JPH0442065A - Method for diagnosing hot-line insulation of power cable - Google Patents

Method for diagnosing hot-line insulation of power cable

Info

Publication number
JPH0442065A
JPH0442065A JP14869290A JP14869290A JPH0442065A JP H0442065 A JPH0442065 A JP H0442065A JP 14869290 A JP14869290 A JP 14869290A JP 14869290 A JP14869290 A JP 14869290A JP H0442065 A JPH0442065 A JP H0442065A
Authority
JP
Japan
Prior art keywords
power cable
cable
insulation
sheath
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14869290A
Other languages
Japanese (ja)
Inventor
Shoichi Hiyama
桧山 章一
Kenichiro Soma
杣 謙一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14869290A priority Critical patent/JPH0442065A/en
Publication of JPH0442065A publication Critical patent/JPH0442065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To diagnose the deterioration of insulation under the hot-line state by applying a DC voltage to the shielding layer of a power cable, computing the resistance value of the insulator of the power cable, and thereby computing the insulation resistance value of the power cable whose sheath-insulation resistance is low. CONSTITUTION:A grounding line 12 is connected to a sheath 11 of a power cable to be measured 20. An arrestor 5 of a measuring device pat, a capacitor 6 and a measuring device 4 are connected to a shielding layer 10 of a cable insulator through a grounding line 1. Then, a switch 9 is closed, and the insulation resistance Rs of the sheath 11, a DC-component current and a ground potential 13 are measured. Thus, the insulation of the cable 20 is diagnosed. When the insulation resistance Rs is small and the judgment of the DC component is not definite, the switch 9 is opened, and voltages E+ and E+ from DC voltage sources 3 and 3' are applied on the shielding layer 10. A current limiting resistor 2 is inserted so that magnetism is not accumulated in the iron core of a grounding transformer GPT. Then, the current value is measured 4. When the inner insulation resistance Ri of the cable is obtained in this way, the sheath insulating resistance Rs is computed, and the state of the deterioration of the cable can be judged.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電力ケーブルの絶縁状態を停電をとらない
、活線状態で測定することができる活線絶縁診断方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a live line insulation diagnosis method that can measure the insulation state of a power cable in a live line state without a power outage.

[従来の技術] 電力用CVケーブルの活線絶縁診断方法としては、電圧
を加えることなく、接地線に流れる直流電流からCvケ
ーブル内部の絶縁劣化を推定する、いわゆる直流成分法
と呼ばれる方式と、接地変圧器(GPT)の中性点から
直流の6〜50Vの電圧を印加して、遮蔽層から漏れて
くる直流電流を測定して絶縁抵抗を算出する、いわゆる
直流重畳法と呼ばれる方式の2つが主流となっている。
[Prior Art] Live line insulation diagnosis methods for power CV cables include a method called the so-called DC component method, which estimates the insulation deterioration inside the CV cable from the DC current flowing through the grounding wire without applying voltage; 2 of the so-called DC superposition method, which applies a DC voltage of 6 to 50 V from the neutral point of a grounding transformer (GPT), measures the DC current leaking from the shielding layer, and calculates the insulation resistance. has become the mainstream.

[発明が解決しようとする課題] ところで、前者の直流成分法では、接地線に接続するこ
とで簡単に測定することが可能であるが、反面シースを
通して接地線の土中埋没部の電位に起因する迷走電流が
混入して判定に支障を生ずることがある。この迷走電流
の混入はゼロクロス法によってシース絶縁抵抗が1MΩ
程度までは正確に補正されるようになっているが、10
0にΩ程度まで低下すると誤差が大きく判定が難かしく
なる不具合がある。
[Problems to be Solved by the Invention] By the way, in the former DC component method, it is possible to easily measure by connecting to the ground wire, but on the other hand, it is possible to measure the potential caused by the potential of the buried part of the ground wire through the sheath. Stray currents may be mixed in and cause problems in determination. The sheath insulation resistance was reduced to 1MΩ by the zero-cross method to prevent this stray current from entering.
It is now possible to accurately correct up to a certain extent, but 10
When the value decreases to about 0Ω, there is a problem that the error becomes large and judgment becomes difficult.

また、後者の直流重畳法では、電力ケーブルの劣化状態
を加速して取り出すことのできる利点がある反面、地絡
検出用に精緻に調整されたGPTの中性点に直流電流を
注入することは、設備の改造が必要となる。また、高圧
ライン側から直流を加える方式では、GPTの鉄心に直
流偏磁現象を生じて誤動作する虞れがある。
In addition, while the latter DC superimposition method has the advantage of accelerating the deterioration of the power cable and extracting it, it is difficult to inject DC current into the neutral point of the GPT, which is precisely adjusted for ground fault detection. , equipment modification will be required. Furthermore, in the method of applying direct current from the high voltage line side, there is a risk that direct current bias magnetism may occur in the GPT iron core, resulting in malfunction.

この発明は、このような点に鑑みてなされたもので、前
述した従来方法の欠点を解消し、新規でより正確な診断
を行うことができる活線絶縁診断方法を提供することを
目的とする。
The present invention has been made in view of the above points, and aims to provide a live wire insulation diagnosis method that eliminates the drawbacks of the conventional methods described above and allows for a new and more accurate diagnosis. .

[課題を解決するための手段] この発明では、直流成分においてシース絶縁抵抗が低く
て判定が不明確となった範囲に対して、接地変圧器(G
PT)の中性点でなく、測定している電力ケーブルの遮
蔽層に直流電圧を加え、がっ、その直流電圧印加時に大
きな電流が流れて、GPTの鉄心の磁気の蓄積が起らな
いように高抵抗を挿入して電流を制限した状態にしてお
いて電力ケーブル絶縁体の抵抗値を算定して判断を行う
ようにしたものである。
[Means for Solving the Problem] In the present invention, a grounding transformer (G
Apply a DC voltage to the shielding layer of the power cable being measured, rather than to the neutral point of the GPT (PT), to prevent a large current from flowing when the DC voltage is applied and causing magnetic accumulation in the GPT core. The judgment is made by inserting a high resistance into the cable to limit the current and then calculating the resistance value of the power cable insulator.

[作  用] したがって、シース抵抗が低くて直流成分で判定できな
い電力ケーブルの絶縁抵抗値を算定することができ、こ
の値も考膚して診断を下すことができる。
[Function] Therefore, it is possible to calculate the insulation resistance value of the power cable, which cannot be determined from the direct current component due to the low sheath resistance, and it is possible to make a diagnosis by considering this value as well.

[実 施 例] 以下、図面を整照してこの発明の詳細な説明する。第1
図は、この発明の電力ケーブルの活線絶縁診断方法に適
用する装置の構成を示す回路図である。被測定電カケ−
プル20のシース11は線12で接地され、ケーブル絶
縁体の遮蔽層10には接地線1が接続され、測定器部ア
レスタ5と測定器部コンデンサー6を並列した測定器(
電流計)4が接続している。この測定器4には極性反転
可能の重畳電圧源3.3′がそれぞれスイッチを介して
並列に接続するとともに、高抵抗の重畳限流抵抗2が直
列に接続している。そして、この重量部電圧源に並列に
重畳部コンデンサー7、重畳部アレスター8およびスイ
ッチ9が並列して接地線1により接地されるに のような装置により電力用CVケーブル20の絶縁診断
を行うには、まずスイッチ9を閉じてシース11の絶縁
抵抗値R1と直流成分電流およびシース電位■、である
地電位13を測定することにより行われる。このときの
データによって、電力ケーブルの劣化状態が判定できる
ときにはそのまま判定するが、シース絶縁抵抗値R,が
数百にΩと小さいときは、スイッチ9を開いて直流電圧
源3,3′による電圧E。、E−を印加して電流計4に
よっ電流値を測定する。
[Example] Hereinafter, the present invention will be described in detail with reference to the drawings. 1st
FIG. 1 is a circuit diagram showing the configuration of an apparatus applied to the method for diagnosing live insulation of a power cable according to the present invention. Electrical case to be measured
The sheath 11 of the pull 20 is grounded by a wire 12, the grounding wire 1 is connected to the shielding layer 10 of the cable insulator, and the measuring device (
ammeter) 4 is connected. To this measuring device 4, superimposed voltage sources 3 and 3' whose polarity can be reversed are connected in parallel via switches, and a high-resistance superimposed current-limiting resistor 2 is connected in series. Then, insulation diagnosis of the power CV cable 20 is performed using a device in which a superimposed part capacitor 7, a superimposed part arrester 8, and a switch 9 are connected in parallel to this heavy part voltage source and are grounded by a grounding wire 1. This is performed by first closing the switch 9 and measuring the insulation resistance value R1 of the sheath 11, the DC component current, and the earth potential 13, which is the sheath potential (2). If the deterioration state of the power cable can be determined based on the data at this time, the determination is made as is, but if the sheath insulation resistance value R is as small as several hundred ohms, the switch 9 is opened and the voltage from the DC voltage sources 3 and 3' is E. , E- are applied and the current value is measured by the ammeter 4.

即ち、重量電圧源3,3′の士電位E、、E−により電
力ケーブル20の絶縁体に流れる電流を■1.抵抗11
の地電位V、によりシースを通して流れる電流を1.1
重畳電圧源3,3′の電位Eヤ、E−によりシースを通
して流れる電流を工、とするとき、その等価回路は第2
図に示すようになり、電流計4で測定される電流値工、
は電力ケーブルに劣化がないとき I、=L +1.+I。
That is, the current flowing through the insulator of the power cable 20 due to the electric potentials E, E- of the weight voltage sources 3, 3' is 1. resistance 11
The current flowing through the sheath due to the earth potential V is 1.1
When the current flowing through the sheath due to the potentials Ey and E- of the superimposed voltage sources 3 and 3' is , the equivalent circuit is as follows:
As shown in the figure, the current value measured by the ammeter 4,
When there is no deterioration in the power cable, I, =L +1. +I.

となる。becomes.

一方、絶縁体に流れる電流1.はケーブル遮蔽層の絶縁
抵抗値をR8とするとき であるから、ケーブルの内部絶縁抵抗値R,はで求めら
れる。
On the other hand, the current flowing through the insulator 1. Since this is when the insulation resistance value of the cable shielding layer is R8, the internal insulation resistance value R of the cable is determined by R.

このようにして求めた電力ケーブル2oの絶縁抵抗値R
1によって、シース絶縁抵抗値R6の低い範囲の判定を
行うものである。
Insulation resistance value R of the power cable 2o obtained in this way
1, the low range of the sheath insulation resistance value R6 is determined.

この種の電力ケーブルの活緋鈴断装置による測定で留意
すべきことは、接地線lが開放状態になったり、高イン
ピーダンス接地になることを避けなければならないこと
である。いま、電源接地抵抗R1を100MΩとしたと
き、これだけだと遮蔽層10が開放に近くなって困るの
で、電源接地抵抗2と並列にコンデンサー7(c8丑1
゜μF)を挿入する。この状態ならば、遮蔽層1゜の電
位は、充電電流が20mAの充T4電流が流hrも20
X10−”÷(2XπX50X10X10−’) #6
.5V位にしかならないので、全(危険はない、測定器
である電流計4と並列に約30μFのコンデンサー6が
挿入されているが、ここも2V程度で問題はない。たと
え測定中に地絡が起きた場合は、まずアレスター8が閉
じ、ついでアレスター5が閉じて接地線lは200μ秒
以内に完全な状態にされ安全である。
What should be kept in mind when measuring this type of power cable using a live bell disconnection device is that the ground wire l must be prevented from becoming open or becoming a high impedance ground. Now, when the power supply grounding resistance R1 is set to 100MΩ, the shielding layer 10 will be close to open if it is only this, so a capacitor 7 (c8
Insert ゜μF). In this state, the potential of the shielding layer 1° is such that the charging T4 current with a charging current of 20 mA flows for 20 hours.
X10-"÷(2XπX50X10X10-') #6
.. Since the voltage is only about 5V, there is no danger.A capacitor 6 of about 30 μF is inserted in parallel with the ammeter 4, which is a measuring device, but this is also about 2V, so there is no problem.Even if a ground fault occurs during measurement. If this occurs, first the arrester 8 is closed, then the arrester 5 is closed, and the grounding wire 1 is brought to a complete state within 200 microseconds, making it safe.

[発明の効果] 以上説明したとおり、この発明の電力ケーブルの活線診
断方法によれば、シース絶縁抵抗が低くて直流成分で判
定できない電力ケーブルの絶縁抵抗値を算定することが
可能で、その値も考慮して診断を下すことができる。
[Effects of the Invention] As explained above, according to the power cable live line diagnosis method of the present invention, it is possible to calculate the insulation resistance value of a power cable whose sheath insulation resistance is low and cannot be determined from the DC component. Diagnosis can be made by considering the value.

また、一般に、水トリー劣化部分は、負の直流電圧が加
わると、電流値が増大することが知られているので、加
える電圧Eの極性をスイッチ3゜3′のオン、オフによ
り+、−と変えることにより判定する。即ち、例えばシ
ース11にコロナ放電等の絶縁劣化部が存在すると、ス
イッチ3′をオンしスイッチ3をオフとした状態で大き
な電流が流れることになる。逆にスイッチ3をオン、ス
イッチ3′をオフにした状態では電流が流れない。また
、絶縁体中に水トリー等がある場合には、スイッチ3を
オン、スイッチ3′をオフにした状態で電流が流れ、逆
にスイッチ3をオフ、スイッチ3′をオンした状態で電
流が流れない、このように両者のバランスが大という測
定結果が得られれば、そのときの電力ケーブルは劣化が
進んでいるという判定を下すことができ、確実な診断を
行うことができる優れた方法である。
In addition, it is generally known that the current value increases when a negative DC voltage is applied to a deteriorated part of the water tree. Judgment is made by changing . That is, for example, if there is an insulation deteriorated part such as corona discharge in the sheath 11, a large current will flow when the switch 3' is on and the switch 3 is off. Conversely, when switch 3 is on and switch 3' is off, no current flows. Also, if there is a water tree etc. in the insulator, current will flow when switch 3 is on and switch 3' is off, and conversely, current will flow when switch 3 is off and switch 3' is on. If we can obtain a measurement result that shows that there is no flow, and that the balance between the two is great, we can conclude that the power cable at that time has deteriorated, and this is an excellent method for making a reliable diagnosis. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の活線絶縁診断方法に適用する装置
の回路図、 第2図は、第1図の等価回路図である。 1・・・接地線 2・・・重畳限流抵抗 3.3′・・・重量電圧 4・・・測定器(電流計) 5・・・測定器部アレスター 6・・・測定器部コンデンサー 7・・・重量部コンデンサ 8・・・重量部アレスター 9・・・スイッチ 0・・・ケーブル絶縁体の絶縁抵抗 1・・・ケーブルのシース絶縁抵抗 2・・・接地線 3・・・地電位 第 図
FIG. 1 is a circuit diagram of a device applied to the live wire insulation diagnosis method of the present invention, and FIG. 2 is an equivalent circuit diagram of FIG. 1. 1... Grounding wire 2... Superimposed current limiting resistor 3.3'... Weight voltage 4... Measuring device (ammeter) 5... Measuring device arrester 6... Measuring device capacitor 7 ... Weight part capacitor 8 ... Weight part arrester 9 ... Switch 0 ... Insulation resistance of cable insulator 1 ... Cable sheath insulation resistance 2 ... Ground wire 3 ... Earth potential No. figure

Claims (1)

【特許請求の範囲】[Claims] 電力ケーブルの接地線に直列に高抵抗と電流計と極性反
転可能な直流電源を接続して電力ケーブルの絶縁状態を
診断することを特徴とする電力ケーブルの活線絶縁診断
方法。
A method for diagnosing live wire insulation of a power cable, characterized by diagnosing the insulation state of the power cable by connecting a high resistance, an ammeter, and a polarity reversible DC power source in series with the grounding wire of the power cable.
JP14869290A 1990-06-08 1990-06-08 Method for diagnosing hot-line insulation of power cable Pending JPH0442065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14869290A JPH0442065A (en) 1990-06-08 1990-06-08 Method for diagnosing hot-line insulation of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14869290A JPH0442065A (en) 1990-06-08 1990-06-08 Method for diagnosing hot-line insulation of power cable

Publications (1)

Publication Number Publication Date
JPH0442065A true JPH0442065A (en) 1992-02-12

Family

ID=15458467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14869290A Pending JPH0442065A (en) 1990-06-08 1990-06-08 Method for diagnosing hot-line insulation of power cable

Country Status (1)

Country Link
JP (1) JPH0442065A (en)

Similar Documents

Publication Publication Date Title
US4980645A (en) Method for diagnosing an insulation deterioration of a power cable
EP0295240A1 (en) Method and device for detecting a fault, e.g. a short circuit, break or leakage, in an electric cable or conductor
JPH0442065A (en) Method for diagnosing hot-line insulation of power cable
DE2653704B1 (en) Procedure for testing FI and FI protective circuits and arrangement for carrying out this procedure
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JPS59202076A (en) Detection of insulation deterioration of cable
WO1991012541A1 (en) Atmospheric potential measurement device
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
JPS6229749B2 (en)
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JP2802651B2 (en) Hot wire insulation resistance measurement method
JPS629277A (en) Diagnostic method for cable insulation under hotline
JP2003084028A (en) Hot line diagnostic method for power cable
JPH0575980B2 (en)
JP3010371B2 (en) Diagnosis method for cable insulation deterioration
JPH0412283A (en) Method for diagnosing degradation in insulation of power cable
JPH01174988A (en) Insulation deterioration diagnosis for power cable
JPS5851227B2 (en) Deterioration location location method for power cables
JPS60216273A (en) Detection of sheath damage of power cable under live condition
JPS62172272A (en) Apparatus for detecting insulation deterioration of power cable
JPH0690245B2 (en) Insulation deterioration related quantity measuring device
JPS62299772A (en) Insulation resistance measuring method for cable or electric machine and apparatus
JPH0666858A (en) Insulation-resistance meter
JPS63281072A (en) Measuring instrument for insulation deterioration relation quantity
JPS6045374B2 (en) Cable insulation defect detection method