JPH0440956B2 - - Google Patents

Info

Publication number
JPH0440956B2
JPH0440956B2 JP59110803A JP11080384A JPH0440956B2 JP H0440956 B2 JPH0440956 B2 JP H0440956B2 JP 59110803 A JP59110803 A JP 59110803A JP 11080384 A JP11080384 A JP 11080384A JP H0440956 B2 JPH0440956 B2 JP H0440956B2
Authority
JP
Japan
Prior art keywords
current
voltage
torque
signal
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59110803A
Other languages
Japanese (ja)
Other versions
JPS60257788A (en
Inventor
Hiroshi Nagase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59110803A priority Critical patent/JPS60257788A/en
Publication of JPS60257788A publication Critical patent/JPS60257788A/en
Publication of JPH0440956B2 publication Critical patent/JPH0440956B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/048Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using AC supply for only the rotor circuit or only the stator circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導電動機の制御装置、特に高応答ト
ルク制御可能なベクトル制御される誘導電動機の
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control device for an induction motor, and particularly to a control device for a vector-controlled induction motor capable of high-response torque control.

〔発明の背景〕[Background of the invention]

誘導電動機を高応答に制御する方法として1次
電流の磁束軸と同一方向成分(励磁電流)とそれ
と直交する成分(トルク電流)に分解し、それぞ
れを別個に制御するベクトル制御がある。
As a method of controlling an induction motor with high response, there is vector control in which the primary current is decomposed into a component in the same direction as the magnetic flux axis (excitation current) and a component orthogonal to it (torque current), and each component is controlled separately.

ベクトル制御を高精度に行うため、本出願人は
先に1次電流の励磁電流とトルク電流を直流量と
して検出し、各々の成分の指令値と実際値の偏差
からインバータを制御する方法を特開昭57−
199489号として提案している。
In order to perform vector control with high precision, the applicant has developed a method in which the excitation current and torque current of the primary current are detected as DC amounts, and the inverter is controlled from the deviation between the command value and actual value of each component. 1977-
It is proposed as No. 199489.

しかしながら、この方法によつて高応答のトル
ク制御を行う場合、高速度領域で特に高精度のト
ルク制御を行うとき、次のような問題を生じる。
励磁電流に変動が生じるとトルク電流と同方向の
電圧成分であるトルク電圧成分に変動が起き、こ
れがトルク電流に変動を与える。何如ならば、励
磁電流と1次周波数の積はトルク電圧成分にほぼ
一致するトルク電圧成分を与えるので、速度が高
い程、励磁電流がトルク電圧成分に与える影響は
無視できなくなるからで、励磁電流が変動する
と、トルク電圧成分が変化し、その結果トルク電
流も変化するからである。逆にトルク電流に変動
が生じたときも励磁電流に変動を与える。この結
果として、高応答のトルク制御ができなくなる。
However, when high-response torque control is performed using this method, the following problem arises when high-precision torque control is performed particularly in a high-speed region.
When the excitation current fluctuates, the torque voltage component, which is a voltage component in the same direction as the torque current, fluctuates, which causes the torque current to fluctuate. The product of the excitation current and the primary frequency gives a torque voltage component that almost matches the torque voltage component, so the higher the speed, the more the influence of the excitation current on the torque voltage component cannot be ignored. This is because when the torque changes, the torque voltage component changes, and as a result, the torque current also changes. Conversely, when fluctuations occur in the torque current, the excitation current also changes. As a result, high-response torque control becomes impossible.

〔発明の目的〕[Purpose of the invention]

本発明は上記点に対処してなされたもので、そ
の目的とするところは高速域においても高応答の
トルク制御が行える誘導電動機の制御装置を提供
することにある。
The present invention has been made in response to the above-mentioned problems, and its purpose is to provide an induction motor control device that can perform highly responsive torque control even in high-speed ranges.

〔発明の概要〕[Summary of the invention]

本発明の特徴は誘導電動機の1次電流の励磁電
流とトルク電流に分解しそれぞれに応じた直流信
号を得、この両成分の直流信号と両成分の指令信
号の偏差が零になるように電力変換器を制御する
際に、励磁電流と1次周波数の積に対応する信号
を磁束と直交するトルク電圧成分の大きさを指令
するトルク電圧成分指令信号に加算するようにし
た点にある。
The feature of the present invention is that the primary current of the induction motor is decomposed into an excitation current and a torque current, and a DC signal corresponding to each is obtained, and the electric power is adjusted so that the deviation between the DC signal of both components and the command signal of both components becomes zero. When controlling the converter, a signal corresponding to the product of the excitation current and the primary frequency is added to a torque voltage component command signal that commands the magnitude of the torque voltage component orthogonal to the magnetic flux.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

第1図において誘導電動機3は交流電源1より
電圧供給をうけるPWMインバータ2によつて駆
動される。PWMインバータ2はトランジスタ等
のスイツチング素子をグレーツ結線し、各スイツ
チング素子にフライホイールダイオードを逆並列
接続した構成になつている。PWMインバータ2
の出力電流は電流検出器18で検出される。誘導
電動機3には速度検出器4が機械的に直結されて
いる。速度指令回路5の速度指令信号N*と速度
検出器4の速度検出信号Nは加算器6にて図示の
極性で加算され、その偏差ΔNは速度制御回路7
に入力される。速度制御回路7は速度偏差ΔNに
比例して電動機3のトルク電流の大きさを指令す
るトルク電流指令信号It *を出力する。すべり周
波数演算回路8はトルク電流指令信号It *を入力
し、信号It *に応じたすべり周波数指令信号ωs *
出力する。すべり周波数指令信号ωs *は加算器9
に入力され、加算器9において速度検出信号Nと
加算され、1次周波数指令信号ω1 *が出力され
る。加算器9の1次周波数指令信号ω1 *は発振器
17に入力される。発振器17は1次周波数指令
信号ω1 *に対応した2相正弦波信号sinω1 *t,
cosω1 *tを出力する。2相正弦波信号は電流成
分検出回路19とベルトル演算回路20に入力さ
れる。電流検出器18で検出された電流検出信号
iは電流成分検出回路19に入力され、電流成分
検出回路19において発振器17の出力信号に基
づいて励磁電流検出信号Inとトルク電流検出信号
Itを求める。励磁電流指令回路10の励磁電流指
令信号In *と励磁電流検出信号Inは加算器11で
図示の極性で加算され、その偏差ΔInは第1電流
制御回路12に入力される。第1電流制御回路1
2は電流偏差ΔInに応じて励磁電流軸方向の電圧
成分の大きさを指令する励磁電圧成分指令信号
Vn *を出力する。一方、速度制御回路7のトルク
電流指令信号It *と(トルク電流)検出信号Itは加
算器13で図示の極性で加算され、その偏差ΔIt
は第2電流制御回路14に入力される。第2電流
制御回路14は電流偏差ΔItに応じてトルク電流
軸方向(磁束軸の直交方向)の電圧成分の大きさ
を指令するトルク電圧成分指令信号Vt *を出力す
る。トルク電圧成分指令信号Vt *は加算器16に
出力される。また、1次周波数指令信号ω1 *と励
磁電流検出信号Inを掛算器15で掛算し、その掛
算値も加算器16に入力される。加算器16はト
ルク電圧成分指令信号Vt *と、1次周波数指令信
号ω1 *と励磁電流検出信号Inとの積に比例した信
号(2次誘起電圧に相当する)V2の和の信号Vt0
を出力する。信号Vt0 *は修正トルク電圧成分指
令信号Vt0 *となる。励磁電圧成分指令信号Vn *
修正トルク電圧成分指令信号Vt0 *はベクトル演算
回路20に入力されるベクトル演算回路20は両
電圧成分指令信号Vn *とVt *のベクトル加算を発
振器17の2相正弦波信号に基づいて行い、3相
の交流電圧指令信号(瞬時値)v*を出力する。
ベクトル演算回路20の交流電圧指令信号v*
PWMインバータ2に入力される。
In FIG. 1, an induction motor 3 is driven by a PWM inverter 2 supplied with voltage from an AC power source 1. The PWM inverter 2 has a configuration in which switching elements such as transistors are connected in a grates manner, and a flywheel diode is connected in antiparallel to each switching element. PWM inverter 2
The output current of is detected by a current detector 18. A speed detector 4 is mechanically directly connected to the induction motor 3. The speed command signal N * of the speed command circuit 5 and the speed detection signal N of the speed detector 4 are added by an adder 6 with the polarity shown, and the deviation ΔN is calculated by the speed control circuit 7.
is input. The speed control circuit 7 outputs a torque current command signal I t * that commands the magnitude of the torque current of the electric motor 3 in proportion to the speed deviation ΔN. The slip frequency calculation circuit 8 inputs the torque current command signal I t * and outputs a slip frequency command signal ω s * according to the signal I t * . The slip frequency command signal ω s * is sent to the adder 9
is inputted into the adder 9 and added to the speed detection signal N, and a primary frequency command signal ω 1 * is output. The primary frequency command signal ω 1 * of the adder 9 is input to the oscillator 17 . The oscillator 17 generates a two-phase sine wave signal sinω 1 * t corresponding to the primary frequency command signal ω 1 * ,
Output cosω 1 * t. The two-phase sine wave signal is input to a current component detection circuit 19 and a Bertol calculation circuit 20. The current detection signal i detected by the current detector 18 is input to the current component detection circuit 19, and the current component detection circuit 19 generates an exciting current detection signal I n and a torque current detection signal based on the output signal of the oscillator 17.
Find I t . The excitation current command signal I n * of the excitation current command circuit 10 and the excitation current detection signal I n are added by an adder 11 with the polarity shown, and the deviation ΔI n is input to the first current control circuit 12 . First current control circuit 1
2 is an excitation voltage component command signal that commands the magnitude of the voltage component in the axial direction of the excitation current according to the current deviation ΔI n
Output V n * . On the other hand, the torque current command signal I t * of the speed control circuit 7 and the (torque current) detection signal I t are added by the adder 13 with the polarity shown, and the deviation ΔI t
is input to the second current control circuit 14. The second current control circuit 14 outputs a torque voltage component command signal V t * that commands the magnitude of the voltage component in the torque current axis direction (orthogonal direction to the magnetic flux axis) according to the current deviation ΔI t . Torque voltage component command signal V t * is output to adder 16 . Further, the primary frequency command signal ω 1 * and the excitation current detection signal In are multiplied by a multiplier 15 , and the multiplied value is also input to an adder 16 . The adder 16 calculates the sum of the torque voltage component command signal V t * and the signal V 2 (corresponding to the secondary induced voltage) proportional to the product of the primary frequency command signal ω 1 * and the exciting current detection signal I n . Signal V t0
Output * . The signal V t0 * becomes the modified torque voltage component command signal V t0 * . The excitation voltage component command signal V n * and the modified torque voltage component command signal V t0 * are input to the vector calculation circuit 20 . This is performed based on the two-phase sine wave signal, and a three-phase AC voltage command signal (instantaneous value) v * is output.
The AC voltage command signal v * of the vector calculation circuit 20 is
Input to PWM inverter 2.

次に、その動作を説明する。 Next, its operation will be explained.

速度制御回路7は速度偏差ΔNに応じて誘導電
動機3のトクル電流の大きさを指令するトルク電
流指令信号It *を出力する。すべり周波数指令信
号ωs *とトルク電流指令信号It *には次式の関係が
ある。
The speed control circuit 7 outputs a torque current command signal I t * that commands the magnitude of the torque current of the induction motor 3 according to the speed deviation ΔN. The slip frequency command signal ω s * and the torque current command signal I t * have the following relationship.

ωs *=1/T2In *It * ……(1) ここで、T2は誘導電動機3の2次時定数(=
ln+l2/r2)で、ln:励磁インダクタンス、l2:2次 もれインダクタンス、r2:2次回路である。
ω s * = 1/T 2 I n * I t * ...(1) Here, T 2 is the second-order time constant of the induction motor 3 (=
l n +l 2 /r 2 ), l n : excitation inductance, l 2 : secondary leakage inductance, r 2 : secondary circuit.

(1)式から明らかなように、励磁電流指令信号In
が一定であればすべり周波数指令信号ωs *はト
ルク電流指令信号It *に比例する。すべり周波数
演算回路8は(1)式の演算を行いすべり周波数指令
信号ωs *を出力する。加算器9では(2)式 ω1 *=ωs *+N ……(2) の演算を行つて、1次周波数指令信号ω1 *を出力
する。なお、(2)式において、信号ω1 *,ωs *は誘
導電動機3の1次角周波数とすべり角周波数であ
り、速度検出信号Nは回転角周波数を表わしてい
る。発振器17は1次周波数指令信号ω1 *に応じ
た周波数の2相正弦波信号sinω1 *t,csω1 *tを
出力する。
As is clear from equation (1), the excitation current command signal I n
If * is constant, the slip frequency command signal ω s * is proportional to the torque current command signal I t * . The slip frequency calculation circuit 8 calculates equation (1) and outputs a slip frequency command signal ω s * . The adder 9 calculates the equation (2): ω 1 *s * +N (2), and outputs the primary frequency command signal ω 1 * . In equation (2), the signals ω 1 * and ω s * are the primary angular frequency and slip angular frequency of the induction motor 3, and the speed detection signal N represents the rotational angular frequency. The oscillator 17 outputs two-phase sine wave signals sinω 1 * t , csω 1 * t having frequencies corresponding to the primary frequency command signal ω 1 *.

第2図に発振器17の一例構成図を示す。 FIG. 2 shows an example configuration diagram of the oscillator 17.

1次周波数指令信号ω1 *は絶対値回路101に
入力される。V/Fコンバータ102は絶対値回
路101の出力信号を入力し、入力信号に比例し
たパルス例の信号を出力する。また、1次周波数
指令信号ω1 *は極性判別回路103にも入力さ
れ、その符号を判別させる。アツプダウンカウン
タ104は極性判別回路103の出力信号に応じ
てV/Fコンバータ102のパルス例をアツプカ
ウントするかダウンカウントするかを決定する。
カウンタ104のカウント値は位相ω1 *tに対応
し、ROM105,106の所定アドレスに入力
される。ROM105からは正弦波信号に対応す
るデイジタル信号Ss(=sinω1 *t)が出力され、
またROM106から余弦波信号に対応するデイ
ジタル信号Se(=cosω1 *t)が出力される。デイ
ジタル信号Ss,Seは電流成分検出回路19とベク
トル演算回路20にそれぞれ入力される。
The primary frequency command signal ω 1 * is input to the absolute value circuit 101 . The V/F converter 102 receives the output signal of the absolute value circuit 101 and outputs a pulse example signal proportional to the input signal. The primary frequency command signal ω 1 * is also input to the polarity determining circuit 103 to determine its sign. The up-down counter 104 determines whether to up-count or down-count the pulse example of the V/F converter 102 in accordance with the output signal of the polarity determination circuit 103.
The count value of the counter 104 corresponds to the phase ω 1 * t, and is input to predetermined addresses of the ROMs 105 and 106. The ROM 105 outputs a digital signal S s (=sinω 1 * t) corresponding to the sine wave signal,
Further, the ROM 106 outputs a digital signal S e (=cosω 1 * t) corresponding to the cosine wave signal. The digital signals S s and S e are input to a current component detection circuit 19 and a vector calculation circuit 20, respectively.

第3図に電流成分検出回路19の一例構成図を
示す。電流検出器18の電流検出信号iのU相、
V相の電流をiu,ivとすると、 iu=Isin(ω1t+θ) iv=Isin(ω1t−2/3π+θ) ……(3) のように表わされる。(3)式において、Iは電流の
大きさ、θは発振器17の出力信号Ssと電流検出
信号iuの位相差である。電流検出信号iu,ivは第
3図に示すように1,1/√2,2/√3の重み
係数を有する係数器107,108,109およ
び加算器110によつて2相の電流検出信号i〓,
i〓に変換される。その演算は(4)式のようになる。
FIG. 3 shows an example configuration diagram of the current component detection circuit 19. U phase of current detection signal i of current detector 18,
When the V-phase currents are i u and i v , it is expressed as i u =Isin(ω 1 t+θ) i v =Isin(ω 1 t−2/3π+θ) (3). In equation (3), I is the magnitude of the current, and θ is the phase difference between the output signal S s of the oscillator 17 and the current detection signal i u . The current detection signals i u and i v are converted into two-phase currents by coefficient multipliers 107, 108, 109 and an adder 110 having weighting coefficients of 1, 1/√2, 2/√3, as shown in FIG. Detection signal i〓,
It is converted to i〓. The calculation is as shown in equation (4).

i〓=iu=Isin(ω1t+θ) i〓=1/√3iu+2/√3iv=−Icos(ω1t+θ) ……(4) 電流検出信号i〓,i〓と正弦波信号Ss,SeはD/
A変換器111,112,113,114で図示
のように掛け合わせられた後に加算器115,1
16で図示の極性で加算される。電流成分検出回
路19によつて(5)式の演算が行われる。
i = i u = Isin (ω 1 t + θ) i = 1/√3i u +2/√3i v = −Icos (ω 1 t + θ) ...(4) Current detection signal i =, i = and sine wave signal S s , S e is D/
After being multiplied by A converters 111, 112, 113, 114 as shown in the figure, adders 115, 1
16, the signals are added with the polarity shown. The current component detection circuit 19 calculates equation (5).

In=i〓Ss−i〓Se It=i〓Ss−i〓Se ……(5) (5)式に(4)式を代入して整理すると次式のように
なる。
I n =i〓S s −i〓S e I t =i〓S s −i〓S e ……(5) Substituting formula (4) into formula (5) and rearranging, we get the following formula .

In=Icomθ It=Isinθ ……(6) (6)式から明らかなように電流検出信号iの励磁
電流成分Inとトルク電流成分Itが直流量で検出さ
れる。
I n = Icom θ I t = Isin θ (6) As is clear from equation (6), the excitation current component I n and the torque current component I t of the current detection signal i are detected as DC amounts.

第1図に戻り、第1電流制御回路12は励磁電
流指令信号In *と励磁電流検出信号Inの電流偏差
ΔInに応じた励磁電圧成分指令信号Vn *を出力し、
また、第2電流制御回路14はトルク電流指令信
号It *とトルク電流検出信号Itの電流偏差ΔItに応
じてトルク電圧成分指令信号Vt *を出力する。
Returning to FIG. 1, the first current control circuit 12 outputs an excitation voltage component command signal V n * according to the current deviation ΔI n between the excitation current command signal I n * and the excitation current detection signal I n ,
Further, the second current control circuit 14 outputs the torque voltage component command signal V t * according to the current deviation ΔI t between the torque current command signal I t * and the torque current detection signal I t .

ところで、誘導電動機3に加えられる1次電圧
Vと励磁電圧Vnおよびトルク電圧Vt、1次電流
Iと励磁電流Inおよびトルク電流Itの関係をベク
トル図で示すと第4図のようになる。同図aは速
度が高いとき、bは速度が低いときを示す。第4
図からわかるように、励磁電流Inとトルク電流It
の関係が同じであつても電圧は速度によつて異な
り、さらにトルク電流Itと同方向のトルク電圧Vt
は速度によつて大きく異なることがわかる。トル
ク電圧Vtは(7)式のように表わされる。
By the way, the relationship between the primary voltage V, excitation voltage V n and torque voltage V t applied to the induction motor 3, and the relationship between the primary current I, excitation current I n and torque current I t is shown in a vector diagram as shown in Fig. 4. become. Figure a shows when the speed is high, and b shows when the speed is low. Fourth
As can be seen from the figure, the excitation current I n and the torque current I t
The voltage varies depending on the speed even if the relationship between
It can be seen that the speed varies greatly depending on the speed. Torque voltage V t is expressed as in equation (7).

Vt∝In×ω1 ……(7) 第1図においてはトルク電圧成分指令信号Vt *
に、励磁電流検出信号Inと1次周波数指令信号
ω1 *を掛け合せた信号V2を加算して修正トルク電
圧成分指令信号Vt0 *を得ている。このように、速
度によつて大きく変化する信号V2を利用して信
号Vt0 *を得ているので、トルク電流Itに何らの影
響を与えずに励磁電流検出信号Inおよび1次周波
数指令信号ω1 *の大きさに対応させた値の修正ト
ルク電圧指令信号Vt0 *を得ることが出来る。な
お、励磁電流検出信号Inの代わりに指令信号In *
あるいは第4図に示す磁束φの大きさに比例する
信号を用いてもよく、また、1次周波数指令信号
ω1 *の代わりに速度検出信号Nを用いることもで
きる。さらに、励磁電流検出信号Inが一定ならば
掛算器15に代わつて係数器を用い、信号ω1 *
たはNに比例した信号を加算器16に入力するよ
うにしてもよい。
V t ∝I n ×ω 1 ...(7) In Fig. 1, the torque voltage component command signal V t *
A signal V 2 obtained by multiplying the excitation current detection signal In and the primary frequency command signal ω 1 * is added to the corrected torque voltage component command signal V t0 * . In this way, since the signal V t0 * is obtained using the signal V 2 which changes greatly depending on the speed, the exciting current detection signal I n and the primary frequency can be adjusted without affecting the torque current I t in any way. A modified torque voltage command signal V t0 * having a value corresponding to the magnitude of the command signal ω 1 * can be obtained. Note that the command signal I n * is used instead of the excitation current detection signal I n
Alternatively, a signal proportional to the magnitude of the magnetic flux φ shown in FIG. 4 may be used, and the speed detection signal N may be used instead of the primary frequency command signal ω 1 * . Furthermore, if the excitation current detection signal I n is constant, a coefficient multiplier may be used instead of the multiplier 15 and a signal proportional to the signal ω 1 * or N may be input to the adder 16.

このようにして励磁電圧成分指令信号Vn *と修
正トルク電圧成分指令信号Vt0 *が得られると、ベ
クトル演算回路20は次のようにして3相の交流
電圧指令信号v*を出力する。
When the excitation voltage component command signal V n * and the corrected torque voltage component command signal V t0 * are obtained in this way, the vector calculation circuit 20 outputs a three-phase AC voltage command signal v * in the following manner.

第5図にベクトル演算回路20の一例構成図を
示す。信号Vn *,Vt *,Ss,Seは掛算器として動
作するD/A変換器117,118,119,1
20で入力され、それらの出力は加算器121,
122で図示のように加算され、2相の交流電圧
指令信号v〓*,v〓*を得る。信号v〓*,v〓*はD/A
変換器117〜120および加算器121,12
2によつて(8)式の演算を実行する。
FIG. 5 shows an example configuration diagram of the vector calculation circuit 20. Signals V n * , V t * , S s , S e are supplied to D/A converters 117, 118, 119, 1 which operate as multipliers.
20, and their outputs are input to adders 121,
At 122, the signals are added as shown in the figure to obtain two-phase AC voltage command signals v〓 * , v〓 * . Signal v〓 * , v〓 * is D/A
Converters 117-120 and adders 121, 12
2, the calculation of equation (8) is executed.

v〓*=Vn *Ss+Vt *Se v〓*=−Vn *Se+Vt *Ss ……(8) (8)式を整理すると(9)式のようになる。 v〓 * =V n * S s +V t * S e v〓 * = −V n * S e +V t * S s ……(8) When formula (8) is rearranged, it becomes formula (9).

v〓*=V*sin(ω1 *t+) v〓*=−V*cos(ω1 *t+) ……(9) このようにして2相の交流電圧指令信号v〓*
v〓*が得られる。
v〓 * =V * sin (ω 1 * t+) v〓 * = −V * cos (ω 1 * t+) ...(9) In this way, the two-phase AC voltage command signal v〓 * ,
v〓 * is obtained.

なお、 V*=√(n *2+(t *2 ……(10) =tan-1(Vt */Vn *) ……(11) である。 Note that V * = √ ( n * ) 2 + ( t * ) 2 ... (10) = tan -1 (V t * /V n * ) ... (11).

交流電圧指令信号v〓*,v〓*は図示のように1,
1/2,2/√3の重み係数を持つ係数器12
3,124,125に入力される。さらに、係数
器124,125の出力は図示の極性で加算器1
26,127に加えられる。したがつて、3相の
交流電圧指令信号v*(vu *,vv *,vw *)は次式のよ
うになる。
The AC voltage command signals v〓 * , v〓 * are 1,
Coefficient unit 12 with weighting coefficients of 1/2, 2/√3
3,124,125. Furthermore, the outputs of the coefficient multipliers 124 and 125 are outputted to the adder 1 with the polarity shown in the figure.
26,127. Therefore, the three-phase AC voltage command signal v * (v u * , v v * , v w * ) is expressed by the following equation.

vu *=v〓*=V*sin(ω1 *t+) vv *=−1/2v〓*+2/√3v〓* =V*sin(ω1 *t−2/3π+) vw *=−1/2v〓*−2/√3v〓* =V*sin(ω1 *t−4/3π+) ……(12) 交流電圧指令信号v*はPWMインバータ2の出
力電圧に比例し、信号v*に応じてPWMインバー
タ2のスイツチング素子がオン、オフされる。イ
ンバータ2の出力電圧(相電圧)は交流電圧指令
v*に比例するようになる。
v u * =v〓 * =V * sin(ω 1 * t+) v v * =−1/2v〓 * +2/√3v〓 * =V * sin(ω 1 * t−2/3π+) v w * =-1/2v〓 * -2/√3v〓 * =V * sin(ω 1 * t-4/3π+) ...(12) AC voltage command signal v * is proportional to the output voltage of PWM inverter 2, The switching element of the PWM inverter 2 is turned on and off according to the signal v * . The output voltage (phase voltage) of inverter 2 is the AC voltage command
It becomes proportional to v * .

以上のようにして制御して、誘導電動機3の回
転速度は速度指令信号N*に比例するように制御
される。このとき、回転速度Nによつて大きく変
化する修正トルク電圧成分指令信号Vt0 *は(7)式の
演算を行う掛算器15の出力信号V2によつてほ
ぼ決められる。電流制御回路12,14ではそれ
ぞれ電流成分In,Itの偏差を補正する動作だけを
行えばよいので、トルク電流Itの変動はトルク電
圧成分Vtに影響を与えず、励磁電流Inの変動がそ
れによつて変わるトルク電圧成分Vtに影響を与
えるようになる。したがつて、広い速度範囲にわ
たり安定な速度制御を行うことができる。
By controlling as described above, the rotational speed of the induction motor 3 is controlled to be proportional to the speed command signal N * . At this time, the corrected torque voltage component command signal V t0 * , which varies greatly depending on the rotational speed N, is approximately determined by the output signal V 2 of the multiplier 15 that performs the calculation of equation (7). In the current control circuits 12 and 14, it is only necessary to perform an operation to correct the deviation of the current components I n and I t, respectively, so that fluctuations in the torque current I t do not affect the torque voltage component V t , and the excitation current I n fluctuations in V t will affect the torque voltage component V t that changes accordingly. Therefore, stable speed control can be performed over a wide speed range.

第6図に従来方法と本発明による動作特性を示
す。第6図aは従来方法によるトルク電流指令信
号It *の変化時における応答波形図で、同図bは
本発明によるトルク電流指令信号It *の変化時に
おける応答波形図を示す。同図かわかるように、
従来方法によれば、トルク電流指令信号It *の変
化時に励磁電流Inの振動が生じるが、本発明によ
れば励時電流Inの振動は生じることがなく、さら
にトルク電流Itも非振動的に目標値に追従するこ
とがわかる。
FIG. 6 shows the operating characteristics of the conventional method and the present invention. FIG. 6a shows a response waveform diagram when the torque current command signal I t * changes according to the conventional method, and FIG. 6b shows a response waveform diagram when the torque current command signal I t * changes according to the present invention. As you can see, it's the same picture.
According to the conventional method, the excitation current I n oscillates when the torque current command signal I t * changes, but according to the present invention, the excitation current I n does not oscillate, and the torque current I t also does not oscillate. It can be seen that the target value is followed in a non-oscillatory manner.

第7図に本発明の他の実施例を示す。 FIG. 7 shows another embodiment of the present invention.

第7図において、第1図と同一記号のものは相
当物を示す。第7図の実施例は交流電圧指令信号
V*を得る手段が第1図の実施例と異なる。電流
制御回路12の励磁電圧成分指令信号Vn *と加算
器16のトルク電圧成分指令信号Vt *はベクトル
加算回路24に入力される。ベクトル加算回路2
4は(10)式の平方根演算を行い、交流電圧の大きさ
を指令する電圧振幅指令信号V*を出力する。ベ
クトル加算回路24の電圧振幅指令信号V*は電
圧指令演算回路25に入力される。また、励磁電
圧成分指令信号Vn *と修正トルク電圧成分指令信
号Vt0 *は割算器21に入力され、その出力は関数
発生器22に加えられる。割算器21と関数発生
器22では(11)式の逆正接演算を行い、第4図に示
す位相に応じた信号を出力する。1次周波数指
令信号ω1 *と位相信号は発信器23に入力され
る。
In FIG. 7, the same symbols as in FIG. 1 indicate equivalents. The embodiment shown in Fig. 7 is an AC voltage command signal.
The means for obtaining V * is different from the embodiment shown in FIG. The excitation voltage component command signal V n * of the current control circuit 12 and the torque voltage component command signal V t * of the adder 16 are input to the vector addition circuit 24 . Vector addition circuit 2
4 performs the square root calculation of equation (10) and outputs a voltage amplitude command signal V * that commands the magnitude of the AC voltage. The voltage amplitude command signal V * of the vector addition circuit 24 is input to the voltage command calculation circuit 25. Further, the excitation voltage component command signal V n * and the modified torque voltage component command signal V t0 * are input to the divider 21 , and the output thereof is applied to the function generator 22 . The divider 21 and the function generator 22 perform arctangent calculation of equation (11) and output a signal according to the phase shown in FIG. The primary frequency command signal ω 1 * and the phase signal are input to the oscillator 23 .

第8図に発振器23一例構成図を示す。 FIG. 8 shows a configuration diagram of an example of the oscillator 23.

第8図において、部品番号101〜106は第
2図と相当物を示す。位相信号はA/D変換器
128に入力され、それに対応するデイジタル信
号に変換される。A/D変換器128とカウンタ
104の出力信号はデイジタル加算器129に入
力される。加算器129では位相とω1 *tに対
応するデイジタル信号が加算される。加算器12
9の出力信号はROM130,131に入力され
る。ROM130,131からは2相の正弦波信
号Ss′=sin(ω1 *+),Sc′=cos(ω1 *t+)に
対応するデイジタル信号が得られる。信号Ss′,
Sc′は電圧指令演算回路25に入力され、信号
Ss′,Sc′は電流成分検出回路19に入力される。
In FIG. 8, part numbers 101 to 106 indicate parts equivalent to those in FIG. The phase signal is input to an A/D converter 128 and converted to a corresponding digital signal. The output signals of A/D converter 128 and counter 104 are input to digital adder 129. The adder 129 adds the digital signals corresponding to the phase and ω 1 * t. Adder 12
The output signal of 9 is input to ROMs 130 and 131. Digital signals corresponding to two-phase sine wave signals S s ′=sin (ω 1 * +) and S c ′=cos (ω 1 * t+) are obtained from the ROMs 130 and 131 . Signal S s ′,
S c ′ is input to the voltage command calculation circuit 25, and the signal
S s ′ and S c ′ are input to the current component detection circuit 19 .

第7図に戻り、電圧振幅指令信号V*と正弦波
信号Ss′,Sc′は電圧指令演算回路25に入力され
る。電圧指令演算回路25は電圧振幅指令信号
V*と正弦波信号Ss′,Sc′を掛け合せ、2相の交
流電圧指令信号v〓*,v〓*を得た後に2相−3相変
換をして3相の交流電圧指令信号v*(vu *,vv *
vw *)を出力する。交流電圧指令信号v*はPWM
インバータ2に加えらえる。
Returning to FIG. 7, the voltage amplitude command signal V * and the sine wave signals S s ′, S c ′ are input to the voltage command calculation circuit 25 . The voltage command calculation circuit 25 generates a voltage amplitude command signal.
Multiply V * by the sinusoidal signals S s ′ and S c ′ to obtain two-phase AC voltage command signals v〓 * , v〓 * , and then perform 2-phase to 3-phase conversion to obtain 3-phase AC voltage command signals v * (v u * , v v * ,
v w * ). AC voltage command signal v * is PWM
Added to inverter 2.

第9図に電圧指令演算回路25の一例構成図を
示す。
FIG. 9 shows an example configuration diagram of the voltage command calculation circuit 25.

電圧振幅指令信号V*と正弦波信号Ss′,Sc′は
D/A変換器132,133に入力され、V*
Ss′,Sc′が掛算される。D/A変換器132,1
33の出力信号は2相の交流電圧指令信号v〓*
v〓*となる。交流電圧指令信号v〓*,v〓*は重み係
数がそれぞれ1,1/2,2/√3の係数器13
4,135,136に図示のように入力される。
係数器135,136の出力は図示の極性で加算
器137,138に入力される。このようにして
3相の交流電圧指令信号v*(vu *,vv *,vw *)が得
られる。
The voltage amplitude command signal V * and the sine wave signals S s ′, S c ′ are input to the D/A converters 132 and 133, and the voltage amplitude command signal V * and
S s ′ and S c ′ are multiplied. D/A converter 132,1
The output signal of 33 is a two-phase AC voltage command signal v〓 * ,
v〓 * . The AC voltage command signals v〓 * , v〓 * are processed by a coefficient unit 13 with weighting coefficients of 1, 1/2, and 2/√3, respectively.
4,135,136 are input as shown.
The outputs of the coefficient multipliers 135 and 136 are input to adders 137 and 138 with the polarities shown. In this way, three-phase AC voltage command signals v * (v u * , v v * , v w * ) are obtained.

第7図の実施例においても第1図と同様な動作
が行われ、第6図に示すような効果が得られる。
また、第7図の実施例は電圧指令信号v*を得る
際に電圧の大きさと位相を分離して演算するの
で、マイクロコンピユータを用いたデイジタル構
成によつてプラグラムで制御するのに適する。
In the embodiment shown in FIG. 7, the same operation as that shown in FIG. 1 is performed, and the effect shown in FIG. 6 is obtained.
Furthermore, since the embodiment shown in FIG. 7 calculates the magnitude and phase of the voltage separately when obtaining the voltage command signal v * , it is suitable for program control using a digital configuration using a microcomputer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば回転速度
により大幅に変化するトルク電流軸のトルク電圧
成分指令信号を、回転速度と励磁速度の積によつ
てほぼ確立させるので、広い速度範囲にわたつて
安定に、かつ高応答のトルク制御を行うことがで
きる。
As explained above, according to the present invention, the torque voltage component command signal on the torque current axis, which changes significantly depending on the rotational speed, is almost established by the product of the rotational speed and the excitation speed, so it can be used over a wide speed range. Torque control can be performed stably and with high response.

また、上述の実施例では電力変換器として
PWMインバータを用いる場合について示した
が、電流形インバータやサイクロコンバータを用
いる場合にも適用できる。さらに、上述の実施例
ではアナログ構成のものを示したが、マイクロコ
ンピユータを用いてデイジタル制御する場合にも
本発明を適用できるのは勿論である。
In addition, in the above embodiment, as a power converter
Although the case where a PWM inverter is used is shown, it can also be applied when a current source inverter or a cycloconverter is used. Further, although the above-described embodiment shows an analog configuration, it goes without saying that the present invention can also be applied to digital control using a microcomputer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2
図、第3図はそれぞれ第1図における発振器また
は電流成分検出回路の一例詳細構成図、第4図は
第1図の動作説明用ベクトル図、第5図は第1図
におけるベクトル演算回路の一例詳細構成図、第
6図は本発明の効果を説明するための特性図、第
7図は本発明の他の実施例を示す構成図、第8図
第9図はそれぞれ第7図における発振器または電
圧指令演算回路の一例を示す構成図である。 2……PWMインバータ、3……誘導電動機、
7……速度制御回路、8……すべり周波数演算回
路、9……加算器、10……励磁電流指令回路、
12,14……電流制御回路、15……掛算器、
16……加算器、17……発振器、19……電流
成分検出回路、20……ベクトル演算回路。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
3 and 3 are detailed configuration diagrams of examples of the oscillator or current component detection circuit in FIG. 1, FIG. 4 is a vector diagram for explaining the operation of FIG. 1, and FIG. 5 is an example of the vector calculation circuit in FIG. 1. A detailed configuration diagram, FIG. 6 is a characteristic diagram for explaining the effects of the present invention, FIG. 7 is a configuration diagram showing another embodiment of the present invention, and FIG. 8 and FIG. FIG. 2 is a configuration diagram showing an example of a voltage command calculation circuit. 2...PWM inverter, 3...Induction motor,
7...Speed control circuit, 8...Slip frequency calculation circuit, 9...Adder, 10...Exciting current command circuit,
12, 14... Current control circuit, 15... Multiplier,
16... Adder, 17... Oscillator, 19... Current component detection circuit, 20... Vector calculation circuit.

Claims (1)

【特許請求の範囲】 1 電力変換器により駆動される誘導電動機と、
速度指令値と速度実際値を比較して前記誘導電動
機のトルク電流の大きさを指令する速度制御手段
と、前記トルク電流に対応したすべり周波数を求
めるすべり周波数演算手段と、該すべり周波数演
算手段のすべり周波数と回転周波数の和から1次
周波数指令値を求める周波数指令手段と、前記誘
導電動機の励磁電流の大きさを指令する励磁電流
指令手段と、前記誘導電動機の1次電流を検出
し、そのトルク電流と励磁電流の大きさに比例し
た直流信号を出力する電流成分検出手段と、前記
電流成分検出手段で演算した励磁電流実際値と前
記励磁電流指令値を比較し励磁電圧成分指令値を
出力する第1電流制御手段と、前記トルク電流実
際値と前記トルク電流指令値を比較しトルクで電
圧成分指令値を出力する第2電流制御手段と、前
記誘導電動機の2次誘起電圧に相当する電圧演算
手段とを具備し、前記トルク電圧成分指令値と前
記電圧演算手段の出力を加算して修正トルク電圧
成分指令値を求め、この修正トルク電圧成分指令
値に基づき1次電圧のトルクの電圧成分の大きさ
を制御するようにしたことを特徴とする誘導電動
機の制御装置。 2 特許請求の範囲第1項において、2次誘起電
圧に相当する電圧演算手段が、前記励磁電流実際
値もしくは励磁電流指令値と1次周波数演算値と
の積から求めたことを特徴とする誘導電動機の制
御装置。 3 特許請求の範囲第1項において、2次誘起電
圧に相当する電圧演算手段が、誘導電動機の主磁
束と1次周波数演算値との積から求めたことを特
徴とする誘導電動機の制御装置。
[Claims] 1. An induction motor driven by a power converter;
A speed control means for commanding the magnitude of a torque current of the induction motor by comparing a speed command value and an actual speed value; a slip frequency calculation means for calculating a slip frequency corresponding to the torque current; frequency command means for determining a primary frequency command value from the sum of a slip frequency and a rotational frequency; excitation current command means for commanding the magnitude of an excitation current of the induction motor; a current component detection means for outputting a DC signal proportional to the magnitude of the torque current and the excitation current; and an excitation voltage component command value that is output by comparing the actual excitation current value calculated by the current component detection means and the excitation current command value. a first current control means for comparing the actual torque current value and the torque current command value and outputting a voltage component command value in terms of torque; and a voltage corresponding to the secondary induced voltage of the induction motor. calculation means, adds the torque voltage component command value and the output of the voltage calculation means to obtain a corrected torque voltage component command value, and calculates the voltage component of the torque of the primary voltage based on the corrected torque voltage component command value. 1. A control device for an induction motor, characterized in that the size of the induction motor is controlled. 2. The induction according to claim 1, wherein the voltage calculating means corresponding to the secondary induced voltage calculates it from the product of the actual excitation current value or the excitation current command value and the calculated primary frequency value. Electric motor control device. 3. The control device for an induction motor according to claim 1, wherein the voltage calculating means corresponding to the secondary induced voltage calculates the voltage from the product of the main magnetic flux of the induction motor and the calculated primary frequency value.
JP59110803A 1984-06-01 1984-06-01 Controller of induction motor Granted JPS60257788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110803A JPS60257788A (en) 1984-06-01 1984-06-01 Controller of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110803A JPS60257788A (en) 1984-06-01 1984-06-01 Controller of induction motor

Publications (2)

Publication Number Publication Date
JPS60257788A JPS60257788A (en) 1985-12-19
JPH0440956B2 true JPH0440956B2 (en) 1992-07-06

Family

ID=14545046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110803A Granted JPS60257788A (en) 1984-06-01 1984-06-01 Controller of induction motor

Country Status (1)

Country Link
JP (1) JPS60257788A (en)

Also Published As

Publication number Publication date
JPS60257788A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
US4680526A (en) Method of controlling inverter-driven induction motor
US4503375A (en) Method for controlling induction motor and apparatus therefor
US7187155B2 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
US4680695A (en) Cross coupled current regulator
EP0535280B1 (en) Flux feedback system
JP3064671B2 (en) Control circuit of power converter
JPH0440956B2 (en)
KR0148832B1 (en) Vector controller for induction motor
JP2644750B2 (en) Control method of voltage source inverter
JPH0884500A (en) Speed sensorless vector controller for induction motor
JPH0344509B2 (en)
JPH0632581B2 (en) Induction motor controller
JP2897373B2 (en) DC brushless motor controller
JPH08191600A (en) Device for controlling inverter current
JPH03135389A (en) Method and device for controlling voltage type inverter
JP2590524B2 (en) Vector controller
JP2909736B2 (en) Induction motor control device
JPH04127893A (en) Controller for synchronous motor
JPH11206200A (en) Induction motor control equipment
JPS60261383A (en) Controlling method and device of power converter
JPS61128790A (en) Slip frequency calculator of induction motor
JPH0546794B2 (en)
JPS6295987A (en) Controller for ac motor
JPH0538143A (en) Controller of cyclo converter
JPH01190291A (en) Current controller for voltage type pwm inverter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term