JPH0441272B2 - - Google Patents

Info

Publication number
JPH0441272B2
JPH0441272B2 JP60153960A JP15396085A JPH0441272B2 JP H0441272 B2 JPH0441272 B2 JP H0441272B2 JP 60153960 A JP60153960 A JP 60153960A JP 15396085 A JP15396085 A JP 15396085A JP H0441272 B2 JPH0441272 B2 JP H0441272B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
pipe
liquid
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60153960A
Other languages
Japanese (ja)
Other versions
JPS6217573A (en
Inventor
Tomihisa Oochi
Akinori Yamaguchi
Takafumi Kunugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60153960A priority Critical patent/JPS6217573A/en
Publication of JPS6217573A publication Critical patent/JPS6217573A/en
Publication of JPH0441272B2 publication Critical patent/JPH0441272B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1台で冷房、暖房ができる水−臭化リ
チウム系吸収式冷温水機に係り、特に暖房運転時
に蒸発器の冷媒液を吸収液へ効率良く排出する機
構を備えた操作性向上に好適な吸収冷温水機に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a water-lithium bromide absorption type water chiller/heater that can perform cooling and heating in one unit. The present invention relates to an absorption chiller/heater that is suitable for improving operability and is equipped with a mechanism for efficiently discharging liquid.

〔従来の技術〕[Conventional technology]

従来のこの種冷温水機の温水取出し方法として
は、 (a) 再生器で発生した冷媒蒸気を介して直接蒸発
器又は吸収器に導入し蒸発器管群内を流通する
温水と熱交換させ、その蒸発器群より温水を取
り出す方法。この種の装置として関連するもの
に例えば特開昭58−96963号、実開昭57−
116076号が挙げられる。
Conventional hot water extraction methods for this type of water cooler/heater include: (a) introducing refrigerant vapor generated in a regenerator directly into an evaporator or absorber and exchanging heat with hot water flowing through the evaporator tube group; How to extract hot water from the evaporator group. Related devices of this type include, for example, Japanese Patent Application Laid-open No. 58-96963 and Utility Model Application No. 57-
No. 116076 is mentioned.

(b) 再生器の蒸気配管を分岐して別個に設けた温
水熱交換器に導入し、この温水用熱交換器より
温水を取り出す方法。この種の装置として関連
するものには例えば、特開昭49−78251号が挙
げられる。
(b) A method in which the steam piping of the regenerator is branched and introduced into a separately installed hot water heat exchanger, and hot water is taken out from this hot water heat exchanger. An example of a related device of this type is JP-A-49-78251.

(c) 暖房時に再生器の溶液濃度を極めて薄くし
て、沸点上昇を抑制し、再生器で発生した冷媒
蒸気を凝縮器に直接、あるいは低温再生器での
凝縮、再蒸発を行つて凝縮器に導入し、凝縮器
管群内を流通する温水と熱交換させ、凝縮器管
群より温水を取り出す方法。この種の装置とし
て関連するものには、例えば、特開昭57−
73367号、特開昭57−136063号が挙げられる。
(c) During heating, the concentration of the solution in the regenerator is made extremely dilute to suppress the rise in boiling point, and the refrigerant vapor generated in the regenerator is sent directly to the condenser, or by condensation and re-evaporation in a low-temperature regenerator. A method in which hot water is extracted from the condenser tube group by introducing heat into the condenser tube group and exchanging heat with the hot water flowing through the condenser tube group. Related devices of this type include, for example, JP-A-57-
No. 73367 and JP-A-57-136063 are cited.

しかし、上記(a)の方法は高温再生器から低温再
生器に直列に溶液が循環するため、暖房時には溶
液を吸収器バイパスさせる必要が有り、そのため
の切換弁が必要である。この切換弁は高温の溶液
と冷媒蒸気が流通することから、耐久性のある高
価な弁を必要とする欠点がある。また、(b)の方法
では、別設の熱交換器を必要とし、コスト高、占
有空間大という欠点がある。(c)の方法は吸収式冷
温水機としては構造が簡単であるが、冷房時と暖
房時に負荷の配管接続を蒸発器管群から凝縮器管
群に切換える必要があり、冷房時の操作が複雑化
する欠点がある。
However, in method (a) above, since the solution is circulated in series from the high temperature regenerator to the low temperature regenerator, it is necessary to bypass the absorber during heating, and a switching valve is required for this purpose. This switching valve has the disadvantage that it requires a durable and expensive valve because hot solution and refrigerant vapor flow through it. In addition, method (b) requires a separate heat exchanger, which has the drawbacks of high cost and large space occupancy. Method (c) has a simple structure as an absorption type water chiller/heater, but it requires switching the load piping connection from the evaporator tube group to the condenser tube group during cooling and heating, and the operation during cooling is difficult. It has the disadvantage of complicating things.

また、暖房時、蒸発器の冷媒液を吸収器に流出
させるために冷媒スプレイポンプを運転する必要
があり、(a),(b)の方法に比べ省電力の点に配慮さ
れていなかつた。
In addition, during heating, it is necessary to operate a refrigerant spray pump to drain the refrigerant liquid from the evaporator to the absorber, and compared to methods (a) and (b), less consideration has been given to power saving.

本発明の目的は、冷温水を蒸発器から取り出す
とともに冷房時の溶液循環経路を暖房時も同一に
して構成の簡略化、信頼性向上並びに省電力、小
形化を図つた吸収式冷温水機を提供することにあ
る。
An object of the present invention is to provide an absorption type water chiller/heater that extracts hot and cold water from an evaporator and uses the same solution circulation path during cooling as well as during heating, thereby simplifying the configuration, improving reliability, saving power, and reducing the size of the machine. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

複数の再生器、凝縮器、蒸発器、吸収器、熱交
換器、溶液ポンプ、冷媒スプレポンプを配管接続
してなる吸収式冷温水機において、凝縮器気相部
と蒸発器とを結ぶ蒸気管途中に、前記蒸発器底部
からの液冷媒供給配管から液冷媒が流入する位置
に気泡ポンプを設け、前記再生器で発生した冷媒
蒸気によつて揚液された蒸発器の液冷媒を吸収器
に導く管を設けるとともに、前記気泡ポンプと再
生器とを連絡する蒸発導管に冷媒蒸気をバイパス
するバイパス管を接続したものである。
In an absorption-type water chiller/heater that has multiple regenerators, condensers, evaporators, absorbers, heat exchangers, solution pumps, and refrigerant spray pumps connected via piping, the steam pipe connecting the condenser gas phase and the evaporator A bubble pump is provided at a position where the liquid refrigerant flows from the liquid refrigerant supply pipe from the bottom of the evaporator, and the liquid refrigerant of the evaporator pumped up by the refrigerant vapor generated in the regenerator is guided to the absorber. In addition to providing a pipe, a bypass pipe for bypassing refrigerant vapor is connected to the evaporation conduit that connects the bubble pump and the regenerator.

〔作用〕[Effect]

再生器で発生した冷媒蒸気を気泡ポンプ底部か
ら吹き込み、一方、蒸発器の液冷媒は冷媒導管を
経由して、気泡ポンプ底部に流入し、前記蒸気と
混合して気液2相となり、前記蒸発器の液冷媒と
気泡ポンプ底部までの液ヘツドよりも気泡ポンプ
内の気液2相のヘツドが低くなるため、気液ポン
プ内を上昇して液が吸収器へ送られる。気泡ポン
プを上昇する気液2相流の圧力損失は蒸気量が多
いと大きくなるため、バイパス管からバイパスす
ることにより、圧損を低減させ、気泡ポンプを高
い効率で運転させることができる。
The refrigerant vapor generated in the regenerator is blown into the bottom of the bubble pump, while the liquid refrigerant in the evaporator flows into the bottom of the bubble pump via the refrigerant conduit and mixes with the vapor to form a two-phase gas-liquid phase. Since the gas-liquid two-phase head in the bubble pump is lower than the liquid refrigerant in the vessel and the liquid head to the bottom of the bubble pump, the liquid rises in the gas-liquid pump and is sent to the absorber. Since the pressure loss of the gas-liquid two-phase flow rising through the bubble pump becomes large when the amount of steam is large, by bypassing the flow through the bypass pipe, the pressure loss can be reduced and the bubble pump can be operated with high efficiency.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第5図によ
り説明する。第1図において、1は高温再生器、
2は低温再生器、3は凝縮器、4は蒸発器、5は
吸収器、6は低温熱交換器、7は高温熱交換器、
8は循環ポンプ、9は冷媒スプレポンプ、10は
凝縮器3の凝縮液冷媒を蒸発器4にU字シール、
絞り17を介して導く冷媒液導管、11は凝縮器
3と蒸発器4とを連絡するU字シール管、12は
冷媒ポンプ9の吐出口とスプレヘツダ21とをフ
ロート弁を介して連絡するスプレ液導管、14は
冷媒タンク、15はスプレイ液導管12より分岐
してU字シール管11に液冷媒を逆U字シールを
介して連絡する分岐管、16は冷媒ブロー管、2
4は気泡ポンプ、25は気液分離器、26は蒸発
導管、27は冷媒液導管、28は蒸気管、29は
バイパス管である。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. In Fig. 1, 1 is a high temperature regenerator;
2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7 is a high temperature heat exchanger,
8 is a circulation pump, 9 is a refrigerant spray pump, 10 is a U-shaped seal that transfers the condensed liquid refrigerant from the condenser 3 to the evaporator 4,
11 is a U-shaped seal pipe that connects the condenser 3 and evaporator 4, and 12 is a spray liquid that connects the discharge port of the refrigerant pump 9 and the spray header 21 via a float valve. A conduit, 14 is a refrigerant tank, 15 is a branch pipe that branches from the spray liquid conduit 12 and communicates liquid refrigerant to the U-shaped seal pipe 11 via an inverted U-shaped seal, 16 is a refrigerant blow pipe, 2
4 is a bubble pump, 25 is a gas-liquid separator, 26 is an evaporation conduit, 27 is a refrigerant liquid conduit, 28 is a steam pipe, and 29 is a bypass pipe.

次に上記構成から成る本実施例の作用について
説明する。
Next, the operation of this embodiment having the above configuration will be explained.

まず、冷房運転の場合について説明する。高温
再生器1で発生した冷媒蒸気は低温再生器2内に
導かれ、管外を流下する溶液と熱交換して凝縮液
化し、絞り18を経由して凝縮器3に流入し、冷
却水3aで冷却される。低温再生器2で発生した
冷媒蒸気はミストセパレータを経由して凝縮器3
に導かれ、伝熱管群内を流通する冷却水3aと熱
交換して凝縮液化し、前記高温再生器1からの冷
媒とともに、液冷媒導管10、絞り17を経由し
て蒸発器4に流入する。蒸発器4では、冷媒スプ
レポンプ9により伝熱管群上に液冷媒が散布され
て、管群内を流通する冷却水4aと熱交換して蒸
発し、蒸発潜熱を冷水4aから奪うので、冷凍作
用が得られる。この蒸発した冷媒は吸収器5に流
出し、吸収器管群内の冷却水5aによる冷却され
た管群を流下する吸収剤溶液に吸収される。吸収
器5の溶液は循環ポンプ8により、低温熱交換器
6を経由し、分割されて一部は低温再生器2へ供
給され、分割された一部は低温再生器2へ供給さ
れ、残りはさらに高温熱交換器7、流量制御機構
(図示せず)を経由して、高温再生器1へ供給さ
れ、それぞれ、冷媒蒸気を発生して濃縮される。
高温再生器1で濃縮された溶液は、高温熱交換器
7を経由し、低温再生器2の濃縮された溶液とと
もに低温熱交換器6を経由して、吸収器5に戻さ
れる。この際、循環ポンプ8の吐出液の一部を駆
動源とするエゼクタポンプにより、スプレヘツダ
22から吸収器伝熱管群上に散布される。
First, the case of cooling operation will be explained. The refrigerant vapor generated in the high-temperature regenerator 1 is guided into the low-temperature regenerator 2, condenses and liquefies by exchanging heat with the solution flowing down outside the tube, flows into the condenser 3 via the throttle 18, and cools the cooling water 3a. cooled down. The refrigerant vapor generated in the low-temperature regenerator 2 passes through the mist separator to the condenser 3.
It condenses and liquefies by exchanging heat with the cooling water 3a flowing through the heat transfer tube group, and flows into the evaporator 4 together with the refrigerant from the high-temperature regenerator 1 via the liquid refrigerant conduit 10 and the throttle 17. . In the evaporator 4, the liquid refrigerant is sprayed onto the heat transfer tube group by the refrigerant spray pump 9, evaporates by exchanging heat with the cooling water 4a flowing through the tube group, and removes the latent heat of vaporization from the cold water 4a, so that the refrigerating effect is achieved. can get. This evaporated refrigerant flows out into the absorber 5 and is absorbed by the absorbent solution flowing down the tube group cooled by the cooling water 5a in the absorber tube group. The solution in the absorber 5 is passed through the low temperature heat exchanger 6 by the circulation pump 8, divided and a part is supplied to the low temperature regenerator 2, the divided part is supplied to the low temperature regenerator 2, and the rest is The refrigerant is further supplied to the high-temperature regenerator 1 via a high-temperature heat exchanger 7 and a flow rate control mechanism (not shown), where refrigerant vapor is generated and concentrated.
The solution concentrated in the high temperature regenerator 1 is returned to the absorber 5 via the high temperature heat exchanger 7 and the low temperature heat exchanger 6 together with the concentrated solution in the low temperature regenerator 2. At this time, the liquid is sprayed from the spray header 22 onto the absorber heat transfer tube group by an ejector pump that uses part of the liquid discharged from the circulation pump 8 as a driving source.

上記動作で冷房サイクルを実現するためには、
凝縮器3から、U字シール管11を経由して冷媒
蒸気が蒸発器4へ流通するのを抑止する必要があ
る。水やメタノールなどのアルコールを冷媒とす
る吸収式冷温水機においては冷房時の凝縮器3と
蒸発器4との差圧は小さく、冷媒液の液柱ヘツド
で十分差圧を維持できる。例えば、水を冷媒と
し、通常使用される運転条件では前記差圧はたか
だか0.7mAq程度であり、吸収式冷温水機全体の
高さは大略1.5m以上あるので、凝縮器3の気相
部と蒸発器4とを連通させたU字シール管11に
冷媒液を満せば液柱ヘツドによる差圧維持機能に
より凝縮器3から、U字シール管11を経由して
蒸発器4へ冷媒蒸気が流入することを抑止でき
る。しかしながら、単に冷媒液を満たしただけで
は、凝縮器3からの冷媒蒸気がUシールを形成す
る冷媒液面で凝縮液化し、徐々に冷媒液が加熱さ
れ、Uシールの蒸発器4側において再沸とうし、
差圧維持機能が破壊されてしまう可能性がある。
In order to realize the cooling cycle with the above operation,
It is necessary to prevent refrigerant vapor from flowing from the condenser 3 to the evaporator 4 via the U-shaped seal pipe 11. In an absorption type water chiller/heater that uses water or an alcohol such as methanol as a refrigerant, the differential pressure between the condenser 3 and the evaporator 4 during cooling is small, and the differential pressure can be maintained sufficiently at the liquid column head of the refrigerant liquid. For example, under normal operating conditions when water is used as a refrigerant, the differential pressure is at most about 0.7 mAq, and the height of the entire absorption type water chiller/heater is approximately 1.5 m or more, so the gas phase of the condenser 3 and When the U-shaped sealed tube 11 communicating with the evaporator 4 is filled with refrigerant liquid, refrigerant vapor flows from the condenser 3 to the evaporator 4 via the U-shaped sealed tube 11 due to the differential pressure maintenance function of the liquid column head. This can prevent the influx. However, if the refrigerant liquid is simply filled, the refrigerant vapor from the condenser 3 will condense and liquefy on the refrigerant liquid surface forming the U seal, and the refrigerant liquid will be gradually heated and re-boiled on the evaporator 4 side of the U seal. Toshi,
The differential pressure maintenance function may be destroyed.

本発明では、冷房時に冷媒スプレポンプ9の運
転により蒸発器4内の圧力をほぼ同一の飽和圧力
を有する冷却された冷媒液が分岐管15よりU字
シール管11へ連続して供給されるので、再沸と
うを起こすことなく液柱ヘツドによる差異維持機
能を保持でき、凝縮3からU字シール管11、気
泡ポンプ24を経由して蒸発器4へ冷媒蒸気が流
通せず、冷房サイクルを実現できる。
In the present invention, during cooling, the pressure inside the evaporator 4 is changed by operating the refrigerant spray pump 9, and the cooled refrigerant liquid having almost the same saturation pressure is continuously supplied from the branch pipe 15 to the U-shaped seal pipe 11. The difference maintenance function of the liquid column head can be maintained without causing reboiling, and the refrigerant vapor does not flow from the condenser 3 to the evaporator 4 via the U-shaped seal pipe 11 and the bubble pump 24, making it possible to realize a cooling cycle. .

さらに、分岐管15とU字シール管の接続箇所
をU字シール管11の底部より蒸発器4側に接続
すれば、U字シール管11の底部より凝縮器3側
の冷媒液はほとんど動かない。この場合、凝縮器
3側の冷媒液の表面濃度は略々凝縮温度、底部は
略々蒸発温度となり、いわゆる温度成層がほとん
ど凝縮液化することなく。性能低下を抑止できる
効果がある。
Furthermore, if the connection point between the branch pipe 15 and the U-shaped seal tube is connected from the bottom of the U-shaped seal tube 11 to the evaporator 4 side, the refrigerant liquid from the bottom of the U-shaped seal tube 11 to the condenser 3 side will hardly move. . In this case, the surface concentration of the refrigerant liquid on the side of the condenser 3 is approximately at the condensation temperature, and the concentration at the bottom is approximately at the evaporation temperature, so that so-called temperature stratification hardly causes condensation and liquefaction. This has the effect of suppressing performance degradation.

なお、U字シール管11と蒸気導管26とは、
二重管構成で液路を構成すれば、コンパクトにつ
くれる。ただし、U字シール管11の凝縮器3に
連絡している側は、冷媒液がふりかかつたとする
と、管内で凝縮して熱が蒸発器に伝わり、冷凍能
力低下の原因となるので、吸収器−蒸発器シエル
内にこれら装置を内蔵させる場合には、この点の
注意が必要である。例えば、気液分離器25の蒸
発器4又は吸収器5に開孔する側を液が排出され
るルーバ状(よろい戸状)にすることで冷媒液や
吸収液の進入を防止できる。
In addition, the U-shaped seal pipe 11 and the steam conduit 26 are
By configuring the liquid path with a double pipe configuration, it can be made compact. However, if the refrigerant liquid splashes on the side of the U-shaped seal tube 11 that connects to the condenser 3, it will condense in the tube and transfer heat to the evaporator, causing a decrease in refrigerating capacity. Care must be taken in this regard when incorporating these devices within the evaporator shell. For example, by forming the side of the gas-liquid separator 25 that opens into the evaporator 4 or the absorber 5 into a louver shape from which the liquid is discharged, it is possible to prevent the refrigerant liquid or the absorption liquid from entering.

次に暖房運転の場合について説明する。この場
合は、冷媒スプレポンプ9の運転を停止する。す
ると、U字シール管11の液シールが破れ、一部
はガス抜き穴bより蒸発器4に冷媒蒸気が流出す
るが、残りは蒸発管26を経由して、そのほとん
どの冷媒蒸気はバイパス管29を経由して蒸発器
4へ送られ、一部の冷媒蒸気は気泡ポンプ24に
流入し冷媒導管27を経由した冷媒タンク14の
冷媒と混合し、二相流となつて気泡ポンプ管24
を上昇し、気液分離器25に送られ、冷媒蒸気は
蒸発器4へ、液冷媒はブロー管16を経由して吸
収器5へ流出する。
Next, the case of heating operation will be explained. In this case, the operation of the refrigerant spray pump 9 is stopped. Then, the liquid seal of the U-shaped seal tube 11 is broken, and some of the refrigerant vapor flows out from the gas vent hole b into the evaporator 4, but the rest passes through the evaporator tube 26, and most of the refrigerant vapor flows into the bypass tube. A part of the refrigerant vapor flows into the bubble pump 24 and mixes with the refrigerant in the refrigerant tank 14 via the refrigerant conduit 27, forming a two-phase flow and flowing into the bubble pump tube 24.
The refrigerant vapor flows out into the evaporator 4 and the liquid refrigerant flows out into the absorber 5 via the blow pipe 16.

吸収器5に送られた液冷媒は溶液と混合して。
サイクル循環溶液の濃度を薄くする。したがつて
暖房時に低温再生器2における蒸発圧力が高くな
つても、沸点は100℃以下にでき、よつて、高温
再生器1の圧力は大気圧を超えない。
The liquid refrigerant sent to the absorber 5 is mixed with the solution.
Dilute the cycle solution. Therefore, even if the evaporation pressure in the low-temperature regenerator 2 increases during heating, the boiling point can be kept below 100°C, and the pressure in the high-temperature regenerator 1 will not exceed atmospheric pressure.

低温再生器2で発生した冷媒蒸気はU字シール
管11、蒸気導管26を経て、大部分はバイパス
管29を経由して蒸発器4に流入し、また、残り
の冷媒蒸気も気泡ポンプ24、気液分離器25、
蒸気導管28を経由して蒸発器4に流出し、蒸発
器管群内を流通する温水4aと熱交換して凝縮
し、冷媒タンク14に流入する。この際の冷媒蒸
気の凝縮潜熱により暖房作用を得る。
The refrigerant vapor generated in the low-temperature regenerator 2 passes through the U-shaped seal pipe 11 and the vapor conduit 26, and most of it flows into the evaporator 4 via the bypass pipe 29, and the remaining refrigerant vapor also flows into the bubble pump 24, gas-liquid separator 25,
It flows out to the evaporator 4 via the steam conduit 28, exchanges heat with the hot water 4a flowing through the evaporator tube group, condenses, and flows into the refrigerant tank 14. At this time, the latent heat of condensation of the refrigerant vapor provides a heating effect.

蒸発器4で液化した冷媒は、気泡ポンプ24に
より吸収器5に排出される。
The refrigerant liquefied in the evaporator 4 is discharged to the absorber 5 by the bubble pump 24.

また、溶液は、冷房運転時と同様に循環する。
したがつて、何ら特別な流路を設ける必要がな
い。
Further, the solution is circulated in the same manner as during cooling operation.
Therefore, there is no need to provide any special flow path.

なお、溶液循環ポンプ8の空転防止のため吸収
器5の底部に液面検出器40を設け、吸収器5の
底部に滞留する液量が極端に少なくなつた場合に
循環ポンプ8、冷媒ポンプ9、バーナ30、冷却
水ポンプを止める安全装置を設ける。外液面検出
器40が作動する場合としては、再生器からの溶
液戻り流路で結晶晶折したことが考えられ、その
際には、前記気泡ポンプ24が作動して、自動的
に溶液を希釈する。液面検出器40が復帰して
も、冷媒ポンプ9のみ、タイマー等を使つてしば
らく動作させないと、その間、解晶運転が行われ
る。
In addition, in order to prevent the solution circulation pump 8 from idling, a liquid level detector 40 is provided at the bottom of the absorber 5, and when the amount of liquid remaining at the bottom of the absorber 5 becomes extremely small, the circulation pump 8 and the refrigerant pump 9 are activated. A safety device is provided to stop the burner 30 and cooling water pump. When the external liquid level detector 40 operates, it is considered that crystallization occurs in the solution return channel from the regenerator, and in that case, the bubble pump 24 operates and automatically removes the solution. Dilute. Even if the liquid level detector 40 is restored, unless the refrigerant pump 9 is operated for a while using a timer or the like, the crystallization operation will be performed during that time.

以上のように自動解晶運転が行われるので、冷
温水機の信頼性が高く、操作性がよいという効果
がある。
Since the automatic crystallization operation is performed as described above, the reliability of the water chiller/heater is high and the operability is good.

なお、気泡ポンプ24の特性は、揚液冷媒液量
G、駆動冷媒蒸気量D、気泡ポンプの管長L,サ
クシヨンヘツドHsで評価できる。Hs一定で、D
が増加すると、Gは増大するが、ある限界があ
り、それ以上Dを増加すると漸減する。またQ一
定でHsを高くするとGが増大する。
The characteristics of the bubble pump 24 can be evaluated based on the amount of pumped refrigerant G, the amount of vapor of the driving refrigerant D, the tube length L of the bubble pump, and the suction head Hs. Hs constant, D
As D increases, G increases, but there is a certain limit, and increasing D beyond this point gradually decreases. Furthermore, when Hs is increased while Q is constant, G increases.

これを図示した気泡ポンプの揚液特性を第2図
に示す。Hs/Lが大、すなわち蒸発器の冷媒液
面が高いとGが多く、短時間に蒸発器4から吸収
器5へ冷媒液を早く排出できる。また、冷媒蒸気
量Dが増大してもある限界以上はGは増大しな
い。ところが、器液分離器25では、冷媒蒸気量
Dが増加すると冷媒蒸気流速が増大し、分離性能
が低下して、冷媒液が再び蒸発器4に戻る。その
ために気泡ポンプ24の揚液しなければならない
量が増大し、結果的にHsが高くなつてバランス
する。実験結果によれば内径28mm長さL=0.6m
の気泡ポンプ24で約150Kg/hの冷媒液を約15
Kg/hの凝縮器の冷媒蒸気で冷媒蒸気で蒸気器か
ら吸収器へ排出でき、その際のHsはたかだか140
mmである。この際約70Kg/hの冷媒蒸気をバイパ
スしている。ところが、全量の冷媒蒸気を気泡ポ
ンプ24に供給するとHsは280mmを越えて暖房サ
イクル構成が困難になつた。このように適正な設
計をしようとすると、気泡ポンプ24の蒸気バイ
パス管29が必要になる。なお、バイパス管29
と蒸発器4の液冷媒とを細い導管39で連絡する
と気泡ポンプ24とバイパス管29との冷媒蒸気
配分の設計が非常に容易になる。これは、バイパ
ス管29の流動抵抗圧損が該細い導管39で供給
される液冷媒量で制御されるため、Hsが高いと
きは気泡ポンプ24に多くの冷媒蒸気が供給さ
れ、Hsが低いときは、細い導管39から冷媒液
が供給されなくなり、冷媒蒸気単相でバイパス管
29を流れるので、よりバイパス量が増大すると
いう自己制御機構を構成できることによる。
Fig. 2 shows the liquid pumping characteristics of a bubble pump that illustrates this. When Hs/L is large, that is, when the refrigerant liquid level in the evaporator is high, G is large, and the refrigerant liquid can be quickly discharged from the evaporator 4 to the absorber 5 in a short time. Further, even if the refrigerant vapor amount D increases, G will not increase beyond a certain limit. However, in the container liquid separator 25, when the refrigerant vapor amount D increases, the refrigerant vapor flow rate increases, the separation performance decreases, and the refrigerant liquid returns to the evaporator 4 again. Therefore, the amount of liquid that must be pumped by the bubble pump 24 increases, and as a result, Hs becomes higher and balanced. According to the experimental results, the inner diameter is 28mm and the length L is 0.6m.
Approximately 150 kg/h of refrigerant liquid is pumped using the bubble pump 24.
Kg/h of refrigerant vapor from the condenser can be discharged from the steamer to the absorber, and Hs at that time is at most 140
mm. At this time, approximately 70 kg/h of refrigerant vapor is bypassed. However, when the entire amount of refrigerant vapor was supplied to the bubble pump 24, Hs exceeded 280 mm, making it difficult to configure the heating cycle. In order to achieve such an appropriate design, a steam bypass pipe 29 for the bubble pump 24 is required. In addition, the bypass pipe 29
By connecting the liquid refrigerant of the evaporator 4 and the liquid refrigerant of the evaporator 4 through a thin conduit 39, the design of the refrigerant vapor distribution between the bubble pump 24 and the bypass pipe 29 becomes very easy. This is because the flow resistance pressure drop of the bypass pipe 29 is controlled by the amount of liquid refrigerant supplied through the thin conduit 39, so when Hs is high, a large amount of refrigerant vapor is supplied to the bubble pump 24, and when Hs is low, This is because the refrigerant liquid is no longer supplied from the thin conduit 39 and the refrigerant vapor flows in a single phase through the bypass pipe 29, so that a self-control mechanism can be constructed in which the amount of bypass is further increased.

また、Hsがキヤビテーシヨン限界のある回転
ポンプに比較して、著しく小さくできるので冷媒
タンク14の位置に下げられる。また、冷媒タン
ク14は暖房サイクル用として別設し、蒸発器シ
エル下部に配設できるので、スペースフアクタが
良くなり、冷温水機のコンパクト化が図れるとい
う利点がある。
Furthermore, since Hs can be made significantly smaller than in a rotary pump which has a cavitation limit, it can be lowered to the position of the refrigerant tank 14. Further, since the refrigerant tank 14 can be provided separately for the heating cycle and placed below the evaporator shell, there is an advantage that the space factor is improved and the water cooler/heater can be made more compact.

また、低温再生器2を散布式熱交換器とする
と、液の滞留量が少ないため、溶液量を削減でき
るだけでなく、冷媒タンク14にためるべき冷媒
量も少なくできるので、全体としてコンパクト化
が図れるという効果がある。
Furthermore, if the low-temperature regenerator 2 is a scattering type heat exchanger, the amount of accumulated liquid is small, so not only can the amount of solution be reduced, but also the amount of refrigerant that must be stored in the refrigerant tank 14 can be reduced, so the overall size can be reduced. There is an effect.

以上のように構成したので、本実施例において
は次の効果がある。
With the above configuration, this embodiment has the following effects.

1 冷水と温水の取り出し口が蒸発器管群であ
り、共通なため、負荷と冷温水機との配管接続
の切換が不要で、操作性がよい。
1. Since the cold water and hot water outlets are common in the evaporator pipe group, there is no need to switch the piping connections between the load and the water cooler/heater, and operability is good.

2 冷媒ポンプを暖房中停止できるので、省電力
にできる。一方、冷房中は、冷媒スプレポンプ
9により強力に冷媒液を伝熱管群上に散布で
き、熱伝達率が散布量の1/2〜1/3乗に比例する
ことから、蒸発器の伝熱面積を節約できる。
2. The refrigerant pump can be stopped during heating, so power can be saved. On the other hand, during cooling, the refrigerant spray pump 9 can powerfully spray the refrigerant liquid onto the heat transfer tube group, and since the heat transfer coefficient is proportional to the 1/2 to 1/3 power of the amount of spraying, the heat transfer area of the evaporator can be saved.

3 サイクル中に冷暖房切換弁がまつたくないの
で、信頼性が向上し、コスト低減できる。
3. Since the heating/cooling switching valve does not get stuck during the cycle, reliability is improved and costs can be reduced.

4 溶液の循環系が冷房、暖房と同一であり、弁
で閉塞された箇所がないので、溶液滞留がな
く、腐食環境上おだやかになり、局部腐食劣化
の心配がない。
4. The solution circulation system is the same as that for cooling and heating, and there are no parts blocked by valves, so there is no solution stagnation, the corrosive environment is gentle, and there is no need to worry about local corrosion deterioration.

5 暖房運転が、きわめて濃度の薄いサイクルを
構成するので結晶化し難しい。
5. Heating operation constitutes a cycle with extremely low concentration, making it difficult to crystallize.

6 気泡ポンプに供給される冷媒蒸気量を削減で
き、器液分離器の通貨冷媒蒸気量が削減される
ので器液分離性能が向上できるのでよりコンパ
クトな器液分離器にできるとともに気泡ポンプ
のサイズも小さくでき、コスト低減が図れる。
6 The amount of refrigerant vapor supplied to the bubble pump can be reduced, and the amount of currency refrigerant vapor in the vessel liquid separator is reduced, so the vessel liquid separation performance can be improved, allowing a more compact vessel liquid separator and the size of the bubble pump to be reduced. It can also be made smaller, reducing costs.

第3図は本発明の他の実施例を示す説明図
で、気泡ポンプ24および蒸気バイパス管29
とバイパス管27に連絡する細い導管39と高
温再生器1の気相部とを蒸気導管26、弁40
Aを介して接続する。
FIG. 3 is an explanatory diagram showing another embodiment of the present invention, in which a bubble pump 24 and a steam bypass pipe 29 are shown.
A thin conduit 39 communicating with the bypass pipe 27 and the gas phase part of the high temperature regenerator 1 are connected to the steam conduit 26 and the valve 40.
Connect via A.

暖房時、弁40Aを開くと、冷媒タンク14の
冷媒が吸収器5に排出される点は同じだが、高温
再生器1で発生した冷媒蒸気が低温再生器2を経
由して溶液とわずかに熱交換して冷却されること
により、過熱状態から飽和蒸気になり、バイパス
管29と、気泡ポンプ24、気泡分離器25、蒸
気導管28とから蒸発器4に導かれて管内を通水
する温水を加熱する点とU字シール管11がない
点が前記実施例と異なる。U字シール管11がな
い分だけコンパクトにできる効果がある。
When the valve 40A is opened during heating, the refrigerant in the refrigerant tank 14 is discharged to the absorber 5, but the refrigerant vapor generated in the high temperature regenerator 1 passes through the low temperature regenerator 2 and is mixed with the solution with a slight amount of heat. By being exchanged and cooled, the superheated state becomes saturated steam, and hot water is guided from the bypass pipe 29, the bubble pump 24, the bubble separator 25, and the steam conduit 28 to the evaporator 4 and passed through the pipe. This embodiment differs from the previous embodiment in that it is heated and that the U-shaped seal tube 11 is not provided. There is an effect that the structure can be made more compact due to the absence of the U-shaped seal tube 11.

本実施例では、高温再生器1の発生冷媒蒸気を
蒸発器4に導くようにしたので、蒸気系の圧力損
失を大きくされるため、蒸気導管26、弁10A
のサイズを小さくできる効果がある。また、低温
再生器2を経由した冷媒蒸気を弁40Aに導くた
め、高温再生器1で発生する過熱蒸気(130℃〜
150℃)を通す場合や、冷媒蒸気と溶液を混合さ
せて通す場合に比べ100℃以下の温度であり腐食
環境としておだやかになり、弁の耐久上有利であ
る。
In this embodiment, since the refrigerant vapor generated in the high temperature regenerator 1 is guided to the evaporator 4, the pressure loss in the steam system is increased, so the steam conduit 26 and the valve 10A are
This has the effect of reducing the size of. In addition, in order to guide the refrigerant vapor that has passed through the low-temperature regenerator 2 to the valve 40A, superheated steam generated in the high-temperature regenerator 1 (130℃~
The temperature is 100°C or less, which is less corrosive than when the refrigerant is passed through (150°C) or when a mixture of refrigerant vapor and solution is passed, making it a milder corrosive environment, which is advantageous in terms of valve durability.

さらに、該弁40Aの弁体を冷媒ポンプ9の吐
出冷媒液の圧力で動作させるように、例えばダイ
アフラム・ベローズ等を設けるとか、ピストンで
駆動するとかその他の方法で駆動させれば、冷媒
ポンプ9運転のときのみ閉とでき、冷房運転が構
成できる。
Furthermore, if the valve body of the valve 40A is operated by the pressure of the refrigerant liquid discharged from the refrigerant pump 9, for example, by providing a diaphragm bellows, etc., by driving it with a piston, or by other methods, the refrigerant pump 9 It can be closed only during operation, and cooling operation can be configured.

むろん、該弁40Aを電磁弁としても同様な効
果を得る。
Of course, the same effect can be obtained by using a solenoid valve as the valve 40A.

第4図は、本発明の更に他の実施例を示す。本
実施例では、気液分離器を設けず直接吸収器5に
気泡ポンプ24の吐き出しを接続した点と、バイ
パス管29の分岐を蒸気導管26より下取りした
点が異なる。気液分離器がないのでコンパクトに
構成できる効果がある。また、バイパス管29を
下取りしたため、この分岐部にU字シール部が構
成され、バイパス管29に蒸気が供給されるより
も早く気泡ポンプ管24に冷媒蒸気が供給される
ので、例えば冷房から暖房に切換える際にはま
ず、気泡ポンプ24が作動して蒸発器4の液冷媒
を排出でき、速やかにサイクルの溶液の吸収剤濃
度を低下できるという効果がある。また、弁40
Aを少し開くだけで蒸発器4の液冷媒をサイクル
中に排出できるので、例えば高温再生器1の温度
が異常に高温になつた場合とか、蒸発器4の冷媒
が過冷却になつた場合とか、吸収器5の液面が異
常に低下して溶液ポンプ8が空転する場合とか、
停電トリツプするとかの異常時に弁40Aを開け
ば多量の冷媒蒸気を蒸発器4に送つて高温再生器
1の溶液濃度を異常に高濃度にすることなく吸収
器5の溶液を希釈でき、安全装置としての効果を
得られる。
FIG. 4 shows yet another embodiment of the invention. This embodiment differs in that the discharge of the bubble pump 24 is directly connected to the absorber 5 without providing a gas-liquid separator, and that the branch of the bypass pipe 29 is replaced by the steam conduit 26. Since there is no gas-liquid separator, it has the advantage of being able to be configured compactly. In addition, since the bypass pipe 29 is traded in, a U-shaped seal is formed at this branch part, and refrigerant vapor is supplied to the bubble pump pipe 24 earlier than steam is supplied to the bypass pipe 29, so for example, from cooling to heating. When switching to the cycle, first, the bubble pump 24 is operated to discharge the liquid refrigerant from the evaporator 4, which has the effect of quickly reducing the absorbent concentration of the solution in the cycle. Also, valve 40
By opening A slightly, the liquid refrigerant in the evaporator 4 can be discharged during the cycle, so for example, if the temperature of the high-temperature regenerator 1 becomes abnormally high, or if the refrigerant in the evaporator 4 becomes supercooled. , when the liquid level in the absorber 5 drops abnormally and the solution pump 8 idles,
If the valve 40A is opened in the event of an abnormality such as a power outage trip, a large amount of refrigerant vapor can be sent to the evaporator 4 to dilute the solution in the absorber 5 without making the solution concentration in the high temperature regenerator 1 abnormally high, thereby providing a safety device. You can get the effect as.

第5図は本発明の更に他の実施例を示す。液冷
媒散布装置を低温再生器の溶液加熱出口とをエゼ
クタポンプ41を介して連結し、蒸発器底部をエ
ゼクタに接続して未蒸発容液を再循環させること
により、機能的ポンプを必要とせず、保守を容易
にしてコストを低減する技術は公知であるが、冷
媒液散布装置へ送る液冷媒用エゼクターポンプ4
1と本発明の組合わせ構成の一例を示す。冷媒ポ
ンプ9の代わりにエゼクターポンプ41が設けら
れている。エゼクターポンプ41用の駆動液冷媒
は蒸気導管26と弁40Aとの間で分岐する分岐
管42から供給される。この際エゼクターポンプ
41、分岐管42の開孔部を気泡ポンプ底部の蒸
気供給部より上方に位置しておけば暖房時はスプ
レダクト12には液冷媒が上がらず、冷媒蒸気の
バイパス管として作用する。この実施例では冷媒
ポンプがないので信頼性が高いという効果があ
る。
FIG. 5 shows yet another embodiment of the invention. A functional pump is not required by connecting the liquid refrigerant distribution device to the solution heating outlet of the low temperature regenerator via the ejector pump 41 and connecting the bottom of the evaporator to the ejector to recirculate the unevaporated liquid. Although techniques for facilitating maintenance and reducing costs are known, the ejector pump 4 for liquid refrigerant to be sent to the refrigerant liquid distribution device is known.
An example of a combination configuration of No. 1 and the present invention is shown. An ejector pump 41 is provided in place of the refrigerant pump 9. The driving liquid refrigerant for the ejector pump 41 is supplied from a branch pipe 42 that branches between the steam conduit 26 and the valve 40A. At this time, if the openings of the ejector pump 41 and branch pipe 42 are located above the steam supply section at the bottom of the bubble pump, liquid refrigerant will not rise into the spray duct 12 during heating, and it will act as a bypass pipe for refrigerant vapor. . This embodiment has the advantage of high reliability since there is no refrigerant pump.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、バイパス管を
設けた気泡ポンプで蒸発器の液冷媒を吸収器に効
率よく排出できるので、冷温水を蒸発器から共通
取り出しにできるとともに気泡分離器、気泡ポン
プ管を小形化できる、という効果がある。
As described above, according to the present invention, liquid refrigerant in the evaporator can be efficiently discharged to the absorber using a bubble pump provided with a bypass pipe, so cold and hot water can be taken out from the evaporator in common, and the bubble separator and bubble This has the effect of making the pump pipe smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のサイクルフロー
図、第2図は気泡ポンプの揚液特性、第3図、第
4図および第5図は、それぞれ本発明の他の実施
例のサイクルフロー図である。 1……高温再生器、2……低温再生器、3……
凝縮器、4……蒸発器、5……吸収器、6……低
温熱交換器、7……高温熱交換器、8……循環ポ
ンプ、9……冷媒スプレポンプ、10……冷媒液
導管、11……U字シール管、12……冷媒スプ
レ導管、13……フロート弁、14……冷媒タン
ク、15……分岐管、16……冷媒ブロー管、1
7,18……絞り、19,20……エリミネー
タ、21,22,23……スプレヘツダ、24…
…気泡ポンプ、25……気液分離器、26……蒸
気導管、27……冷媒導管、28……蒸気導管、
29……バイパス管、30……バーナ、31……
貫流ボイラ、32……気液分離器、33……バイ
パス管、34……フロートボツクス、35……フ
ロート弁、39……細い導管、40……底面検出
器、40A……弁、41……エゼクタポンプ。
Fig. 1 is a cycle flow diagram of one embodiment of the present invention, Fig. 2 is a pumping characteristic of a bubble pump, and Figs. 3, 4, and 5 are cycle flows of other embodiments of the present invention. It is a diagram. 1...High temperature regenerator, 2...Low temperature regenerator, 3...
Condenser, 4... Evaporator, 5... Absorber, 6... Low temperature heat exchanger, 7... High temperature heat exchanger, 8... Circulation pump, 9... Refrigerant spray pump, 10... Refrigerant liquid conduit, 11... U-shaped seal pipe, 12... Refrigerant spray conduit, 13... Float valve, 14... Refrigerant tank, 15... Branch pipe, 16... Refrigerant blow pipe, 1
7,18...Aperture, 19,20...Eliminator, 21,22,23...Spray header, 24...
...bubble pump, 25... gas-liquid separator, 26... vapor conduit, 27... refrigerant conduit, 28... vapor conduit,
29... Bypass pipe, 30... Burner, 31...
Once-through boiler, 32... Gas-liquid separator, 33... Bypass pipe, 34... Float box, 35... Float valve, 39... Thin conduit, 40... Bottom detector, 40A... Valve, 41... ejector pump.

Claims (1)

【特許請求の範囲】 1 複数の再生器、凝縮器、蒸発器、吸収器、熱
交換器、溶液ポンプ、冷媒スプレポンプを配管接
続してなる吸収式冷温水機において、凝縮器気相
部と蒸発器とを結ぶ蒸気管の途中に、前記蒸発器
底部からの液冷媒供給配管から液冷媒が流入する
位置に気泡ポンプを設け、前記再生器で発生した
冷媒蒸気によつて揚液された蒸発器の液冷媒を吸
収器に導く管を設けるとともに、前記気泡ポンプ
と再生器とを連絡する蒸気導管に冷媒蒸気をバイ
パスするバイパス管を接続することを特徴とする
吸収式冷温水機。 2 凝縮器と気泡ポンプ及びバイパス管とを連絡
する蒸気導管にU字シール管を設け、該U字シー
ル管に冷媒ポンプ吐出側から分岐した分岐管を接
続したことを特徴とする特許請求の範囲第1項記
載の吸収式冷温水機。 3 再生器とバイパス管及び気泡ポンプとを連絡
する蒸発管に電磁弁を設けるとともに、冷却水ポ
ンプONのとき閉となるようにしたことを特徴と
する特許請求の範囲第1項記載の吸収式冷温水
機。 4 バイパス管と蒸発器とを連絡する細い導管を
設け、蒸発器の冷媒液面が高いときは該細い導管
を経由して前記バイパス管に冷媒液が供給され、
蒸発器液面が低いときは該細い導管の蒸発器での
開孔部が気相部にあるようにしたことを特徴とす
る特許請求の範囲第1項記載の吸収式冷温水機。 5 複数の再生器、凝縮器、蒸発器、吸収器、熱
交換器、溶液ポンプ、冷媒スプレポンプを配管接
続してなる吸収式冷温水機において、低温再生器
加熱部を経由した高温再生器発生冷媒蒸気を分岐
して弁を介して蒸発器と連絡する管を設け、この
管の途中に前記蒸発器底部からの液冷媒供給配管
から液冷媒が流入する位置に気泡ポンプを設け、
前記再生器で発生した冷媒蒸気によつて揚液され
た蒸発器の液冷媒を吸収器に導く管を設けるとと
もに、前記気泡ポンプと再生器とを連絡する蒸気
導管に冷媒蒸気をバイパスするバイパス管を接続
することを特徴とする吸収式冷温水機。 6 再生器とバイパス管及び気泡ポンプと連絡す
る蒸気管に電磁弁を設けるとともに、冷却水ポン
プがONのとき閉となるようにしたことを特徴と
する特許請求の範囲第5項記載の吸収式冷温水
機。 7 バイパス管と蒸発器とを連絡する細い導管を
設け、蒸発器の冷媒液面が高いときは該細い導管
を経由して前記バイパス管に冷媒液が供給され、
蒸発器液面が低いときは該細い導管の蒸発器での
開孔部が気相部にあるようにしたことを特徴とす
る特許請求の範囲第5項記載の吸収式冷温水機。
[Scope of Claims] 1. In an absorption type water chiller/heater in which a plurality of regenerators, condensers, evaporators, absorbers, heat exchangers, solution pumps, and refrigerant spray pumps are connected via piping, the condenser gas phase and the evaporator A bubble pump is provided in the middle of the steam pipe connecting the evaporator to the evaporator at a position where the liquid refrigerant flows in from the liquid refrigerant supply pipe from the bottom of the evaporator, and the evaporator is pumped with refrigerant vapor generated in the regenerator. 1. An absorption chiller/heater, characterized in that a pipe is provided for guiding the liquid refrigerant to the absorber, and a bypass pipe for bypassing the refrigerant vapor is connected to the vapor conduit connecting the bubble pump and the regenerator. 2. Claims characterized in that a U-shaped seal pipe is provided in the steam conduit connecting the condenser, the bubble pump, and the bypass pipe, and a branch pipe branched from the refrigerant pump discharge side is connected to the U-shaped seal pipe. The absorption type water chiller/heater according to item 1. 3. The absorption type according to claim 1, characterized in that a solenoid valve is provided in the evaporation pipe that connects the regenerator, the bypass pipe, and the bubble pump, and is closed when the cooling water pump is turned on. Hot and cold water machine. 4. A thin conduit connecting the bypass pipe and the evaporator is provided, and when the refrigerant liquid level in the evaporator is high, the refrigerant liquid is supplied to the bypass pipe via the thin conduit,
2. The absorption type water chiller/heater according to claim 1, wherein when the liquid level of the evaporator is low, the opening of the thin conduit in the evaporator is located in the gas phase region. 5. In an absorption type water chiller/heater that is constructed by connecting multiple regenerators, condensers, evaporators, absorbers, heat exchangers, solution pumps, and refrigerant spray pumps, the refrigerant generated by the high-temperature regenerator passes through the low-temperature regenerator heating section. A pipe is provided that branches the vapor and communicates with the evaporator via a valve, and a bubble pump is provided in the middle of this pipe at a position where the liquid refrigerant flows from the liquid refrigerant supply pipe from the bottom of the evaporator.
A bypass pipe is provided to guide the liquid refrigerant of the evaporator pumped up by the refrigerant vapor generated in the regenerator to the absorber, and to bypass the refrigerant vapor to a vapor conduit connecting the bubble pump and the regenerator. An absorption type water chiller/heater that is characterized by being connected to. 6. The absorption type according to claim 5, characterized in that a solenoid valve is provided in the steam pipe communicating with the regenerator, the bypass pipe, and the bubble pump, and is closed when the cooling water pump is turned on. Hot and cold water machine. 7. A thin conduit is provided to connect the bypass pipe and the evaporator, and when the refrigerant liquid level in the evaporator is high, the refrigerant liquid is supplied to the bypass pipe via the thin conduit,
6. The absorption type water chiller/heater according to claim 5, wherein when the liquid level of the evaporator is low, the opening of the thin conduit in the evaporator is located in the gas phase region.
JP60153960A 1985-07-15 1985-07-15 Absorption type water heater and chiller Granted JPS6217573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60153960A JPS6217573A (en) 1985-07-15 1985-07-15 Absorption type water heater and chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153960A JPS6217573A (en) 1985-07-15 1985-07-15 Absorption type water heater and chiller

Publications (2)

Publication Number Publication Date
JPS6217573A JPS6217573A (en) 1987-01-26
JPH0441272B2 true JPH0441272B2 (en) 1992-07-07

Family

ID=15573830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153960A Granted JPS6217573A (en) 1985-07-15 1985-07-15 Absorption type water heater and chiller

Country Status (1)

Country Link
JP (1) JPS6217573A (en)

Also Published As

Publication number Publication date
JPS6217573A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
JPH11264623A (en) Absorptive refrigerator
US4667485A (en) Absorption refrigeration and heat pump system
JP3287131B2 (en) Absorption chiller / heater
JP4885467B2 (en) Absorption heat pump
US3491545A (en) Absorption refrigeration system
US4246762A (en) Absorption refrigeration system
JPH07139844A (en) Absorption freezer
JP4007795B2 (en) Absorption heat source equipment
JPH0441272B2 (en)
JPS62186178A (en) Absorption refrigerator
US6205810B1 (en) Absorption cooling apparatus
KR900007721B1 (en) Absorption type cooled water and warm water supplier
KR19990029907A (en) Absorption Chiller
JP3813348B2 (en) Absorption refrigerator
JP3281228B2 (en) Absorption type cold / hot water unit
US3528489A (en) Absorption heating and cooling systems
JP4073219B2 (en) Absorption chiller / heater
US3528491A (en) Absorption heating and cooling system
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
JPH0555787B2 (en)
JPS6148064B2 (en)
JPH0228780B2 (en) KYUSHUSHIKIREIONSUIKI
JP2883372B2 (en) Absorption chiller / heater
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JP3484142B2 (en) 2-stage double-effect absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees