33 is energized, a through-current flows to a line A shown in figure. then a charge is stored in a capacitor 41 by the through-current. Thus, the automatic clear circuit acted similarly to the conventional circuit is realized regardless of the reduced circuit scale.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電気回路の電源立上がりゃクロック信号検出
に用いられるオートクリア回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an auto-clear circuit used for detecting a clock signal when power is turned on in an electric circuit.

〔従来の技術〕[Conventional technology]

第4図は従来のオートクリア回路の構成を示す回路図で
、図において、(1)は電源整形回路で、この電源整形
回路(1)はPチャネル型MO8)ランジスタ(以下P
MOBと呼ぶ)aυのゲートが接地電位Vssに接続さ
れ、ソースが電源電位Vddに接続され、コンデンサα
2の一方の極が接地電位Vssに接続され、他方極がp
MO8(111のドレインに接続されている。(7)は
パルス、発生回路で、このパルス発生回路(テ)はイン
バータ(5)とインバータのト遅延回路(□□□が直列
に接続され、この直列接続回路とインバータ(資)とが
並列に接続され、そして遅延回路(2)の出力端とイン
バータl?→の出力端がNORゲート(2)に接続され
る。(2)はクロック発生回路で、このクロック発生回
路(2)の出力端がインバータ(2)とインバータ(2
)の入力端に接続される。tB>は電流伝達回路で、こ
の電流伝達回路tB’)は電源整形回路(1)とパルス
発生回路(テ)に接続される。この電流伝達回路IQ)
はNMO8@)のゲートがNORゲート(ト)の出力端
に接続され、ソースが接地電位V8Sに接続され、NM
O8に33のゲートがPMOEt(111とコンデンサ
(17Jの他方極との共通接続点に接続され、ソースが
NMO8Q!l)のドレインに接続される。(4)は電
荷蓄積回路で、電流伝達回路tB”)に接続される。こ
の電荷蓄積回路(4)はコンデンサ(ロ)の一方極がN
MOS(2)のドレインに接続され、他方極が電源電位
VDDに接続され、抵抗(至)の一方端がNMO8曽の
ドレインに接続され、他方端が電源電位VDDに接続さ
れる。(6)は波形整形回路で、電荷蓄積回路(4)K
接続式れる。この波形整形回路(6)はインバーターと
インバータ拗が直列に接続でれ、インバータ(9)の入
力端がNMO8@のドレインとコンデンサ(9)の一方
極と抵抗(イ)の一方端との共通接続点に接続される。
Figure 4 is a circuit diagram showing the configuration of a conventional auto clear circuit.
The gate of aυ (referred to as MOB) is connected to the ground potential Vss, the source is connected to the power supply potential Vdd, and the capacitor α
One pole of 2 is connected to ground potential Vss, and the other pole is connected to p
It is connected to the drain of MO8 (111). (7) is a pulse generation circuit, and this pulse generation circuit (TE) is connected in series with the inverter (5) and the inverter's delay circuit (□□□). A series connection circuit and an inverter are connected in parallel, and the output end of the delay circuit (2) and the output end of the inverter l?→ are connected to a NOR gate (2). (2) is a clock generation circuit. The output terminal of this clock generation circuit (2) is connected to the inverter (2) and the inverter (2).
) is connected to the input end of the tB> is a current transfer circuit, and this current transfer circuit tB') is connected to the power supply shaping circuit (1) and the pulse generation circuit (TE). This current transfer circuit IQ)
The gate of NMO8@) is connected to the output terminal of the NOR gate (G), the source is connected to the ground potential V8S, and NM
The gate of 33 in O8 is connected to the drain of PMOEt (connected to the common connection point between 111 and the other pole of the capacitor (17J, and the source is NMO8Q!l). (4) is a charge storage circuit, and a current transfer circuit tB"). This charge storage circuit (4) has one pole of the capacitor (b) connected to N.
It is connected to the drain of MOS (2), the other pole is connected to power supply potential VDD, one end of the resistor (to) is connected to the drain of NMO8, and the other end is connected to power supply potential VDD. (6) is a waveform shaping circuit, and charge storage circuit (4)K
Can be connected. This waveform shaping circuit (6) has an inverter and an inverter connected in series, and the input terminal of the inverter (9) is common to the drain of NMO8@, one pole of the capacitor (9), and one end of the resistor (A). Connected to a connection point.

(6)はリセット回路で、このリセット回路の入力端が
インバータ働の出力端に接続される。1次に動作につい
て第4図と第5図の電位波形図を用いて説明する。電源
aが投入されると、電源整形回路(1)のPMO8σD
とコンデンサα2の時定数により、電位すは第5図中)
の波形になる。そして電位すがN M OS (33)
のしきい値電FE V?1133 f越えるとN M 
O8(33)には電流が流れ始める。またクロック発生
回路(2)よりクロック信号がパルス発生回路(7ンに
入力されると、電位fは遅延回路(73)によって第5
図(flの波形になり、電位gはインバータ(74)に
よって第5図(g)の波形になる。そして、電位f2g
が共に”L′である時にNORゲート(75)の出力電
位りは1B″になり、NMO8(81)が導通状態にな
る。以下、パルス伝達回路(γ)のパルス発生の繰り返
しにより、電位りが“H′である時にN M O8(8
1)の導通状態は繰シ返される。NMOS (81)と
N M OS (33)が同時に導通状態であると、電
荷蓄積回路(4)のコンデンサ(41)が充電式れて電
位dが低下する。そして電位dがインバータ(51)の
しきい値電位V’r HISlよりも低下したところで
、波形整形回路(6)の出力電位が”B”からL”に変
わる。この信号はリセット回路(6)へ伝達される。
(6) is a reset circuit, and the input terminal of this reset circuit is connected to the output terminal of the inverter. The primary operation will be explained using the potential waveform diagrams of FIGS. 4 and 5. When power supply a is turned on, PMO8σD of power supply shaping circuit (1)
and the time constant of capacitor α2, the potential (in Fig. 5)
The waveform becomes And the potential is N M OS (33)
The threshold voltage FE V? 1133 f exceeds N M
Current begins to flow through O8 (33). Further, when the clock signal from the clock generation circuit (2) is input to the pulse generation circuit (7), the potential f is applied to the fifth pulse generation circuit (73) by the delay circuit (73).
The potential g becomes the waveform shown in Fig. 5(g) by the inverter (74).Then, the potential f2g
When both are "L", the output potential of the NOR gate (75) becomes 1B", and NMO8 (81) becomes conductive. Hereinafter, by repeating pulse generation in the pulse transmission circuit (γ), N M O8 (8
The conductive state of 1) is repeated. When NMOS (81) and NMOS (33) are conductive at the same time, the capacitor (41) of the charge storage circuit (4) becomes rechargeable and the potential d decreases. Then, when the potential d falls below the threshold potential V'r HISl of the inverter (51), the output potential of the waveform shaping circuit (6) changes from "B" to L. This signal is sent to the reset circuit (6). transmitted to.

例えば、電源電位VDD:5V、接地電位Vas = 
OV tN M OS (33) (7)しきい値電位
V?1i33 = l V 、 イア ハーメ(51)
のしきい値電位VTMI%l== 2,5 Vであると
すると、電位dが2.5V以下になると、波形整形回路
(6)の出力電位eが5vから0■に変わる。
For example, power supply potential VDD: 5V, ground potential Vas =
OV tN M OS (33) (7) Threshold potential V? 1i33 = l V, Ia Herme (51)
Assuming that the threshold potential VTMI%l==2.5 V, when the potential d becomes 2.5 V or less, the output potential e of the waveform shaping circuit (6) changes from 5 V to 0.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のオートクリア回路は以上のように構成されていた
ので、パルス発生回路+S)は、インバータ(71)〜
(74)及びNORゲー) (75)を必要とし、その
ため回路規模が大きくなるという問題点かあつ九。
Since the conventional auto clear circuit was configured as described above, the pulse generation circuit +S) is connected to the inverter (71) to
(74) and NOR game) (75) is required, which increases the circuit scale.

この発明は上記のような問題点を解消するためになされ
たもので、回路規模を小さくしても従来例と同等の動作
をするオートクリア回路を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide an auto-clear circuit that operates in the same manner as the conventional example even if the circuit scale is reduced.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るオートクリア回路は、電源電圧を整形す
る電源整形手段と、クロック信号を発生するクロック発
生手段と、電源整形手段とクロック発生手段に接続して
りaツク発生手段の信号を検出して、信号のレベルとあ
る一定の関係を有する第1のレベルの電流を伝達する第
1の電流伝達手段及び前記クロック発生手段に接続して
前記クロック発生手段の同質の信号を検出して前記同質
の信号レベルと別の一定の関係を有する第2のレベルの
電流を伝達する第2の電流伝達手段及び前記電源整形手
段に接続して前記電源整形手段の信号のレベルを検出し
て第3のレベルの電流を伝達する第3の電流伝達手段を
含んだ電流伝達手段と前記電流伝達手段に接続するコン
デンサを含んだ電荷蓄積手段と、電荷蓄積手段に接続し
て電荷蓄積手段の出力が所定のレベルより大きいか小ざ
いかを検出して2値化する波形整形手段と、この波形整
形手段に接続され、リセット信号を発生するリセット手
段とを備えたものである。
The auto clear circuit according to the present invention includes power supply shaping means for shaping a power supply voltage, clock generation means for generating a clock signal, and is connected to the power supply shaping means and the clock generation means, and detects a signal from the clock generation means. a first current transmission means for transmitting a first level current having a certain relationship with the signal level; and a first current transmission means connected to the clock generation means to detect a homogeneous signal of the clock generation means and generate a second current transmitting means for transmitting a second level of current having a different fixed relationship with the signal level; and a third current transmitting means connected to the power supply shaping means to detect the level of the signal of the power supply shaping means. a current transmitting means including a third current transmitting means for transmitting a current of a certain level; a charge accumulating means including a capacitor connected to the current transmitting means; The waveform shaping means detects whether the signal is larger or smaller than the level and converts it into a binary value, and the reset means is connected to the waveform shaping means and generates a reset signal.

〔作用〕[Effect]

この発明における電流伝達手段の第1の電流伝達手段は
、クロック発生手段の信号の検出によりwclのレベル
電流を伝達し、第2の電流伝達手段は前記クロック発生
手段の同一信号の検出により第2のレベルの電流を伝達
する。
The first current transmitting means of the current transmitting means in this invention transmits the level current of wcl by detecting the signal of the clock generating means, and the second current transmitting means transmits the level current of wcl by detecting the same signal of the clock generating means. transmits a level of current.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。なお
、前記従来のものの説明と重複する部分は適宜その説明
を省略する。第1図はこの発明の一実施例であるオート
クリア回路の回路図である。
An embodiment of the present invention will be described below with reference to the drawings. Note that the explanation of parts that overlap with the explanation of the conventional one will be omitted as appropriate. FIG. 1 is a circuit diagram of an auto clear circuit which is an embodiment of the present invention.

図にシいて、符号(1) 、 (2) j(4)、 1
5! 、 (a)は前記従来のものと同等である。(8
)は電流伝達回路で、この電流伝達回路(8)の従来例
の電流伝達回路(8)との違いは、従来のもののN M
 OS (81)を取シ除いて、N M OS (31
)とP M OB (32)を設けた点である。
In the figure, the symbols (1), (2) j(4), 1
5! , (a) is equivalent to the conventional one. (8
) is a current transfer circuit, and the difference between this current transfer circuit (8) and the conventional current transfer circuit (8) is that N M
OS (81) is removed and N M OS (31
) and P M OB (32).

また、NMO8(31)はゲートがクロック発生回路(
2)の出力端に接続され、ソースが接地電位VSSに接
続され、PM OS (32)はゲートがクロック発生
回路(2)の出力端に接続され、ソースがNMO8(3
1)のドレインに接続され、ドレインがNMO8(33
)のソースに接続される。
In addition, the gate of NMO8 (31) is the clock generation circuit (
The PMOS (32) has a gate connected to the output terminal of the clock generation circuit (2), and a source connected to the output terminal of the clock generation circuit (2), and a source connected to the ground potential VSS.
1), and the drain is connected to the drain of NMO8 (33
) source.

次に第1図の回路図と第2図の電位波形図と第3図の電
流特性図を用いて動作について説明する。
Next, the operation will be explained using the circuit diagram of FIG. 1, the potential waveform diagram of FIG. 2, and the current characteristic diagram of FIG. 3.

電源が投入されてからN M OS (33)に導通電
流が流れ初めるまでは前記従来のものと同等である。
The process from when the power is turned on until the conduction current begins to flow through the NMOS (33) is the same as that of the conventional system.

クロック発生回路(2)よりクロック信号が発生すると
、このクロック発生回路(2)の出力端の電位Oには第
2図101の信号が出る。NMO8(31)とPMOS
 (32)はインバータの構成になっており、電位Oが
1”または@L″である時には、NMOB(31)とP
 M O8(32)のどちらかが非導通状態となる九め
第1図Aには第3図のように電流は流れない。
When a clock signal is generated from the clock generation circuit (2), a signal 101 in FIG. 2 is outputted to the potential O at the output end of the clock generation circuit (2). NMO8 (31) and PMOS
(32) has an inverter configuration, and when the potential O is 1'' or @L'', NMOB (31) and P
When one of M08 (32) is in a non-conducting state, no current flows in FIG. 1A, as shown in FIG. 3.

しかしながら、クロック発生回路(2)の信号が1″か
ら“し”に変わる時とm  @L”から@E”に斐わる
瞬間に電位Oは第2図(01のような中間電位を取る。
However, at the instant when the signal of the clock generation circuit (2) changes from 1'' to ``S'' and from m@L'' to @E'', the potential O assumes an intermediate potential as shown in FIG. 2 (01).

例えば、クロック発生回路(2)の信号が”L”から1
B”に変わる時には過渡的に第2図(0)の01の中間
電位を取る。この中間電位の内、NM O8(31)の
しきい値電位■Ml1以上でP M OS (32)の
しきい値電位V’rgp以下である時、つまり電位0を
Vcとして、VTMN (Vc (Vyhp     
   ・・・・・・・・・・・・・・・・・−(1)が
成立する時にN M OS (31)とP M O8(
32)は過渡的に導通状態になり、N M O8(31
)とPMOS(32)が導通状態でしかもN M O8
(33)が導通状態である時に、第1図Aには第3図の
ような慣通電流Atが流れる。そしてこの慣通電流人1
によりコンデンサ(41)に電荷が蓄えられる。以下、
電位Oが上記(1)式の関係を満たす時に慣通電流A1
が流れ、コンデンサ(41)への電荷蓄積が繰シ返され
る。コンデンサ(41)へ電荷が蓄積場れると、電位d
は低下する。そして、この電位dがインバータ(51)
のしきい値電位VTRI%1以下になると、インバータ
(52)の出力端の電位eは1「から:L”に変わる。
For example, the signal of the clock generation circuit (2) changes from "L" to 1.
When changing to "B", the intermediate potential of 01 in Figure 2 (0) is transiently taken. Among these intermediate potentials, when the threshold potential of NMO8 (31) is higher than ■Ml1, PMOS (32) When the threshold potential V'rgp or less, that is, the potential 0 is set as Vc, VTMN (Vc (Vyhp
・・・・・・・・・・・・・・・・When (1) holds true, N M OS (31) and P M O8 (
32) becomes conductive transiently, and N M O8 (31
) and PMOS (32) are in a conductive state and N M O8
When (33) is in a conductive state, a normal current At as shown in FIG. 3 flows in FIG. 1A. And this common current person 1
As a result, charge is stored in the capacitor (41). below,
When the potential O satisfies the relationship of equation (1) above, the common current A1
flows, and charge accumulation in the capacitor (41) is repeated. When charge is accumulated in the capacitor (41), the potential d
decreases. Then, this potential d is applied to the inverter (51)
When the threshold voltage VTRI% becomes less than 1, the potential e at the output terminal of the inverter (52) changes from 1 "to:L".

この信号はリセット回路(6)へ伝達される。This signal is transmitted to the reset circuit (6).

例えば電源電位Voo = 5V s接地電位Vss=
OV y NM O8(31) ノしきい値電位、 V
’ram =lV 、 PMOS (32)のしきい値
電位VTgp = 4V 、 (:/ バー p (5
1) (7) L I イ値電位VT)IF+1 ==
 2,5 Vであるとすると、電位Cが1V(Vc(4
Vの条件を満たす時に、慣通電汎A1が流れる。そして
、この慣通電流AiKよって電位dが2.5v以下にな
る時に、波形整形回路(5)の出力電位eが5vからO
V K1ff1わる。
For example, power supply potential Voo = 5V s ground potential Vss =
OV y NM O8 (31) threshold potential, V
'ram = lV, threshold potential of PMOS (32) VTgp = 4V, (:/bar p (5
1) (7) L I value potential VT) IF+1 ==
Assuming that the voltage is 2.5 V, the potential C is 1 V (Vc (4
When the condition of V is satisfied, the normal current flow A1 flows. When the potential d becomes 2.5v or less due to this common current AiK, the output potential e of the waveform shaping circuit (5) changes from 5v to O.
V K1ff1 waru.

なお、上記実施例では1H′″から@し”に変化する信
号をリセット回路に伝達した場合を示し九が、電流伝達
回路(8)と電荷蓄積回路(4)の電源電位VDDと接
地電位Vssを逆にして、N M O8(31)をPM
OSに、PMOS(32)をNMO8にすることにより
“L”から1″に変化する信号をリセット回路に伝達し
ても上記実施例と同等の効果を奏する。
In the above embodiment, the case is shown in which a signal changing from 1H''' to 1H''' is transmitted to the reset circuit. Reverse and convert N M O8 (31) to PM
Even if a signal changing from "L" to "1" is transmitted to the reset circuit by setting the PMOS (32) to NMO8 in the OS, the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、クロック発生手段の出
力を第1と第2の電流伝達手段に接続するような構成に
したので、回路規模を小さくすることが出来る効果があ
る。
As described above, according to the present invention, since the output of the clock generation means is connected to the first and second current transmission means, there is an effect that the circuit scale can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例であるオートクリア回路の
回路図、第2図は第1図のオートクリア回路の動作を説
明するための電位波形図、第3図は第1図のオートクリ
ア回路の動作を説明するための電流特性図、第4図は従
来のオートクリア回路の回路図、第5図は第4図の従来
のオートクリア回路の動作を説明する之めの電位波形図
である。 図において、(1)は電源整形回路、(2)はクロック
発生回路、(8)は電流伝達回路、(4)は電荷蓄積回
路、(6)は波形整形回路%(6)はリセット回路を示
す。 なお、図中、同一符号は同一 または相当部分を示す。
Fig. 1 is a circuit diagram of an auto clear circuit which is an embodiment of the present invention, Fig. 2 is a potential waveform diagram for explaining the operation of the auto clear circuit of Fig. 1, and Fig. 3 is a circuit diagram of an auto clear circuit of Fig. 1. A current characteristic diagram to explain the operation of the clear circuit, Fig. 4 is a circuit diagram of a conventional auto clear circuit, and Fig. 5 is a potential waveform diagram to explain the operation of the conventional auto clear circuit shown in Fig. 4. It is. In the figure, (1) is a power supply shaping circuit, (2) is a clock generation circuit, (8) is a current transfer circuit, (4) is a charge storage circuit, (6) is a waveform shaping circuit, and (6) is a reset circuit. show. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  電源電圧を整形する電源整形手段と、クロック信号を
発生するクロック発生手段と、前記電源整形手段と前記
クロック発生手段に接続して前記クロック発生手段の信
号を検出してこの信号のレベルとある一定の関係を有す
る第1のレベルの電流を伝達する第1の電流伝達手段及
び前記クロック発生手段に接続して前記クロック発生手
段の同質の信号を検出して前記同質の信号のレベルと別
の一定の関係を有する第2のレベルの電流を伝達する第
2の電流伝達手段と、及び前記電源整形手段に接続して
前記電源整形手段の信号を検出して第3のレベルの電流
を伝達する第3の電流手段を含んだ電流伝達手段と、前
記電流伝達手段に接続するコンデンサを含んだ電荷蓄積
手段と、前記電荷蓄積手段に接続して前記電荷蓄積手段
の出力が所定のレベルより大きいか小さいかを検出して
2値化する波形整形手段と、前記波形整形手段に接続さ
れ、リセット信号を発生するリセット手段とを備えたこ
とを特徴とするオートクリア回路。
a power supply shaping means for shaping a power supply voltage; a clock generation means for generating a clock signal; and a power supply shaping means connected to the power supply shaping means and the clock generation means to detect a signal of the clock generation means and to adjust the level of the signal to a certain level. a first current transmission means for transmitting a current of a first level having a relationship of a second current transmission means for transmitting a second level of current having a relationship of a current transmission means including the current means of No. 3; a charge storage means including a capacitor connected to the current transmission means; What is claimed is: 1. An auto clear circuit comprising: a waveform shaping means that detects and binarizes a signal, and a reset means that is connected to the waveform shaping means and generates a reset signal.
JP15076490A 1990-06-07 1990-06-07 Automatic clear circuit Pending JPH0442609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15076490A JPH0442609A (en) 1990-06-07 1990-06-07 Automatic clear circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15076490A JPH0442609A (en) 1990-06-07 1990-06-07 Automatic clear circuit

Publications (1)

Publication Number Publication Date
JPH0442609A true JPH0442609A (en) 1992-02-13

Family

ID=15503908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15076490A Pending JPH0442609A (en) 1990-06-07 1990-06-07 Automatic clear circuit

Country Status (1)

Country Link
JP (1) JPH0442609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622027A (en) * 2011-01-28 2012-08-01 拉碧斯半导体株式会社 Voltage determination device and clock control device
CN102788174A (en) * 2010-11-29 2012-11-21 卓越产品公司 Switching valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788174A (en) * 2010-11-29 2012-11-21 卓越产品公司 Switching valve
CN102622027A (en) * 2011-01-28 2012-08-01 拉碧斯半导体株式会社 Voltage determination device and clock control device

Similar Documents

Publication Publication Date Title
US7853236B2 (en) Rectifier circuit and RFID tag
US4874971A (en) Edge-sensitive dynamic switch
US5698994A (en) Data output circuit, intermediate potential setting circuit, and semiconductor integrated circuit
US4902907A (en) Reset signal generating circuit
JPH0584597B2 (en)
US4365174A (en) Pulse counter type circuit for power-up indication
CN86103513A (en) Transistor-Transistor Logic to Complementary Metal-Oxide-Semiconductor Input Buffer
JP2003188709A (en) Level shift circuit
US4894559A (en) Buffer circuit operable with reduced power consumption
EP1193871B1 (en) Latch and D-type flip-flop
JPS61112426A (en) Complementary metal oxide semiconductor driving circuit
JPH09257839A (en) Buffering circuit
US6144238A (en) Integrated power-on-reset circuit
JPH0442609A (en) Automatic clear circuit
JPH0267817A (en) Cmos analog switch
JP2022119870A (en) semiconductor circuit
TW459235B (en) Dynamic logic circuit
US5831908A (en) Data output circuit, intermediate potential setting circuit, and semiconductor integrated circuit
TW306055B (en)
CN110943497B (en) Charging and discharging circuit and oscillator
JPH0245380B2 (en)
JPH0746113B2 (en) CMOS power-on detection circuit
JPH0159773B2 (en)
JP3760744B2 (en) Constant voltage output device
JP2000114946A (en) Auto reset circuit