JPH0439776B2 - - Google Patents
Info
- Publication number
- JPH0439776B2 JPH0439776B2 JP59117123A JP11712384A JPH0439776B2 JP H0439776 B2 JPH0439776 B2 JP H0439776B2 JP 59117123 A JP59117123 A JP 59117123A JP 11712384 A JP11712384 A JP 11712384A JP H0439776 B2 JPH0439776 B2 JP H0439776B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- terminal plate
- ceramic
- thermal expansion
- ceramic terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000919 ceramic Substances 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 11
- 238000007654 immersion Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000005304 joining Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000005476 soldering Methods 0.000 claims description 6
- 239000002826 coolant Substances 0.000 claims description 3
- 229910000679 solder Inorganic materials 0.000 description 13
- 239000000110 cooling liquid Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910020816 Sn Pb Inorganic materials 0.000 description 4
- 229910020922 Sn-Pb Inorganic materials 0.000 description 4
- 229910008783 Sn—Pb Inorganic materials 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910000833 kovar Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
【発明の詳細な説明】
(1) 発明の技術分野
本発明はセラミツク端子板の気密接合方法、詳
しくは電子機器の浸漬液冷方式にかかり、特に内
外部の電気的接続に使用するセラミツク端子板の
容器への気密接合に関する。[Detailed Description of the Invention] (1) Technical Field of the Invention The present invention relates to a method for airtightly bonding ceramic terminal plates, specifically to an immersion liquid cooling system for electronic equipment, and particularly relates to a ceramic terminal plate used for internal and external electrical connections. relating to hermetic sealing to the container.
(2) 技術の背景
回路基板に実装された大規模集積回路(LSI)
を冷却するために、回路基板を密封容器内に収納
し、容器に、沸騰性をもち腐食性のない絶縁性冷
媒を充填してLSIを浸漬冷却する技術が開発され
ている。それに関連し、前記した冷媒についての
みならず、内部のLSIと外部との電気的接続に使
用されるセラミツク端子板を容器へ気密接合する
についても研究がなされている。(2) Technology background Large-scale integrated circuit (LSI) mounted on a circuit board
In order to cool the LSI, a technology has been developed in which the circuit board is housed in a sealed container and the container is filled with a boiling, non-corrosive insulating refrigerant to cool the LSI by immersion. In connection with this, research is being conducted not only on the above-mentioned refrigerant, but also on the hermetically bonding of a ceramic terminal plate used for electrical connection between an internal LSI and the outside into a container.
本出願人は、メタライズ処理を施したセラミツ
ク端子板を用い気密容器の内外部を電気的に接続
し、前記セラミツク端子板のメタライズ部と気密
容器をはんだ付けにより気密接合する不活性液体
を冷却液とする浸漬液冷において、容器にはんだ
付けしたダンパ(応力緩和部材)にセラミツク端
子板をはんだ付けして当該端子板と容器とを気密
接合することを特徴とするセラミツク端子板の気
密接合方法を開発した。 The present applicant electrically connects the inside and outside of an airtight container using a metalized ceramic terminal plate, and uses an inert liquid as a cooling liquid to hermetically connect the metallized portion of the ceramic terminal plate and the airtight container by soldering. A method for airtightly joining a ceramic terminal board, which is characterized by soldering a ceramic terminal board to a damper (stress relaxation member) soldered to a container and airtightly joining the terminal board and the container in immersion liquid cooling. developed.
本出願人の開発した例においては、メタライズ
処理したセラミツク端子板を浸漬液冷容器に気密
はんだ付けし、容器の内外部の多数の電気的接続
を可能にする。特に容器とセラミツク端子板の熱
膨張係数の不整合によつて発生する接合界面の応
力をダンパ構造によつて緩和することにより、熱
膨張係数の異なる容器とセラミツク端子板の接合
ができ、またこの接合は十分に耐久性を有するも
のである。 In an example developed by the applicant, a metallized ceramic terminal plate is hermetically soldered to an immersion liquid cooled container, allowing multiple electrical connections inside and outside the container. In particular, by alleviating the stress at the bonding interface caused by mismatching of the thermal expansion coefficients between the container and the ceramic terminal plate using a damper structure, it is possible to bond the container and the ceramic terminal plate with different coefficients of thermal expansion. The bond is sufficiently durable.
第3図に上記実施例が示され、同図において、
21は気密容器、22はセラミツク端子板、22
aは端子、23はダンパ、24はメタライズ層、
25はNiめつき層、26は回路基板、27は内
部接続ケーブル、28は冷却液、29はコールド
プレート、30は冷却水の出入口を示す。 The above embodiment is shown in FIG. 3, in which:
21 is an airtight container, 22 is a ceramic terminal plate, 22
a is a terminal, 23 is a damper, 24 is a metallized layer,
25 is a Ni plating layer, 26 is a circuit board, 27 is an internal connection cable, 28 is a cooling liquid, 29 is a cold plate, and 30 is an inlet/outlet for cooling water.
浸漬液冷用容器21にセラミツク端子板22を
ダンパ23を介して気密封止する。第4図の部分
的拡大図に示される如くセラミツク端子板22に
は接合部にメタライズ処理24を施し、この上に
B−Ni無電解めつき層25を形成する。容器2
1はセラミツク端子板22を直接接合する場合熱
膨張係数の近い値をもつコバール、42%Ni合金
にすると装置の温度上昇・下降により発生する熱
膨張係数のミスマツチが小さく、界面での応力が
低くなる。しかし装置の軽量化のためAl合金を
使用すると熱膨張係数の差が大きくなり、ミスマ
ツチによる応力が増大し、この繰返し応力による
クラツクにより気密の低下がある。そこでダンパ
23を用い、容器21とセラミツク端子板22の
間の応力を緩和する。この時ダンパ23とセラミ
ツク端子板22の間のはんだ接合部31は高温は
んだまたはSn−Pb系共晶はんだを、容器21と
ダンパ23の間の半田接合部32にSn−Pb共晶
はんだまたは低温はんだを用いるなど2段はんだ
付けが良い。これは接合の寸法精度を保持するに
有効である。 A ceramic terminal plate 22 is hermetically sealed in a container 21 for cooling immersion liquid via a damper 23. As shown in the partially enlarged view of FIG. 4, the ceramic terminal plate 22 is subjected to metallization treatment 24 at the joint portion, and a B--Ni electroless plating layer 25 is formed thereon. container 2
1. When directly bonding the ceramic terminal plate 22, using Kovar, which has a similar coefficient of thermal expansion, and using 42% Ni alloy, the mismatch in coefficient of thermal expansion that occurs due to temperature rises and falls of the device is small, and the stress at the interface is low. Become. However, when an Al alloy is used to reduce the weight of the device, the difference in thermal expansion coefficient becomes large, stress due to mismatching increases, and airtightness deteriorates due to cracks caused by this repeated stress. Therefore, the damper 23 is used to relieve the stress between the container 21 and the ceramic terminal plate 22. At this time, the solder joint 31 between the damper 23 and the ceramic terminal plate 22 is filled with high-temperature solder or Sn-Pb eutectic solder, and the solder joint 32 between the container 21 and the damper 23 is filled with Sn-Pb eutectic solder or low-temperature solder. Two-stage soldering, such as using solder, is recommended. This is effective in maintaining the dimensional accuracy of the joint.
(3) 従来技術と問題点
上記した従来の気密端子の接合方法としては、
ガラスの熱膨張係数とマツチングの良いコバー
ル、42Ni合金などを用い、ガラスを絶縁体とし
て、金属容器と気密封止するものである。しか
し、多数の気密端子が必要な場合、高密度端子板
の製造には寸法精度、高密度化の点から難しい問
題がある。また、セラミツクと金属を接合する場
合セラミツク上のメタライズ層と金属を銀ろう付
けする方法が行われるが、作業温度が高く補修な
どの点から取外しが困難である。(3) Conventional technology and problems The conventional hermetic terminal joining method described above is as follows:
It uses Kovar, 42Ni alloy, etc., which have a good thermal expansion coefficient matching with the coefficient of thermal expansion of glass, and uses glass as an insulator to airtightly seal it with the metal container. However, when a large number of hermetic terminals are required, manufacturing a high-density terminal board poses difficult problems in terms of dimensional accuracy and high density. Further, when joining ceramic and metal, silver brazing is used to bond the metallized layer on the ceramic to the metal, but the working temperature is high and removal is difficult for repairs.
更に、セラミツクとダンパとの間の熱膨張係数
のミスマツチが大であると、セラミツクにクラツ
クが入つて容器の気密封止を害する問題がある。
例えば、アルミニウム(Al)とセラミツクの熱
膨張係数はそれぞれ24×10-6/℃および4〜7×
10-6/℃であり、これらの値の中間値に近い熱膨
張係数の材料例えば鉄、ステンレス等を用いるこ
とが提案されたが、それでもセラミツクのクラツ
クは防止できず、またこれらの材料は重量の点か
ら問題がある。 Furthermore, if there is a large mismatch in the thermal expansion coefficients between the ceramic and the damper, there is a problem that cracks may form in the ceramic and impair the hermetic sealing of the container.
For example, the thermal expansion coefficients of aluminum (Al) and ceramic are 24×10 -6 /℃ and 4-7×
10 -6 /℃, and it has been proposed to use materials such as iron and stainless steel with thermal expansion coefficients close to the intermediate value between these values, but this still does not prevent ceramic cracking, and these materials have a high There is a problem from this point of view.
(4) 発明の目的
本発明は上記従来の問題に鑑み、メタライズ処
理したセラミツク端子板を浸漬液冷用容器に気密
はんだ付けし、容器の内外部の多数の電気的接続
を可能にし、特に、容器とセラミツク端子板の熱
膨張係数の不整合によつて発生する接合界面応力
を、熱膨張係数が最もマツチングする異種金属を
複合材料とろう材によつて作成したダンパ構造に
より緩和して、容器−セラミツク端子板間の接合
を形成すると共に、繰返し温度上昇・下降がある
場合でも十分な耐久性が得られる気密接合方法を
提供することを目的とする。(4) Purpose of the Invention In view of the above-mentioned conventional problems, the present invention hermetically solders a metalized ceramic terminal plate to a container for cooling immersion liquid, thereby making it possible to make numerous electrical connections between the inside and outside of the container. The joint interface stress caused by mismatching of the thermal expansion coefficients of the container and the ceramic terminal plate is alleviated by a damper structure made of a composite material of dissimilar metals with the best matching thermal expansion coefficients and a brazing material. - It is an object of the present invention to provide an airtight bonding method that forms a bond between ceramic terminal plates and provides sufficient durability even when there are repeated temperature rises and falls.
(5) 発明の構成
そしてこの目的は本発明によれば、不活性液体
を冷却液とする浸漬液冷において、内外部を電気
的に接続するメタライズ処理を施したセラミツク
端子板を用い、このセラミツク端子板のメタライ
ズ部と気密容器を接合する際に、セラミツク端子
板に固着される低熱膨張係数材料部分と気密容器
に固着される高熱膨張係数材料部分を溶接したダ
ンパを介してはんだ付けにより気密封止すること
を特徴とするセラミツク端子板の気密接合方法を
提供することによつて達成される。(5) Structure of the Invention According to the present invention, in immersion liquid cooling using an inert liquid as a cooling liquid, a ceramic terminal plate subjected to a metallization process is used to electrically connect the inside and outside. When joining the metallized part of the terminal board and the airtight container, the low thermal expansion coefficient material part fixed to the ceramic terminal board and the high thermal expansion coefficient material part fixed to the airtight container are hermetically sealed by soldering via a welded damper. This is accomplished by providing a method for hermetically sealing ceramic terminal plates, which is characterized by a method for sealing ceramic terminal plates.
(6) 発明の実施例 以下本発明の実施例を図面によつて詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.
本発明は、メタライズ処理を施したセラミツク
端子板と熱膨張係数の異なる金属製容器を気密封
止する際に、接合界面に発生する応力を緩和する
ため、低熱膨張係数材料と高温膨張係数材料を組
み合せ溶接したダンパを設けるものである。 The present invention uses a low thermal expansion coefficient material and a high temperature expansion coefficient material in order to alleviate the stress generated at the bonding interface when a ceramic terminal plate subjected to metallization treatment and a metal container with different thermal expansion coefficients are hermetically sealed. A combination welded damper is provided.
本発明実施例は第1図の断面図に示され、従来
例と同じ浸漬液冷用容器1にセラミツク端子板2
をダンパ3を介して気密封止する。なお同図にお
いて、6は回路基板、6aはLSI、7は内部接続
ケーブル、8は冷却液、9はコールドプレート、
10は冷却液の出入口を示し、これらは従来例の
ものと同様である。 The embodiment of the present invention is shown in the cross-sectional view of FIG.
is hermetically sealed via the damper 3. In the figure, 6 is a circuit board, 6a is an LSI, 7 is an internal connection cable, 8 is a cooling liquid, 9 is a cold plate,
Reference numeral 10 indicates an inlet/outlet for the cooling liquid, and these are similar to those in the conventional example.
セラミツク端子板には接合部にメタライズ処理
4を施し、この上にB−Ni無電解めつき層5を
形成する。容器1はセラミツク端子板2を直接接
合する場合には熱膨張係数の近い値のコバール、
42Ni合金にすると装置の温度上昇・下降により
発生するミスマツチが小さく、界面での応力が低
くなる。しかし、装置の軽量化のため、Al合金
を使用すると熱膨張係数の差が大きくなり、ミス
マツチによる応力が増大し、この繰返し応力によ
るクラツクにより気密低下がある。 The ceramic terminal plate is subjected to metallization treatment 4 at the joint portion, and a B-Ni electroless plating layer 5 is formed thereon. When the ceramic terminal plate 2 is directly bonded to the container 1, the container 1 is made of Kovar, which has a similar coefficient of thermal expansion.
When using 42Ni alloy, mismatches that occur due to temperature rises and falls in the device will be smaller, and stress at the interface will be lower. However, when an Al alloy is used to reduce the weight of the device, the difference in thermal expansion coefficient increases, stress due to mismatching increases, and cracks due to this repeated stress cause a decrease in airtightness.
そこで、第2図に示される如く、セラミツク端
子板に固着される低膨張係数材料部分11とメタ
ライズ部に固着される高膨張係数材料部分12を
接合したダンパ3により、容器1とセラミツク端
子板2の間の応力を緩和する。この時ダンパ3と
セラミツク端子板2の間のはんだ接合部14は高
温はんだまたはSn−Pb系共晶はんだ、容器1と
ダンパ3の間の接合部15はSn−Pb共晶はんだ
または低温はんだを用いるなど2段はんだ付けを
なす。 Therefore, as shown in FIG. 2, a damper 3 in which a low expansion coefficient material part 11 fixed to the ceramic terminal plate and a high expansion coefficient material part 12 fixed to the metallized part is used to connect the container 1 and the ceramic terminal plate 2. Relieve stress between. At this time, the solder joint 14 between the damper 3 and the ceramic terminal plate 2 is soldered with high-temperature solder or Sn-Pb eutectic solder, and the joint 15 between the container 1 and the damper 3 is soldered with Sn-Pb eutectic solder or low-temperature solder. For example, two-step soldering is used.
ダンパ3は高膨張側材料部分12と低膨張側材
料部分11の溶接部13をレーザ溶接、電子ビー
ム溶接などマイクロ接合方法を用いて溶接する。 The damper 3 welds the welded portion 13 between the high-expansion side material portion 12 and the low-expansion side material portion 11 using a micro-joining method such as laser welding or electron beam welding.
(7) 発明の効果
以上詳細に説明した如く本発明によれば、熱膨
張係数のミスマツチにより発生する不整合を緩和
し、気密容器の内外部の多数の電気的接続ができ
るため、電子機器の浸漬液冷を確実に行いうる効
果がある。(7) Effects of the Invention As explained in detail above, according to the present invention, mismatches caused by mismatching of thermal expansion coefficients can be alleviated and numerous electrical connections can be made between the inside and outside of the airtight container. This has the effect of reliably cooling the immersion liquid.
第1図は本発明実施例の断面図、第2図は第1
図の一部の拡大図、第3図は従来例の断面図、第
4図は第3図の一部の拡大図である。
1…気密容器、2…セラミツク端子板、3…ダ
ンパ、4…メタライズ層、5…Niめつき層、6
…回路基板、7…内部接続ケーブル、8…冷却
液、9…コールドプレート、10…冷却液の出入
口、11…高熱膨張係数材料部分(Al合金な
ど)、12…低熱膨張係数材料部分(コバール、
42Ni合金など)、13…溶接部、14…はんだ接
合部(ダンパーセラミツク端子板間)、15…は
んだ接合部(容器−ダンパ間)。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an embodiment of the present invention.
FIG. 3 is a sectional view of a conventional example, and FIG. 4 is an enlarged view of a portion of FIG. 3. 1... Airtight container, 2... Ceramic terminal board, 3... Damper, 4... Metallized layer, 5... Ni plating layer, 6
...Circuit board, 7. Internal connection cable, 8. Coolant, 9. Cold plate, 10. Coolant inlet/outlet, 11. High thermal expansion coefficient material part (Al alloy, etc.), 12.
42Ni alloy, etc.), 13... Welded portion, 14... Soldered joint (between damper ceramic terminal plates), 15... Soldered joint (between container and damper).
Claims (1)
て、内外部を電気的に接続するメタライズ処理を
施したセラミツク端子板を用い、このセラミツク
端子板のメタライズ部と気密容器を接合する際
に、セラミツク端子板に固着される低熱膨張係数
材料部分と気密容器に固着される高熱膨張係数材
料部分を溶接したダンパを介してはんだ付けによ
り気密封止することを特徴とするセラミツク端子
板の気密接合方法。1 In immersion liquid cooling using an inert liquid as the coolant, a metalized ceramic terminal plate that electrically connects the inside and outside is used, and when joining the metalized part of this ceramic terminal plate to an airtight container, the ceramic A method for hermetically joining ceramic terminal plates, characterized in that a low thermal expansion coefficient material part fixed to the terminal plate and a high thermal expansion coefficient material part fixed to an airtight container are hermetically sealed by soldering via a welded damper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59117123A JPS60261157A (en) | 1984-06-07 | 1984-06-07 | Airtight bonding method of ceramic terminal plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59117123A JPS60261157A (en) | 1984-06-07 | 1984-06-07 | Airtight bonding method of ceramic terminal plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60261157A JPS60261157A (en) | 1985-12-24 |
JPH0439776B2 true JPH0439776B2 (en) | 1992-06-30 |
Family
ID=14703999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59117123A Granted JPS60261157A (en) | 1984-06-07 | 1984-06-07 | Airtight bonding method of ceramic terminal plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60261157A (en) |
-
1984
- 1984-06-07 JP JP59117123A patent/JPS60261157A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60261157A (en) | 1985-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4506108A (en) | Copper body power hybrid package and method of manufacture | |
US5315155A (en) | Electronic package with stress relief channel | |
US4784974A (en) | Method of making a hermetically sealed semiconductor casing | |
US4266090A (en) | All metal flat package | |
JPH10308465A (en) | Cast metal seal for semiconductor substrate | |
US4649229A (en) | All metal flat package for microcircuitry | |
CN211788969U (en) | Ceramic integrated packaging shell | |
US4266089A (en) | All metal flat package having excellent heat transfer characteristics | |
JPH03136258A (en) | Semiconductor chip package and its manufacture | |
US5945735A (en) | Hermetic sealing of a substrate of high thermal conductivity using an interposer of low thermal conductivity | |
US5175611A (en) | Microwave integrated circuit package to eliminate alumina substrate cracking | |
US6037193A (en) | Hermetic sealing of a substrate of high thermal conductivity using an interposer of low thermal conductivity | |
JP2544031B2 (en) | How to eliminate cracks in alumina substrates | |
US5126511A (en) | Copper cored enclosures for hybrid circuits | |
EP0100817B1 (en) | A hermetically sealed casing of an electrical device and process of manufacturing | |
JPH0439776B2 (en) | ||
JPH0439777B2 (en) | ||
JPS60117760A (en) | Hermetic bonding method for ceramic terminal plate | |
JPH0558666B2 (en) | ||
JP3445761B2 (en) | Ceramic package for electronic devices | |
RU1457744C (en) | Metal-and-ceramic of microcircuit | |
JPH02184062A (en) | Decoupling filter lead frame assembly | |
JPH0445250Y2 (en) | ||
JPH06140527A (en) | Sealing device component for semiconductor | |
JPH0758743B2 (en) | Method for manufacturing hermetically sealed metal package for semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |