JPH0441142Y2 - - Google Patents

Info

Publication number
JPH0441142Y2
JPH0441142Y2 JP1807389U JP1807389U JPH0441142Y2 JP H0441142 Y2 JPH0441142 Y2 JP H0441142Y2 JP 1807389 U JP1807389 U JP 1807389U JP 1807389 U JP1807389 U JP 1807389U JP H0441142 Y2 JPH0441142 Y2 JP H0441142Y2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
ozone
support
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1807389U
Other languages
Japanese (ja)
Other versions
JPH02110640U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1807389U priority Critical patent/JPH0441142Y2/ja
Publication of JPH02110640U publication Critical patent/JPH02110640U/ja
Application granted granted Critical
Publication of JPH0441142Y2 publication Critical patent/JPH0441142Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は一対の電極を用いた放電作用によつて
オゾンやイオンを発生させるオゾン等の発生装置
に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an ozone generator that generates ozone and ions by a discharge action using a pair of electrodes.

(従来の技術) 従来、放電用電極を用いてオゾンを発生させる
手段としては、例えば実公昭60−24351号公報所
載の如く、平板状又は管状等の所定形状に形成さ
れた放電用電極を所定の定位置に二個一対で対向
配置させたものが存在する。
(Prior Art) Conventionally, as a means for generating ozone using a discharge electrode, for example, as described in Japanese Utility Model Publication No. 60-24351, a discharge electrode formed in a predetermined shape such as a flat plate or a tube shape is used. There is one in which two pieces are arranged facing each other in a predetermined position.

又、他の手段としては特公昭61−29882号公報
所載の如く、装置全体を所謂シロツコ型の送風機
タイプのものに形成して、回転羽根を一方の電極
として他方の電極を該回転羽根に対面配置させた
ものが存在する。
Another method, as described in Japanese Patent Publication No. Sho 61-29882, is to form the entire device into a so-called Shirotsuko-type blower type, with a rotating blade as one electrode and the other electrode as the rotating blade. There are some that are placed facing each other.

(考案が解決しようとする課題) しかしながら、前記従来の前者の手段では、何
れの場合も一対の電極を常時所定の定位置に固定
させて設けてなるために、次の様な問題点を生じ
ていた。
(Problems to be Solved by the Invention) However, with the former conventional means, since a pair of electrodes are always fixed at a predetermined position, the following problems occur. was.

即ち、一対の電極の取付けに際してはその相互
間距離を全体に渡つて均一に設定する必要がある
が、実際上はこの取付寸法には幾分かの誤差が発
生し、両電極を完全な平行状態に設定することは
困難である。又、仮に両電極を高精度な平行状態
に設定しても、その表面には多少の凹凸が存在す
るために、両電極の相互間距離を各所均等に設定
することは到底困難である。従つて、この条件下
に於いて放電を行えば、第5図の如く両電極4,
4aの最短距離の位置Bで集中的な放電が行わ
れ、当該部位Bが異常な高温状態に発熱する。
In other words, when installing a pair of electrodes, it is necessary to set the distance between them uniformly over the entire area, but in reality, some error occurs in this installation dimension, and it is necessary to set both electrodes completely parallel. It is difficult to set the state. Further, even if both electrodes are set in a highly accurate parallel state, since there are some irregularities on the surface, it is extremely difficult to set the mutual distances between both electrodes equally at various locations. Therefore, if discharge is performed under these conditions, both electrodes 4,
Intensive discharge occurs at the shortest distance position B of 4a, and the area B generates heat to an abnormally high temperature.

しかるに、この種オゾンの生成作業ではその電
極が高温になれば生成されたオゾンが即座に分解
されることは承知されている処である。よつて、
従来ではオゾンの生成効率が低下して効率の良い
オゾン発生を行うことが困難で、この点に於いて
致命的な問題点を生じていた。尚、係る問題点は
両電極自体や両電極間への供給気体を冷却するこ
とにより幾分解消されるが、そうすると冷却装置
が別途必要となつて装置の大型化、高コストを招
来する難点が生じるのである。
However, it is well known that in this type of ozone generation work, if the electrode becomes hot, the generated ozone will be immediately decomposed. Then,
In the past, the ozone generation efficiency decreased and it was difficult to generate ozone efficiently, which caused a fatal problem. Although this problem can be solved to some extent by cooling the electrodes themselves or the gas supplied between the electrodes, this requires a separate cooling device, which increases the size and cost of the device. It happens.

また、上記従来の両電極を固定させたもので
は、両電極の表面に塵等のダスト類が付着堆積
し、それにより形成される水素化合物等がオゾン
の発生効率を一層低下させるという問題点をも有
していた。
In addition, with the above-mentioned conventional device in which both electrodes are fixed, dust such as dust adheres and accumulates on the surface of both electrodes, and the hydrogen compounds formed thereby further reduce the ozone generation efficiency. It also had

一方、前記従来の後舎の回転式のものでは、電
極表面へのダスト類の付着が解消され、又電極表
面の平行間隔に多少の誤差等が存在しても局部的
に集中した放電を回避できる利点が得られる。し
かるに、当該手段では、一方の電極を回転させる
ために、該電極への電力供給用として給電用のブ
ラシが必須となつて、該ブラシの磨耗に原因する
部品交換等が面倒となり保守管理面で問題点を生
じていた。また、当該従来の手段に於いて両電極
を常時対向維持させるには、回転される一方の電
極を必ず円筒状又は円板状に形成する必要があ
る。よつて、当該電極が必要以上に大型化して、
装置の小型化を図る上では不利を来すという難点
をも生じていた。
On the other hand, with the conventional rotary type of rear housing, the adhesion of dust to the electrode surface is eliminated, and even if there is some error in the parallel spacing of the electrode surface, locally concentrated discharge is avoided. You can get the benefits that you can. However, in this method, in order to rotate one of the electrodes, a power supply brush is required to supply power to the electrode, and it becomes troublesome to replace parts due to wear of the brush, which causes problems in maintenance management. It was causing problems. Furthermore, in order to maintain both electrodes facing each other at all times in the conventional means, it is necessary to form one of the electrodes to be rotated into a cylindrical or disk shape. Therefore, the electrode becomes larger than necessary,
This also poses a disadvantage in reducing the size of the device.

それ故、本考案は保守管理の面倒な給電用ブラ
シの使用を不必要とし、且つ装置構成の簡素化、
小型化を可能ならしめ、しかも電極表面の凹凸等
に原因する局部的に集中した放電や電極へのダス
ト類の付着を抑制させて、オゾン等の発生効率を
高めることを、その目的とするものである。
Therefore, the present invention eliminates the need for power supply brushes, which are troublesome to maintain, and simplifies the device configuration.
The purpose is to enable miniaturization, suppress locally concentrated discharge caused by irregularities on the electrode surface, and the adhesion of dust to the electrode, and increase the efficiency of generating ozone, etc. It is.

(課題を解決するための手段) 本考案は従来の如く電極を単に固定的に設けた
り或いは回転させるのではなく、従来には見られ
ない電極の移動方式を採用することにより、上記
従来の課題を解消せんとするものである。又、本
考案は装置全体の小型化を促進する手段として、
電極の移動と気体供給用のポンプの作動とを一つ
の駆動源で行わせる様に考慮したものである。
(Means for Solving the Problems) The present invention solves the above-mentioned problems by adopting a method of moving the electrodes that has not been seen in the past, instead of simply providing fixed electrodes or rotating them as in the past. The aim is to eliminate the In addition, the present invention can be used as a means to promote miniaturization of the entire device.
This arrangement is designed so that the movement of the electrode and the operation of the pump for supplying gas are performed by one driving source.

すなわち、第1に本考案は、相互に対向して設
けられた一対の放電用電極4,4aの少なくとも
何れか一方の電極4aを、両電極4,4aの対向
方向と交差する方向に沿つて往復動自在に設け
て、両電極4,4aの各対向面20,20aどう
しの対向位置が相対移動を行うべく構成した、オ
ゾン等の発生装置である。
That is, firstly, the present invention allows at least one electrode 4a of a pair of discharge electrodes 4, 4a provided facing each other to be moved along a direction intersecting the opposing direction of both electrodes 4, 4a. This is a generator of ozone, etc., which is provided so as to be reciprocally movable, and configured so that the opposing positions of the opposing surfaces 20, 20a of the electrodes 4, 4a move relative to each other.

上記構成に包括される装置として、本考案は、
一方側の電極4aを、往復揺動自在に設けられた
支持体7に支持させて該支持体7の揺動支点Aを
中心とする揺動動作によつて他方の電極4との対
向方向と交差する方向に沿つて往復揺動すべく設
け、且つ両電極4,4aの各対向面20,20a
を、支持体7の揺動支点Aを半径中心とする円弧
状に形成して相互に平行状態に設定した、オゾン
等の発生装置である。
As a device included in the above configuration, the present invention has the following features:
The electrode 4a on one side is supported by a support 7 which is provided so as to be able to swing back and forth, and by the swinging motion of the support 7 about the swing fulcrum A, it can be moved in the opposite direction to the other electrode 4. The opposing surfaces 20, 20a of the electrodes 4, 4a are provided to swing back and forth along the intersecting directions.
This is a generator of ozone, etc., which is formed into an arc shape with the swing fulcrum A of the support body 7 as the radial center, and is set in a mutually parallel state.

また、他の態様として本考案は、一方側の電極
4aを他方の電極4の対向面20と平行に往復動
自在な支持体7aに支持させて、該支持体7aの
往復動により前記一方の電極4aが他方の電極4
と平行状態を維持して往復移動自在となるべく設
けた、オゾン等の発生装置である。
In addition, as another aspect of the present invention, one electrode 4a is supported by a support 7a that can reciprocate in parallel with the opposing surface 20 of the other electrode 4, and the reciprocating movement of the support 7a causes the one electrode 4a to Electrode 4a is the other electrode 4
This is an ozone generator, etc., which is installed to be able to move back and forth while maintaining a parallel state with the

第2に本考案は、上記各構成の装置に於いて、
両電極4,4a間への気体供給用のポンプ11を
両電極4,4aとは別体で設けて、該ポンプ11
の作動体13を電極4aを往復動自在に支持する
支持体7に連結することにより、前記作動体13
が支持体7の往復移動に連動した駆動を行つてポ
ンプ11の作動が可能となる様に構成した、オゾ
ン等の発生装置である。
Second, the present invention provides an apparatus having each of the above configurations.
A pump 11 for supplying gas between the electrodes 4 and 4a is provided separately from the electrodes 4 and 4a.
By connecting the actuating body 13 to the support body 7 that supports the electrode 4a in a reciprocating manner, the actuating body 13
This is an ozone generating device configured so that the pump 11 can be operated by driving in conjunction with the reciprocating movement of the support body 7.

(作用) 上記構成の装置に於いては、両電極4,4a間
で放電を行わせる際に両電極4,4aの各抵抗面
20,20aの対向位置を相対移動させることが
できるために、各対向面20,20aに凹凸等が
存在してその相互間の寸法が不均一であつても、
特定の同一箇所に集中して放電が生じることを適
切に回避できることとなる。よつて、電極4,4
aにはオゾン等の生成効率の低下を来す要因とな
る異常な高温状態の部位が発生せず、又電極4,
4aの各対向面20,20aの広域に亙つてオゾ
ン等の発生に有効な放電作用を適切に行わせるこ
とができる。
(Function) In the device configured as described above, since the opposing positions of the resistance surfaces 20 and 20a of both electrodes 4 and 4a can be relatively moved when causing discharge between both electrodes 4 and 4a, Even if there are unevenness etc. on each opposing surface 20, 20a and the mutual dimensions are uneven,
This makes it possible to appropriately prevent discharge from occurring concentrated in the same specific location. Therefore, electrodes 4, 4
There is no abnormally high temperature region in electrode 4, which would cause a decrease in the production efficiency of ozone, etc.
A discharge action effective for generating ozone etc. can be appropriately performed over a wide area of each opposing surface 20, 20a of 4a.

而して、前記電極4,4aの各対向面20,2
0aの相対移動は、電極4,4aの双方又は何れ
か一方の往復移動により行われるために、当該往
復動される電極4aへの電力の供給に際しては給
電用ブラシを用いる必要がなくなる。磨耗等の難
点が生じない単なるコード配線で賄えるのであ
る。また、電極4aは両電極の対面方向と交差す
る方向に往復移動させるものであるから、必ずし
も両電極の何れか一方を大径の円板状又はリング
状に形成する必要はなくなり、両電極4,4aの
双方には例えば小寸法の平板状の電極が適宜使用
できることとなる。
Thus, each of the opposing surfaces 20, 2 of the electrodes 4, 4a
Since the relative movement of 0a is performed by reciprocating movement of both or one of the electrodes 4, 4a, there is no need to use a power supply brush when supplying power to the reciprocating electrode 4a. This can be achieved by simply wiring a cord without causing problems such as wear and tear. In addition, since the electrode 4a is moved back and forth in a direction that intersects the facing direction of both electrodes, it is not necessary to form either one of the electrodes into a large-diameter disk shape or a ring shape. , 4a, for example, small-sized flat electrodes can be used as appropriate.

更に、両電極4,4aの各対向面20,20a
を相互に平行な所定の円弧状に形成した上で、一
方の電極4aを往復揺動自在な支持体7にて支持
させて揺動させる手段によれば、電極4aはその
揺動動作により円弧状軌跡を描いて揺動するもの
の、両電極4,4aの対向面20,20a間の相
互間距離は常時一定寸法値に維持されることとな
る。よつて、電極4aの往復移動に原因して両電
極間の相互間距離を不当に変動させる様な弊害が
解消される。また、電極4aを他方の電極4の対
向面20と平行に往復動する支持体7aに支持さ
せてこれと同方向に往復動させる場合には、対向
面20,20aを円弧状に形成することなく前記
と同様な作用が得られる。
Furthermore, each opposing surface 20, 20a of both electrodes 4, 4a
According to a method in which electrodes 4a are formed into predetermined circular arc shapes parallel to each other, and one of the electrodes 4a is supported and swung by a support 7 that can swing back and forth, the electrode 4a moves in a circular shape by the swiveling action. Although the electrodes 4, 4a swing in an arcuate trajectory, the distance between the opposing surfaces 20, 20a of the electrodes 4, 4a is always maintained at a constant value. Therefore, the problem of unduly changing the mutual distance between the two electrodes due to the reciprocating movement of the electrode 4a is eliminated. In addition, when the electrode 4a is supported by a support 7a that reciprocates in parallel with the facing surface 20 of the other electrode 4 and reciprocates in the same direction, the facing surfaces 20, 20a may be formed in an arc shape. However, the same effect as described above can be obtained.

更に、上記第2の構成の気体供給用のポンプ1
1の作動体13と支持体7とを連結させたもので
は、ポンプ11専用の駆動源が不要となる。又、
前記ポンプ11は電極4,4aとは別体で構成さ
れているから、電極を送風機に一体化させた場合
の如くその気体送風機能に大きな制限を受けず、
気体の供給圧や供給量を適宜所望の必要値に設定
可能なものとなる。
Furthermore, the gas supply pump 1 of the second configuration
In the case where the first actuating body 13 and the support body 7 are connected, a dedicated drive source for the pump 11 is not required. or,
Since the pump 11 is constructed separately from the electrodes 4 and 4a, its gas blowing function is not subject to major restrictions as would be the case if the electrodes were integrated into a blower.
It becomes possible to set the gas supply pressure and supply amount to desired required values as appropriate.

(実施例) 以下、本考案の実施例について図面を参照して
説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

〔第1実施例〕 第1図中、1は空気の供給口2及び排気口3を
夫々備えたケーシングを示す。4,4aは該ケー
シング1内の所定位置に絶縁状態で相互に対向し
て配置された略平板状の一対の放電用の電極4,
4aで、下方側の電極4は固定状態に設けられ
て、その対向面20は誘電体5にて覆われてい
る。他方、上側の電極4aは下側の電極4よりも
小面積に設定されて、軸6を支点として左右に揺
動可能に設けられた支持体7の下部に絶縁状態で
取付けられている。又、両電極4,4aの各対向
面20,20a及び誘電体5の表面は、第2図の
如く支持体7の揺動支点Aを中心とする曲率半径
R1,R2,R3の凸状又は凹状の円弧状曲面に形成
されている。17は前記各放電用電極4,4a間
のコロナ放電に必要な電位差の電圧をケーブル1
8,18aを介して印加するトランスである。
[First Embodiment] In FIG. 1, 1 indicates a casing provided with an air supply port 2 and an air exhaust port 3, respectively. Reference numerals 4 and 4a denote a pair of substantially flat discharge electrodes 4 disposed at predetermined positions in the casing 1 and facing each other in an insulated state.
4a, the lower electrode 4 is provided in a fixed state, and its opposing surface 20 is covered with a dielectric 5. On the other hand, the upper electrode 4a is set to have a smaller area than the lower electrode 4, and is attached in an insulated manner to the lower part of a support body 7 which is provided to be swingable from side to side about a shaft 6 as a fulcrum. Also, the opposing surfaces 20, 20a of both electrodes 4, 4a and the surface of the dielectric 5 have a radius of curvature centered on the swing fulcrum A of the support 7, as shown in FIG.
R 1 , R 2 , and R 3 are formed into convex or concave arc-shaped curved surfaces. Reference numeral 17 indicates the voltage of the potential difference required for corona discharge between the discharge electrodes 4 and 4a through the cable 1.
8, 18a.

10は支持体7の上部に取付けられた永久磁石
を示す。8は該永久磁石10の上方に対峙して設
けられたソレノイドコイルで、商用電源等の交流
電源9からの電力供給によつて形成磁界の方向並
びに電極が交互に切り替わる交番磁界を形成して
前記永久磁石10を備えた支持体7を所定のサイ
クルで左右に往復揺動させるためのものである。
Reference numeral 10 indicates a permanent magnet attached to the upper part of the support 7. Reference numeral 8 denotes a solenoid coil disposed facing above the permanent magnet 10, which forms an alternating magnetic field in which the direction of the magnetic field and the electrodes are alternately switched by supplying power from an AC power source 9 such as a commercial power source. This is for reciprocating the support body 7 provided with the permanent magnet 10 to the left and right in a predetermined cycle.

11はケーシング1の空気供給口2に配管接続
されて前記支持体7の側方に設けられた気体供給
用のポンプで、ポンプ室12を形成するダイアフ
ラム13(作動体)の往復動によつて吸気口14
側から大気中のエアを吸気して前記両電極4,4
a間にエアを供給するためのものである。15,
15aは逆止弁である。16は前記ポンプ11の
ダイアフラム13にその一端部側が接続された往
復駆動用ロツドで、その他端部側は前記支持体7
の往復揺動動作によりダイアフラム13の往復動
作が行われる様に支持体7に連結されている。
Reference numeral 11 denotes a pump for supplying gas, which is connected to the air supply port 2 of the casing 1 through piping and installed on the side of the support 7. Intake port 14
Both the electrodes 4, 4 are connected by sucking air from the atmosphere from the side
This is for supplying air between a. 15,
15a is a check valve. 16 is a reciprocating rod whose one end is connected to the diaphragm 13 of the pump 11, and the other end is connected to the support 7.
The diaphragm 13 is connected to the support body 7 so that the diaphragm 13 is reciprocated by the reciprocating swinging motion of the diaphragm 13.

本実施例は以上の構成からなるために、先ず永
久磁石10を具備した支持体7をソレノイドコイ
ル8の交番磁界によつて往復揺動させれば、上側
の電極4aは下方の電極4との対面状態を維持し
たまま左右に往復揺動する。
Since the present embodiment has the above-described configuration, first of all, if the support body 7 equipped with the permanent magnet 10 is reciprocated by the alternating magnetic field of the solenoid coil 8, the upper electrode 4a is connected to the lower electrode 4. It swings back and forth from side to side while maintaining the facing state.

当該状態では、両電極4,4aの各対向面2
0,20aの対面位置の変更が継続して行われ
て、同一部位どうしが常時対面する様なことが解
消される。よつて、両電極4,4aが完全な平行
状態になく、又その対向面に多少の凹凸が存在し
た場合であつても同一箇所で集中的な放電が行わ
れることがない。両電極4,4a間の各所では適
切な放電が行われ、局部的に異常な高温状態の部
位が発生する様なことが解消される。その結果、
前記両電極4,4a間の放電作用によつて生成さ
れたオゾンが高熱に原因して即座に分解すること
がない。
In this state, each opposing surface 2 of both electrodes 4, 4a
The facing positions of 0 and 20a are continuously changed, and the situation where the same parts always face each other is eliminated. Therefore, even if the electrodes 4, 4a are not completely parallel, and even if there are some irregularities on their opposing surfaces, concentrated discharge will not occur at the same location. Appropriate discharge occurs at various locations between both electrodes 4 and 4a, and the occurrence of locally abnormally high temperature areas is eliminated. the result,
Ozone generated by the discharge action between the electrodes 4, 4a does not decompose immediately due to high heat.

また、各電極4,4aの対向面20,20aは
支持体7の揺動支点Aを中心とする円弧状に形成
されてなるために、一方の電極4aが何れの位置
に揺動変移した場合でも両電極4,4aは平行状
態を維持し、その相互間距離は常時一定値に維持
される。よつて、オゾン発生に有効な放電は両電
極4,4aの全面又は略全面の広面積に渡つた部
位間で行われ、オゾンの発生効率は一層良好とな
る。更に、揺動動作を行う電極4a側へのダスト
類の付着はかなり防止されるから、ダスト類の付
着に原因するオゾン発生効率の低下も半減するこ
ととなる。
In addition, since the facing surfaces 20, 20a of each electrode 4, 4a are formed in an arc shape centered on the swing fulcrum A of the support 7, when one electrode 4a swings to any position, However, both electrodes 4 and 4a maintain a parallel state, and the distance between them is always maintained at a constant value. Therefore, the discharge effective for ozone generation is carried out over a wide area over the entire surface or substantially the entire surface of both electrodes 4, 4a, and the ozone generation efficiency becomes even better. Furthermore, since the adhesion of dust to the side of the electrode 4a that performs the swinging operation is considerably prevented, the reduction in ozone generation efficiency caused by the adhesion of dust is also halved.

更に、トランス17から上側の電極4aへの電
力供給は固定側電極4側と同様に単なる配線接続
によつて行つているが、上側の電極4aは単に往
復動作を行うだけであるから、配線接続のみで充
分に対処でき、何ら構造の複雑な給電ブラシ等を
採用する必要がない。
Furthermore, power is supplied from the transformer 17 to the upper electrode 4a by a simple wiring connection, similar to the fixed electrode 4 side, but since the upper electrode 4a simply performs reciprocating motion, the wiring connection is not necessary. It is possible to deal with the problem with just one, and there is no need to use a power supply brush or the like with a complicated structure.

一方、支持体7にはポンプ11の駆動用ロツド
16が連結されてなるために、前記支持体7の左
右の揺動動作に連動させてポンプ11を作動させ
ることができ、これによつてオゾン発生に必要な
エアを両電極4,4a間に強制的に供給できる。
而して、前記ポンプ11にはそれ専用の駆動源が
不要となるから、装置全体の構造の簡素化、小型
化が図れる。また、両電極4,4a等とは別個に
構成されたポンプ11はその圧縮比等を適当に設
定できるから、両電極4,4a側へのエア供給量
や圧力を所望の必要な値に適宜設定できる様な融
通性をも備えることとなる。
On the other hand, since the drive rod 16 of the pump 11 is connected to the support body 7, the pump 11 can be operated in conjunction with the left and right swinging motion of the support body 7. Air necessary for generation can be forcibly supplied between both electrodes 4, 4a.
Since the pump 11 does not require its own drive source, the overall structure of the device can be simplified and downsized. In addition, since the pump 11, which is configured separately from the electrodes 4, 4a, etc., can appropriately set its compression ratio, etc., the amount and pressure of air supplied to the electrodes 4, 4a can be adjusted to desired and necessary values. It also provides flexibility in settings.

尚、上記実施例では、両電極4,4aの各対向
面の所定の円弧状曲面に形成して、常時その対向
面どうしを平行状態に維持させる様にしたが、本
考案では必ずしも両電極4,4aを曲面状に形成
する必要はない。支持体7の揺動中心位置6から
電極4aの取付位置迄の距離が大きい場合には、
電極4aの揺動によつて生じる両電極4,4a間
の間隔寸法の変動値は小さくなるために、当該変
動値が放電作用に支障が生じない小範囲であれば
両電極4,4aの対向面を平面状態にしても何ら
構わないからである。
In the above embodiment, each of the opposing surfaces of the electrodes 4 and 4a is formed into a predetermined arcuate curved surface so that the opposing surfaces are always maintained in a parallel state. , 4a need not be formed into curved shapes. If the distance from the swing center position 6 of the support body 7 to the mounting position of the electrode 4a is large,
Since the fluctuation value of the distance dimension between the electrodes 4, 4a caused by the swinging of the electrode 4a becomes small, if the fluctuation value is within a small range that does not hinder the discharge action, the electrodes 4, 4a may be opposed to each other. This is because there is no problem even if the surface is made flat.

〔第2実施例〕 次に、第3図に於いて第2実施例を説明する。
但し、説明便宜上同図中、前記第1図の第1実施
例と同符号のものは同一部材、機器を示すもので
ある。
[Second Embodiment] Next, a second embodiment will be described with reference to FIG.
However, for convenience of explanation, the same reference numerals as in the first embodiment shown in FIG. 1 indicate the same members and equipment in the figure.

同図に於いて、7aはケーシング1内に相互に
対面して配置される両電極4,4aのうち一方側
の電極4aを支持するための支持体で、他方の電
極4の対向面20と平行に往復動可能に設けられ
ている。10aは支持体7aに取付けられた永久
磁石で、別途設けられた交番磁界形成用のソレノ
イドコイル8と対峙する位置に設けられて、該コ
イル8の交番磁界の形成によつて支持体7aを電
極4の対向面20と平行に往復動自在とするもの
である。11aはシリンダ13内にピストン13
a(作動体)を嵌入させた気体供給用のポンプで、
前記支持体7aの往復動によつてポンプ動作を行
うべくピストン13aには支持体7aの一端部側
が連結されている。
In the figure, reference numeral 7a denotes a support for supporting one electrode 4a of the two electrodes 4, 4a disposed facing each other in the casing 1; It is provided so that it can reciprocate in parallel. Reference numeral 10a denotes a permanent magnet attached to the support 7a, which is provided at a position facing a separately provided solenoid coil 8 for forming an alternating magnetic field, and by forming the alternating magnetic field of the coil 8, the support 7a is turned into an electrode. It is designed to be able to freely reciprocate in parallel with the opposing surface 20 of No. 4. 11a is a piston 13 in a cylinder 13;
A gas supply pump fitted with a (actuating body),
One end of the support 7a is connected to the piston 13a to perform a pumping action by reciprocating the support 7a.

上記構成の装置に於いても、やはり前記第1実
施例と同様に、ソレノイドコイル8により交番磁
界を形成させるだけで、ポンプ11aを作動させ
てオゾン発生に必要なエアを両電極4,4a間内
に強制的に供給でき、又一方の電極4aを他方の
電極4に対面させたまま往復動作させることがで
きる。
In the device configured as described above, similarly to the first embodiment, by simply forming an alternating magnetic field with the solenoid coil 8, the pump 11a is operated to supply the air necessary for ozone generation between the electrodes 4 and 4a. The electrode 4a can be forcibly fed into the interior of the body, and can be reciprocated with one electrode 4a facing the other electrode 4.

而して、当該手段では一方の電極4aが他方の
電極4aの対向面20に対して平行移動を行うた
めに、両電極4,4aの各対向面20,20aを
何ら円弧状に形成する必要なく、平面状の対向面
20,20a間の相互間距離を所望の一定寸法に
維持させて、電極の各対向面の広域に渡つてオゾ
ン発生に有効な放電作用を生じさせることが可能
となる。又、両電極4,4a間に於いて局部的に
集中した放電が生じないことは第1実施例と同様
である。
In this means, in order for one electrode 4a to move parallel to the opposing surface 20 of the other electrode 4a, it is not necessary to form each opposing surface 20, 20a of both electrodes 4, 4a into an arc shape. By maintaining the mutual distance between the planar opposing surfaces 20 and 20a at a desired constant dimension, it is possible to generate a discharge effect effective for ozone generation over a wide area on each opposing surface of the electrode. . Also, as in the first embodiment, locally concentrated discharge does not occur between the electrodes 4 and 4a.

〔他の実施例〕[Other Examples]

尚、上記各実施例では、何れも一方側の電極4
aのみを往復動させたが、本考案は決してこれに
限定されない。一対の電極4,4aの双方を往復
移動させても何ら構わない。この場合には両電極
4,4aの双方へのダスト類の付着が防止でき
て、ダスト付着に原因するオゾン発生効率の低下
を上記各実施例以上に抑制できる効果が得られ
る。
In each of the above embodiments, the electrode 4 on one side is
Although only a is reciprocated, the present invention is by no means limited to this. There is no problem even if both of the pair of electrodes 4, 4a are moved back and forth. In this case, it is possible to prevent dust from adhering to both electrodes 4 and 4a, and it is possible to suppress the decrease in ozone generation efficiency caused by dust adhesion to a greater extent than in the above embodiments.

両電極4,4aを同時に往復動作させるには、
例えば第4図の如く、軸30,30aに取着され
た二本の支持体7b,7cに夫々電極4,4aを
取付ける如き手段を適宜採用すればよい。当該機
構では、各軸30,30aに連結杆31,31a
を介して連結した永久磁石10b,10cにソレ
ノイドコイル8aの交番磁界を作用させて、両電
極4,4aを相互に異なる方向に揺動させればよ
い。
To reciprocate both electrodes 4, 4a at the same time,
For example, as shown in FIG. 4, means may be adopted as appropriate, such as attaching the electrodes 4, 4a to two supports 7b, 7c attached to shafts 30, 30a, respectively. In this mechanism, connecting rods 31, 31a are connected to each shaft 30, 30a.
The alternating magnetic field of the solenoid coil 8a may be applied to the permanent magnets 10b, 10c connected via the permanent magnets 10b, 10c to swing the electrodes 4, 4a in mutually different directions.

本考案は両電極4,4aを相対的に位置変更さ
せるものであるから、両電極4,4aの双方を移
動させる場合にはその移動方向や速度等が相違す
る様に設定しておけばよい。
In the present invention, the positions of both electrodes 4 and 4a are changed relative to each other, so when both electrodes 4 and 4a are moved, their moving directions and speeds may be set to be different. .

また、本考案は電極4,4aやこれを支持する
支持手段、並びに電極4,4aを往復動させるた
めの駆動手段等の各部の具体的な構成は決して上
記の如く限定されず、これら各部の具体的な構成
は全て本考案の意図する範囲内で任意に設計変更
自在である。本考案では両電極を小寸法の平板状
に形成できる利点が得られるが、必ずしもこれに
限定されず、筒状型の電極を用いた場合等にも適
用できるものである。又、気体供給用のポンプ1
1としては上記各実施例以外の様々な種類のポン
プが適用でき、更に支持体7,7aの往復駆動手
段としては必ずしも永久磁石10とソレノイドコ
イル8との組合わせ手段を用いる必要はない。
Furthermore, in the present invention, the specific configuration of each part such as the electrodes 4, 4a, the support means for supporting them, and the drive means for reciprocating the electrodes 4, 4a is not limited as described above; All specific configurations can be freely modified within the scope of the present invention. Although the present invention has the advantage that both electrodes can be formed into small flat plate shapes, the present invention is not necessarily limited to this, and can also be applied to cases where cylindrical electrodes are used. Also, a pump 1 for gas supply
1, various types of pumps other than the above-mentioned embodiments can be applied, and furthermore, it is not necessarily necessary to use a combination means of a permanent magnet 10 and a solenoid coil 8 as means for reciprocating the supports 7, 7a.

その他、本考案はオゾンの発生用途に限定され
ず、イオンの発生も同様な放電原理で行えるもの
であるからイオン発生装置して適用しても無論構
わない。
In addition, the present invention is not limited to the use of generating ozone, and since ions can also be generated using the same discharge principle, it may of course be applied as an ion generator.

(考案の効果) 叙上の様に、本考案は一対の放電用電極の双方
又は一方を両電極の対向方向と交差する方向に沿
つて往復動自在に設けて、両電極の各対向面どう
しの対向位置を相対移動させ得る様に構成したた
めに、電極の各対向面に凹凸等が存在してその相
互間の寸法が不均一となる場合であつても、従来
の両電極を固定させていた手段の如く何ら特定の
同一箇所に集中した放電を生じさせず、電極の異
常な温度上昇を解消させ得ることができ、又電極
へのダスト類への付着の抑制も図れる他、往復動
する電極への電力供給は従来の電極回転式のもの
の如く構造が複雑な給電用ブラシを用いる必要が
なくなつて固定式電極と同様に簡易なコード配線
で行えることとなつた。
(Effects of the invention) As described above, the present invention provides a pair of discharge electrodes that is capable of reciprocating in a direction that intersects with the direction in which the two electrodes face each other. Since the opposing positions of the electrodes are constructed so that they can be moved relative to each other, even if there are irregularities on the opposing surfaces of the electrodes and the dimensions between them are uneven, it is not possible to keep the two electrodes fixed in a conventional manner. Unlike other methods, it is possible to eliminate the abnormal temperature rise of the electrode without causing discharge concentrated at the same point, and it is possible to suppress the adhesion of dust to the electrode. Power can now be supplied to the electrodes by simple cord wiring, similar to fixed electrodes, without the need to use a power supply brush with a complicated structure as in conventional rotating electrodes.

その結果、本考案によれば従来の両電極固定を
固定させた場合よりもオゾン等の生成効率を格段
に高めることができると同様に、回転式の難点で
あつた給電用ブラシの磨耗に原因する煩雑な部品
交換等の手間を解消できて保守管理面にも優れた
ものにできて、その実用性を格段に高めることが
できるという格別な効果を有するに至つた。
As a result, according to the present invention, the production efficiency of ozone, etc. can be significantly increased compared to the conventional case where both electrodes are fixed. This has resulted in the special effects of being able to eliminate the hassle of complicated parts replacement, etc., making it superior in terms of maintenance and management, and greatly increasing its practicality.

また、本考案では従来の電極を回転させる手段
の如く両電極を常時対向させるために一方の電極
を円板状又はリング状に形成する必要性がなくな
り、両電極には小寸法の平板状のもの等が適宜使
用できる利点もある。
In addition, with the present invention, there is no need to form one electrode in a disk shape or a ring shape in order to always face both electrodes as in conventional means for rotating electrodes, and both electrodes have a small flat plate shape. There is also the advantage that things can be used as appropriate.

更に、本考案の一方の電極を揺動させる場合に
於いて両電極の各対向面を電極の揺動中心を中心
する平行な円弧状面に形成した手段や、一方の電
極を他方の電極の対向面と平行に往復動する支持
体に支持させてこれと同方向に往復動させる手段
では、何れの場合も両電極の相互間距離を常時一
定寸法値に維持できて、両電極の対向面の全面又
は略全面の広域間で有効な放電作業を継続させる
ことができ、オゾン等の生成効率を一層高めるこ
とができる効果がある。
Furthermore, when one electrode of the present invention is oscillated, the opposing surfaces of both electrodes may be formed into parallel arcuate surfaces centered on the center of oscillation of the electrode, or one electrode may be oscillated by the other electrode. By means of supporting a support body that reciprocates in parallel with the opposing surface and reciprocating in the same direction, the distance between the two electrodes can be maintained at a constant value at all times, and the opposing surface of the two electrodes Effective discharge work can be continued over a wide area over the entire surface or substantially the entire surface, and there is an effect that the generation efficiency of ozone, etc. can be further improved.

更に、本考案の気体供給用のポンプを別途設け
て、該ポンプの作動体と支持体とを連結させた手
段によれば、電極を送風機一体化したものの如く
その気体送風量や圧力に大きな制限を受けること
がなく気体供給の条件設定に融通性が得られる
他、ポンプ専用の駆動源が不要で、装置全体の簡
素化並びに小型化が図れるという実益がある。
Furthermore, according to the method of the present invention in which a pump for gas supply is provided separately and the actuating body of the pump is connected to the supporting body, there is no large restriction on the amount and pressure of the gas blown as in the case where the electrode is integrated with the blower. In addition to providing flexibility in setting the conditions for gas supply, there is no need for a dedicated drive source for the pump, which has the practical benefit of simplifying and downsizing the entire device.

更に、本考案の電極の往復動作を永久磁石と交
番磁界形成用のソレノイドコイルとの組合わせで
行う手段では、その構造が非常に簡易で、装置の
小型化を一層促進できる他、動作の信頼性も高く
メンテナンス等の種々の面で優れた利点がある。
Furthermore, with the method of the present invention in which the reciprocating motion of the electrode is performed by a combination of a permanent magnet and a solenoid coil for forming an alternating magnetic field, the structure is extremely simple, and the device can be further miniaturized, and its operation is reliable. It has excellent advantages in various aspects such as high performance and maintenance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本考案に係る装置の第1実
施例を示し、第1図は装置全体の説明図、第2図
は電極の取付部位を示す要部拡大説明図。第3図
は本考案の第2実施例を示す説明図。第4図は本
考案の他の実施例を示し、同図イは正面図、同図
ロは同図イの−線断面図、同図ハは同図イの
Y−Y線断面図。第5図は従来例を示す説明図。 4,4a……放電用電極、7,7a……支持
体、8……ソレノイドコイル、10……永久磁
石、11……ポンプ、13……作動体、20,2
0a……対向面。
1 and 2 show a first embodiment of the device according to the present invention, FIG. 1 is an explanatory view of the entire device, and FIG. 2 is an enlarged explanatory view of the main part showing the attachment site of the electrode. FIG. 3 is an explanatory diagram showing a second embodiment of the present invention. FIG. 4 shows another embodiment of the present invention; FIG. 4A is a front view, FIG. FIG. 5 is an explanatory diagram showing a conventional example. 4, 4a...Discharge electrode, 7,7a...Support, 8...Solenoid coil, 10...Permanent magnet, 11...Pump, 13...Working body, 20,2
0a... Opposing surface.

Claims (1)

【実用新案登録請求の範囲】 1 一対の放電用電極4,4aが相互に対向して
設けられてなるオゾン等の発生装置に於いて、
前記放電用電極4,4aの各対向面20,20
aどうしの対向位置が相対移動を行うべく前記
両電極4,4aのうち少なくとも何れか一方の
電極4aが、両電極4,4aの対向方向と交差
する方向に沿つて往復動自在に設けられてなる
ことを特徴とするオゾン等の発生装置。 2 一方側の電極4aが、往復揺動自在に設けら
れた支持体7に支持されて該支持体7の揺動支
点Aを中心とする揺動動作によつて他方の電極
4との対向方向と交差する方向に沿つて往復揺
動すべく設けられてなり、且つ両電極4,4a
の各対向面20,20aは、支持体7の揺動支
点Aを半径中心とする円弧状に形成されて相互
に平行状態に設定されてなることを特徴とする
実用新案登録請求の範囲第1項記載のオゾン等
の発生装置。 3 一方側の電極4aが、他方の電極4の対向面
20と平行に往復動自在な支持体7aに支持さ
れて、該支持体7aの往復動により前記一方の
電極4aが他方の電極4と平行状態を維持した
往復移動が自在となるべく設けられてなること
を特徴とする実用新案登録請求の範囲第1項記
載のオゾン等の発生装置。 4 一対の放電用電極4,4a間への気体供給用
のポンプ11が両電極4,4aとは別体で設け
られ、且つ該ポンプ11の作動体13は、電極
4aを支持する支持体7の往復移動に連動した
駆動を行つて前記ポンプ11の作動を行わせる
べく前記支持体7と連結されてなることを特徴
とする実用新案登録請求の範囲第1項乃至第3
項の何れかの請求項に記載のオゾン等の発生装
置。 5 実用新案登録請求の範囲第1項乃至第4項の
何れかの請求項に記載のオゾン等の発生装置に
於いて、放電用電極4aを支持する支持体7に
永久磁石10が設けられ、且つ該永久磁石10
と対峙する位置には、該永久磁石10に磁界方
向が変更する交番磁界を作用させて前記支持体
7を往復動させるための交番磁界発生用ソレノ
イドコイル8が設けられてなることを特徴とす
るオゾン等の発生装置。
[Claims for Utility Model Registration] 1. In an ozone generator, etc., in which a pair of discharge electrodes 4, 4a are provided facing each other,
Opposing surfaces 20, 20 of the discharge electrodes 4, 4a
At least one of the electrodes 4, 4a is provided so as to be able to reciprocate along a direction intersecting the direction in which the electrodes 4, 4a face each other so that the opposing positions of the electrodes 4, 4a move relative to each other. An apparatus for generating ozone, etc., characterized by: 2 The electrode 4a on one side is supported by a support 7 that is provided so as to be able to swing back and forth, and is moved in the direction opposite to the other electrode 4 by the swinging motion of the support 7 about the swing fulcrum A. The electrodes 4, 4a are provided to swing back and forth along a direction intersecting with the
Each of the opposing surfaces 20, 20a is formed in an arc shape with the swing fulcrum A of the support body 7 as the radial center, and is set in a mutually parallel state. Ozone, etc. generator described in Section 1. 3 The electrode 4a on one side is supported by a support 7a that can freely reciprocate in parallel with the opposing surface 20 of the other electrode 4, and the reciprocating movement of the support 7a causes the one electrode 4a to connect with the other electrode 4. 2. The ozone or the like generator according to claim 1, wherein the ozone or the like generator is provided to be able to freely move back and forth while maintaining a parallel state. 4 A pump 11 for supplying gas between the pair of discharge electrodes 4 and 4a is provided separately from both electrodes 4 and 4a, and the operating body 13 of the pump 11 is connected to the support 7 that supports the electrode 4a. Utility model registered claims 1 to 3, characterized in that the pump 11 is connected to the support body 7 to operate the pump 11 by driving in conjunction with the reciprocating movement of the pump 11.
An apparatus for generating ozone, etc. according to any one of the claims. 5. Scope of Utility Model Registration Claims In the ozone, etc., generator described in any one of claims 1 to 4, a permanent magnet 10 is provided on the support 7 that supports the discharge electrode 4a, and the permanent magnet 10
A solenoid coil 8 for generating an alternating magnetic field is provided at a position facing the permanent magnet 10 to cause the supporting body 7 to reciprocate by applying an alternating magnetic field whose magnetic field direction is changed. A device that generates ozone, etc.
JP1807389U 1989-02-17 1989-02-17 Expired JPH0441142Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1807389U JPH0441142Y2 (en) 1989-02-17 1989-02-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1807389U JPH0441142Y2 (en) 1989-02-17 1989-02-17

Publications (2)

Publication Number Publication Date
JPH02110640U JPH02110640U (en) 1990-09-04
JPH0441142Y2 true JPH0441142Y2 (en) 1992-09-28

Family

ID=31232389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1807389U Expired JPH0441142Y2 (en) 1989-02-17 1989-02-17

Country Status (1)

Country Link
JP (1) JPH0441142Y2 (en)

Also Published As

Publication number Publication date
JPH02110640U (en) 1990-09-04

Similar Documents

Publication Publication Date Title
JP4828513B2 (en) Efficient high frequency chest wall vibration system
US7151332B2 (en) Motor having reciprocating and rotating permanent magnets
JPH0441142Y2 (en)
JPH1089253A (en) Wobble-type piston/cylinder device
JP3640412B2 (en) Reciprocating pump unit
KR101602089B1 (en) Pump device
BRPI0200462B1 (en) motor frame for linear compressor
JP2004522054A (en) Linear compressor
JP2013148073A (en) Compressor or vacuum machine
JP2012026427A (en) Structure of suction and discharge spool valve in which pair of yoke and cam of offset two-divided eccentric circular chord and flywheel are combined and rotated to perform vibration prevention against vibration generated at upper and lower conversion points of synchronized reciprocating stroke by pair of confronting and facing type linear motion plunger pumps in synchronization with piston rod reciprocating movement
JPH11303732A (en) Linear compressor
KR20160109671A (en) Linear motor type diaphragm pump
CN213928796U (en) Improved direct-connection high-temperature centrifugal fan
JP2001280234A (en) Opposed type reciprocating pump
JP2822954B2 (en) Vibrating compressor
CN214533420U (en) Piston and linear compressor
JPH04214982A (en) Motor-compressor unit
KR200145367Y1 (en) Linear compressor
KR100296340B1 (en) Air occurrence device
JPH10227284A (en) Linear compressor
JP2591031Y2 (en) Reciprocating pump
KR20160039465A (en) Back pressure apparatus of scroll compressor
JPH0517206U (en) Rocking cylinder
JP2000249054A (en) Gas compressor
US634678A (en) Medical pump.