JPH0442081B2 - - Google Patents

Info

Publication number
JPH0442081B2
JPH0442081B2 JP32103987A JP32103987A JPH0442081B2 JP H0442081 B2 JPH0442081 B2 JP H0442081B2 JP 32103987 A JP32103987 A JP 32103987A JP 32103987 A JP32103987 A JP 32103987A JP H0442081 B2 JPH0442081 B2 JP H0442081B2
Authority
JP
Japan
Prior art keywords
rolling
titanium
peeling
laminated
peeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32103987A
Other languages
Japanese (ja)
Other versions
JPH01162503A (en
Inventor
Akio Yamamoto
Hiroshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32103987A priority Critical patent/JPH01162503A/en
Publication of JPH01162503A publication Critical patent/JPH01162503A/en
Publication of JPH0442081B2 publication Critical patent/JPH0442081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、チタンの薄板あるいはチタンクラツ
ド板の製造方法に関し、詳しくはチタンの薄板あ
るいはチタンクラツド板の熱間圧延においては、
薄くすることを目的として、あるいは変形能や変
形抵抗の厚さ方向の非対称性をカバーするために
積層圧延を行ない、圧延後に剥離して薄板とす
る。本発明は、このようなチタンの積層圧延にお
いて圧延中の剥離がなく圧延後の剥離が容易な積
層圧延方法を提供するものである。 (従来の技術) チタンの薄板は、通常熱間圧延及び冷間圧延で
製造する。熱間圧延では圧延機の性能にもよる
が、せいぜい2mm厚程度が限界で、それ以下の厚
さに圧延するには冷間圧延を行なう。冷間圧延は
表面の仕上が精細であるが、大きなミルパワーが
必要であり、製造コストも高い。これに対して熱
間圧延は加熱費用が必要で、圧延表面は冷延に比
べて粗い仕上であるが、比較的小さなミルパワー
で十分なために特に大量に圧延する場合はコスト
的に有利である。表面仕上程度は熱延表面で良い
が、薄くする必要のある場合は従来より積み重ね
圧延が行われて来た。 (発明が解決しようとする問題点) 積み重ね圧延は、薄くすることに関しては優れ
ているものの、界面が接合してしまい圧延後に剥
離することが困難になるという大きな欠点があつ
た。特にチタンやチタン合金の場合はこの接合が
特に強かつたために、剥離が著しく困難であつ
た。 一方積み重ね圧延は、片面のチタンクラツド鋼
板などにおいて非対象圧延による反りの応力発生
を回避するために、チタン面を突き合わせて行う
ことがある。(「チタン・ジルコニウム」Vol.35No.
1 23頁1987年発行)。この場合も、チタン面で
強固に接合し剥離が非常に困難であつた。 従来このような界面の凝着接合防止のために、
界面にセラミツクス系の粉体をぬること、および
界面の酸化が行なわれていた。セラミツクス系の
粉体としては、例えばAl2O3やCaOなどを含むフ
ラツクスや酸化防止剤などが流用されていた。こ
れらのセラミツクス系の粉体による凝着の防止
は、界面に確実に残留しさえすれば効果は確実で
あるが、当然のことながら圧延中に剥離する危険
が著しく大きくなる。従つてこれらの方法では、
接合させながら凝着防止を狙わざるを得ないとい
う矛盾した特性を要求されるために、結果的にど
ちらの特性も不十分とならざるを得ない。このよ
うに適切な剥離剤がないために、極薄材の製造に
は有利な積層圧延は広く普及しなかつた。 本発明は上記問題点を解決し、剥離しないよう
接合させつつ剥離を容易にするという要求を同時
にしかも工業的に満足させた積層圧延方法を提供
する。 (問題点を解決するための手段) 本発明は、チタンないしチタン合金の鋳片を積
層して熱間圧延し、しかる後剥離する板材の製造
において、積層界面に0.2mm以下の厚さの紙ない
しC,H,O,Nからなる有機化合物フイルムを
挾んで熱間圧延することを特徴とするチタンおよ
びチタン合金の積層圧延方法である。 本発明者らは、接合させることと剥離を容易に
するという矛盾した要求特性も、それぞれの特性
を必要とする時期が異なることに着目した。すな
わち、接合させる必要のある時期は熱間圧延時で
あり、剥離が容易である必要のある時期は熱延冷
却後である。熱間圧延時は接合していないと2枚
割れ状に剥離してしまい、積層圧延ができずその
利点を生かせない。熱延後に積層圧延材を剥離す
ることになるが、この場合は圧延時より低温であ
る。もちろん高温に加熱して剥離することも実行
可能であるが、加熱費用などを考慮すれば低温そ
れも常温で剥離する方がはるかに有利である。 以上の考えに基づき、高温で接合性にすぐれ低
温では剥離性に優れた材料を探索した結果、炭化
物窒化物および酸化物がその条件を満たすことを
見出した。すなわちチタンの炭化物窒化物酸化物
は、高温では一部固溶するために比較的良好に接
合を維持するが、常温では多量析出して介在物と
同様の挙動するために、その面は脆化することに
なる。従つて、高温ではチタン、チタン合金のあ
るいは鉄との界面には致命的な剥離要因がないに
もかかわらず、低温ではクラスター状の炭化物窒
化物酸化物が界面に析出して軽圧下で剥離するこ
とになる。このように界面にチタンの炭化物窒化
物酸化物を挾むことによつて、接合させることと
剥離を容易にするという矛盾した要求特性を同時
に満たすことが可能となるのである。 次に、本発明の限定条件を説明する。 チタンないしチタン合金の積層界面に挾む炭
素、窒素および酸素源は、C,N,O以外に特別
に有害な元素を含まないフイルム状物質であれば
問題がないので、紙ないしC,H,O,Nからな
る有機化合物フイルムに限定する。水素はチタン
中へ固溶することから少ない方が望ましいが、現
実には同時に含まれている酸素によつて酸化する
ので特に限定しない。 チタンないしチタン合金の積層界面に挾み込む
紙ないしC,H,O,Nからなる有機化合物フイ
ルムの厚さは、できるかぎり薄いことが望ましい
ので下限は限定しない。しかし厚さが0.2mmを超
えると、生成する炭化物窒化物および酸化物の量
が増加し、圧延中の接合性が低下するだけでな
く、圧延材であるチタンないしチタン合金中への
固溶量が増えて硬化するので上限とした。 (作用) 以上示したとおりチタンの積み重ね圧延におい
て、積み重ね界面に0.2mm以下の厚さの紙ないし
C,H,O,Nからなる有機化合物フイルムを挾
んで圧延することによつて、熱間圧延時は害が少
なく、圧延後の常温では剥離を促進する剥離剤と
して機能する炭化物窒化物酸化物が積み重ね面に
生成されるので、圧延時には剥離の懸念がなくか
つ剥離が容易である積み重ね圧延が可能となる。 剥離後の界面には炭化物窒化物酸化物が残存し
ているが、これは剥離後に酸洗や研磨などの常法
によつて除去することが可能である。 なお本発明の応用例として、第1図に示す合せ
材2がチタンないしチタン合金であり、合せ材の
面を突き合わせて積層して熱間圧延し、しかる後
剥離するクラツド鋼板の製造にも適用が可能であ
る。図中、1は母材3は剥離剤、4は補強のため
の補間材である。 (実施例) 厚さ30mmのJIS1種の純チタン鍛造鋳片を、2枚
積み重ね850℃に加熱して重ね状態で2.5mmまで熱
間圧延を行つた。次いで常温で、約5%の軽圧下
を行なつて剥離した。この際、鍛造鋳片の積み重
ね面に種々の剥離剤を塗りあるいは挾み実施し
た。圧延及び剥離結果を第1表に示す。第1表か
ら明らかなように、本発明方法では圧延中の剥離
もなく熱延後の軽圧下による剥離も容易に実施で
きた。比較に使用したアルミニウム板の場合は、
圧延中に溶融して剥離し、セラミツク系の剥離剤
の場合は、薄塗りでは剥離できず、厚塗りでは圧
延中に剥離した。また、0.3mm厚さの紙の場合は
圧延も剥離も可能であつたが、チタン中へのCお
よびOの固溶が増し、表面の硬化が激しく品質が
劣化した。0.7mm厚さの紙の場合は圧延中に剥離
した。 次に、第1図に示す圧延前クラツド鋼の組立ス
ラブで合せ材2として3.0mm厚さのJIS1種の純チ
タン板を、母材1として19.2%のCr、0.4%のCu、
0.6%のNbおよび0.008%のCを含有する30mm厚の
ステンレス鋼鋳片としたチタンクラツド鋼の鋼片
とチタン面を合わせて対称に重ね、880℃に加熱
して重ね状態で4mmまで熱間圧延を行なつた。次
いで常温で約5%の軽圧下を行なつて剥離した。
この際チタンとチタンの重ね面に、種々の剥離剤
を塗りあるいは挾み実施した。圧延及び剥離結果
を第2表に示した。第2表から明らかなように、
本発明方法では圧延中の剥離もなく熱延後の軽圧
下による剥離も容易に実施できた。比較に使用し
たアルミニウム板の場合は、圧延中に溶融して剥
離し、セラミツク系の剥離剤の場合は、薄塗りで
は剥離できず、厚塗りでは圧延中に剥離した。ま
た0.3mm厚さの紙の場合は圧延も剥離も可能であ
つたが、炭化物酸化物の生成量多くこの除去を行
なつたところ、合せ板のチタン層が局部的に消失
した。0.7mm厚さの紙の場合は圧延中に剥離した。
(Industrial Application Field) The present invention relates to a method for manufacturing a titanium thin plate or a titanium clad plate, and more specifically, in hot rolling of a titanium thin plate or a titanium clad plate.
Laminated rolling is performed for the purpose of thinning or to compensate for the asymmetry of deformability and deformation resistance in the thickness direction, and the sheet is peeled off after rolling to form a thin plate. The present invention provides a method for laminated rolling of titanium in which peeling does not occur during rolling and peeling after rolling is easy. (Prior Art) Titanium sheets are usually produced by hot rolling and cold rolling. Although it depends on the performance of the rolling mill, the maximum thickness of hot rolling is about 2 mm at most, and cold rolling is used to roll to a thickness less than that. Cold rolling produces a fine surface finish, but requires large mill power and is expensive to manufacture. On the other hand, hot rolling requires heating costs and the rolling surface has a rougher finish than cold rolling, but it is advantageous in terms of cost, especially when rolling in large quantities, as a relatively small mill power is sufficient. . A hot-rolled surface may be sufficient for the surface finish, but stack rolling has traditionally been used when thinning is required. (Problems to be Solved by the Invention) Although stack rolling is excellent in terms of making it thin, it has a major drawback in that the interfaces are bonded and it is difficult to separate them after rolling. Particularly in the case of titanium and titanium alloys, this bond is particularly strong, making peeling extremely difficult. On the other hand, stack rolling is sometimes performed with the titanium surfaces butted against each other in order to avoid stress generation due to warping due to asymmetric rolling in single-sided titanium clad steel sheets and the like. (“Titanium/Zirconium” Vol.35No.
1 23 pages, published in 1987). In this case as well, the titanium surface was firmly bonded and peeling was extremely difficult. Conventionally, in order to prevent adhesive bonding at such interfaces,
Ceramic powder was applied to the interface and the interface was oxidized. For example, fluxes and antioxidants containing Al 2 O 3 and CaO have been used as ceramic powders. Preventing adhesion by these ceramic powders is certainly effective as long as they remain at the interface, but of course the risk of peeling during rolling increases significantly. Therefore, in these methods,
Since contradictory properties are required in that it is necessary to aim at adhesion prevention while bonding, both properties are inevitably insufficient as a result. Because of the lack of a suitable release agent, laminated rolling, which is advantageous for producing ultra-thin materials, has not been widely used. The present invention solves the above-mentioned problems and provides a laminated rolling method that satisfies industrially the requirements of bonding without peeling and facilitating peeling. (Means for Solving the Problems) The present invention provides a method for manufacturing plate materials in which titanium or titanium alloy slabs are laminated, hot-rolled, and then peeled off. This is a method for laminated rolling of titanium and titanium alloys, which is characterized in that organic compound films consisting of C, H, O, and N are sandwiched and hot rolled. The present inventors have focused on the fact that the contradictory required properties of facilitating bonding and facilitating peeling are required at different times. That is, the time when bonding is required is during hot rolling, and the time when peeling is required to be easy is after hot rolling and cooling. If they are not bonded during hot rolling, they will separate into two pieces, making it impossible to perform laminated rolling and not be able to take advantage of this advantage. The laminated rolled material is peeled off after hot rolling, but in this case the temperature is lower than that during rolling. Of course, it is possible to peel off the film by heating it to a high temperature, but considering the cost of heating, it is much more advantageous to peel it off at a low temperature, even at room temperature. Based on the above idea, we searched for materials that have excellent bonding properties at high temperatures and excellent peeling properties at low temperatures, and as a result, we found that carbide nitrides and oxides meet these requirements. In other words, titanium carbides, nitrides, and oxides maintain a relatively good bond at high temperatures because they partially form a solid solution, but at room temperatures they precipitate in large amounts and behave similarly to inclusions, causing their surfaces to become brittle. I will do it. Therefore, although there is no fatal peeling factor at the interface between titanium, titanium alloys, or iron at high temperatures, at low temperatures cluster-like carbide nitride oxides precipitate at the interface and peel off under light pressure. It turns out. By sandwiching titanium carbide nitride oxide at the interface in this way, it becomes possible to simultaneously satisfy the contradictory required characteristics of bonding and facilitating peeling. Next, the limiting conditions of the present invention will be explained. There is no problem with the carbon, nitrogen, and oxygen sources sandwiched between the laminated interfaces of titanium or titanium alloys as long as they are film-like materials that do not contain particularly harmful elements other than C, N, and O. It is limited to organic compound films consisting of O and N. Since hydrogen is dissolved as a solid solution in titanium, it is desirable to have a small amount of hydrogen, but in reality it is oxidized by the oxygen contained at the same time, so there is no particular limitation. There is no lower limit to the thickness of the paper or organic compound film made of C, H, O, N, which is sandwiched between the laminated interfaces of titanium or titanium alloys, since it is desirable that it be as thin as possible. However, if the thickness exceeds 0.2 mm, the amount of carbide nitrides and oxides generated increases, which not only reduces the bondability during rolling, but also reduces the amount of solid solution in the rolled titanium or titanium alloy. The upper limit was set because the amount increases and hardens. (Function) As shown above, in stack rolling of titanium, hot rolling can be achieved by sandwiching paper or an organic compound film made of C, H, O, and N with a thickness of 0.2 mm or less at the stack interface. During rolling, stacking rolling is less harmful, and at room temperature after rolling, carbide nitride oxides, which function as release agents that promote peeling, are generated on the stacked surfaces, so there is no concern about peeling during rolling, and peeling is easy. It becomes possible. Although carbide nitride oxide remains at the interface after peeling, this can be removed by a conventional method such as pickling or polishing after peeling. As an application example of the present invention, the laminated material 2 shown in Fig. 1 is made of titanium or a titanium alloy, and the present invention is also applied to the production of clad steel plates in which the surfaces of the laminated materials are butted together, laminated, hot rolled, and then peeled off. is possible. In the figure, reference numeral 1 indicates a release agent for the base material 3, and reference numeral 4 indicates an interpolation material for reinforcement. (Example) Two JIS Class 1 pure titanium forged slabs having a thickness of 30 mm were stacked and heated to 850°C, and hot rolled to 2.5 mm in the stacked state. Then, it was peeled off under a light pressure of about 5% at room temperature. At this time, various release agents were applied or sandwiched to the stacked surfaces of the forged slabs. The rolling and peeling results are shown in Table 1. As is clear from Table 1, in the method of the present invention, there was no peeling during rolling, and peeling by light reduction after hot rolling could be easily carried out. In the case of the aluminum plate used for comparison,
It melted and peeled off during rolling, and in the case of a ceramic release agent, it could not be peeled off when applied thinly, but it peeled off during rolling when applied thickly. In addition, in the case of paper with a thickness of 0.3 mm, rolling and peeling were possible, but the solid solution of C and O in titanium increased, and the surface hardened severely and the quality deteriorated. In the case of paper with a thickness of 0.7 mm, it peeled off during rolling. Next, in the assembled slab of pre-rolled clad steel shown in Fig. 1, a 3.0 mm thick JIS Class 1 pure titanium plate was used as the laminate material 2, 19.2% Cr, 0.4% Cu as the base material 1,
A 30 mm thick stainless steel slab containing 0.6% Nb and 0.008% C was layered symmetrically with a titanium clad steel slab with the titanium surfaces aligned, heated to 880℃, and hot rolled to 4 mm in the stacked state. I did this. Then, it was peeled off under a light pressure of about 5% at room temperature.
At this time, various release agents were applied or sandwiched between the overlapping surfaces of titanium and titanium. The rolling and peeling results are shown in Table 2. As is clear from Table 2,
In the method of the present invention, there was no peeling during rolling, and peeling by light rolling after hot rolling could be easily carried out. In the case of the aluminum plate used for comparison, it melted and peeled off during rolling, and in the case of the ceramic release agent, it could not be peeled off when applied thinly, but when it was applied thickly, it peeled off during rolling. In addition, in the case of paper with a thickness of 0.3 mm, rolling and peeling were possible, but when a large amount of carbide oxide was removed, the titanium layer of the laminated sheet disappeared locally. In the case of paper with a thickness of 0.7 mm, it peeled off during rolling.

【表】【table】

【表】 (発明の効果) 本発明により、圧延前に紙ないしC,H,O,
Nからなる有機化合物フイルムを挾んでおくだけ
で、圧延時には剥離の懸念がなくかつ剥離が容易
であるチタンの積み重ね圧延やチタンクラツド鋼
の積み重ね圧延が可能となる。この結果、圧延工
程が簡略化するだけでなく、冷延材に代替可能な
薄肉の熱延材の製造や、板厚方向が非対称の片面
チタンクラツド材の圧延が容易になる。
[Table] (Effects of the invention) According to the present invention, paper or C, H, O,
By simply sandwiching an organic compound film made of N, stack rolling of titanium and stack rolling of titanium clad steel, which are free from peeling during rolling and are easy to peel, are possible. As a result, not only the rolling process is simplified, but also the production of thin hot-rolled materials that can be substituted for cold-rolled materials and the rolling of single-sided titanium clad materials asymmetrical in the thickness direction are facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の応用例を示すクラツド鋼の圧
延前の組立スラブの断面図である。 1…母材、2…合せ材、3…剥離剤、4…補間
材。
FIG. 1 is a sectional view of an assembled slab of clad steel before rolling, showing an application example of the present invention. 1... Base material, 2... Laminating material, 3... Release agent, 4... Interpolation material.

Claims (1)

【特許請求の範囲】[Claims] 1 チタンないしチタン合金の鋳片を積層して熱
間圧延し、しかる後剥離する板材の製造におい
て、積層界面に0.2mm以下の厚さの紙ないしC,
H,O,Nからなる有機化合物フイルムを挾んで
熱間圧延することを特徴とするチタンおよびチタ
ン合金の積層圧延方法。
1. In the manufacture of plate materials in which titanium or titanium alloy slabs are laminated, hot rolled, and then peeled off, paper or C with a thickness of 0.2 mm or less is added to the laminated interface.
1. A method for laminated rolling of titanium and titanium alloys, characterized in that hot rolling is carried out by sandwiching an organic compound film consisting of H, O, and N.
JP32103987A 1987-12-18 1987-12-18 Method for lamination rolling of titanium or titanium alloy Granted JPH01162503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32103987A JPH01162503A (en) 1987-12-18 1987-12-18 Method for lamination rolling of titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32103987A JPH01162503A (en) 1987-12-18 1987-12-18 Method for lamination rolling of titanium or titanium alloy

Publications (2)

Publication Number Publication Date
JPH01162503A JPH01162503A (en) 1989-06-27
JPH0442081B2 true JPH0442081B2 (en) 1992-07-10

Family

ID=18128120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32103987A Granted JPH01162503A (en) 1987-12-18 1987-12-18 Method for lamination rolling of titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JPH01162503A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707280B2 (en) * 2000-09-07 2011-06-22 株式会社オーバル Connection structure of handrails for corridors between adjacent buildings
CN111139680B (en) * 2019-12-19 2022-02-08 中国制浆造纸研究院有限公司 Isolation material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH01162503A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
KR20200105522A (en) Manufacturing method of titanium-steel composite plate
EP1345728B1 (en) Method of making a composite aluminium sheet
KR102164307B1 (en) Method of manufacturing clad steel
JPH0442081B2 (en)
JPS6018205A (en) Manufacture of titanium-clad steel material
JPS6142498A (en) Production of aluminum-stainless steel clad plate for forming
JPH01162502A (en) Method for lamination rolling of titanium or titanium alloy
JPH1099976A (en) Manufacture of ti-coated clad plate
JPH0554423B2 (en)
JP2546589B2 (en) Method for producing titanium clad steel sheet by continuous hot rolling
JP2651847B2 (en) Aluminum alloy for ceramic joining
JPH08290265A (en) Method for heating and joining two materials of different coefficient of thermal expansion
JP2868344B2 (en) Manufacturing method of composite metal plate
JPH0353074B2 (en)
JPS60238093A (en) Production of composite aluminum-stainless steel material
JPH067969A (en) Manufacture of clad metallic plate excellent in forming property and joining strength
US3579808A (en) Tantalum clad niobium
JPH05169283A (en) Manufacture of clad steel sheet
JPS6099493A (en) Production of clad plate
JPH035087A (en) Manufacture of clad steel
JPH0669630B2 (en) Method for producing titanium clad steel sheet using nickel as an intermediate contact material
JP3207512B2 (en) Composite metal sheet with excellent workability and bonding strength
JPS6064786A (en) Production of titanium clad steel
JPH03198987A (en) Manufacture of clad steel plate
JPH02205277A (en) Production of titanium clad thin steel sheet by using copper or copper alloy as intermediate joining material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees