JPH0445250Y2 - - Google Patents

Info

Publication number
JPH0445250Y2
JPH0445250Y2 JP16524086U JP16524086U JPH0445250Y2 JP H0445250 Y2 JPH0445250 Y2 JP H0445250Y2 JP 16524086 U JP16524086 U JP 16524086U JP 16524086 U JP16524086 U JP 16524086U JP H0445250 Y2 JPH0445250 Y2 JP H0445250Y2
Authority
JP
Japan
Prior art keywords
ceramic substrate
metal
metal casing
metal plate
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16524086U
Other languages
Japanese (ja)
Other versions
JPS6370157U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16524086U priority Critical patent/JPH0445250Y2/ja
Publication of JPS6370157U publication Critical patent/JPS6370157U/ja
Application granted granted Critical
Publication of JPH0445250Y2 publication Critical patent/JPH0445250Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔概要〕 半導体チツプを装着したセラミツク基板と該基
板を覆つて設けられる金属筐体との間に、熱膨張
係数の差や締め付けの際に発生する応力を緩和す
る方法として、セラミツク基板を熱膨張係数の近
似した金属を介して超弾性を示す金属板に半田付
けし、Oリングを介して金属筐体と気密封止する
半導体装置の冷却構造。
[Detailed description of the invention] [Summary] A method for alleviating the difference in coefficient of thermal expansion and stress generated during tightening between a ceramic substrate mounted with a semiconductor chip and a metal casing provided to cover the substrate. A cooling structure for a semiconductor device in which a ceramic substrate is soldered to a metal plate exhibiting superelasticity via a metal with a similar coefficient of thermal expansion, and hermetically sealed with a metal casing via an O-ring.

〔産業上の利用分野〕[Industrial application field]

本考案は冷媒を使用して冷却する半導体装置の
冷却構造に関する。
The present invention relates to a cooling structure for a semiconductor device that uses a refrigerant to cool the device.

情報処理装置の処理能力を向上する方法として
多数の半導体素子から構成されている半導体チツ
プは単位素子の小形化と共に構成素子数の増大が
行われている。
2. Description of the Related Art As a method of improving the processing capacity of information processing devices, semiconductor chips, which are composed of a large number of semiconductor elements, are being made smaller in size and the number of constituent elements is increased.

すなわち、単位素子を形成する電極寸法や導体
パターン幅は極度に縮小されており、一方素子数
は増大してLSIやVLSIが実用化されている。
That is, the electrode dimensions and conductor pattern widths that form unit elements have been extremely reduced, while the number of elements has increased, and LSI and VLSI have been put into practical use.

また、プリント配線基板への実装方法も改良さ
れ、従来は半導体チツプ毎にハーメチツクシール
パツケージに格納してあり、これを配線基板に搭
載していたが、今後の形態としてはパツシベーシ
ヨン技術の進歩により、複数のLSIチツプをセラ
ミツクなどの回路基板に装着してLSIモジユール
を作り、これを取替え単位として配線基板に装着
する方法が採られている。
In addition, the mounting method on printed wiring boards has also been improved. Previously, each semiconductor chip was housed in a hermetically sealed package and mounted on the wiring board, but the future format will be based on advances in packaging technology. Therefore, a method has been adopted in which multiple LSI chips are mounted on a circuit board made of ceramic or the like to create an LSI module, which is then mounted on a wiring board as a replacement unit.

一方、このように単位素子の小形化と高密度化
が進むに従つて、半導体チツプの発熱量も膨大と
なり、従来の空冷方法では素子の温度を最高使用
温度範囲内に保持することは不可能になつた。
On the other hand, as unit elements become smaller and more dense, the amount of heat generated by semiconductor chips also increases, making it impossible to maintain the element temperature within the maximum operating temperature range using conventional air cooling methods. It became.

すなわち、今までLSIチツプの発熱量は最高で
も4ワツト程度であつたが、VLSIにおいては10
ワツト程度に達しようとしている。
In other words, up until now, the maximum amount of heat generated by an LSI chip was about 4 watts, but in VLSI, the amount of heat generated is about 10 watts.
It is about to reach the level of Watsuto.

以上のことから、半導体チツプの冷却方法は従
来の空冷や強制空冷に代わつて冷媒を使用する冷
却方法が必要となつている。
In view of the above, there is a need for a method of cooling semiconductor chips that uses a refrigerant instead of conventional air cooling or forced air cooling.

〔従来の技術〕 冷媒を用いた半導体チツプの冷却方法について
は現在は研究或いは試験段階であつて、冷却構造
としては未だ確立された技術は存在しない。
[Prior Art] Methods for cooling semiconductor chips using refrigerants are currently in the research or testing stage, and there is no established technology for cooling structures yet.

第3図は多数の半導体チツプを装着してなる半
導体装置の従来の冷却構造であつて、同図Aは断
面図、また同図Bは平面図である。
FIG. 3 shows a conventional cooling structure for a semiconductor device equipped with a large number of semiconductor chips, in which FIG. 3A is a sectional view and FIG. 3B is a plan view.

すなわち、LSIやVLSIなどの半導体チツプ1
は多層配線が施されているセラミツク基板2の表
面に装着されており、セラミツク基板2の裏面に
設けられている多数のコンタクトホールにリード
端子3が融着されて半導体チツプ1の電子回路が
取り出されている。
In other words, semiconductor chips such as LSI and VLSI1
is mounted on the surface of a ceramic substrate 2 on which multilayer wiring is applied, and lead terminals 3 are fused to a number of contact holes provided on the back surface of the ceramic substrate 2, and the electronic circuit of the semiconductor chip 1 is taken out. It is.

一方、放熱用のフイン4を備えた上部金属筐体
5と下部金属筐体6とはOリング7を用いてネジ
8で締め付けるよう形成されている。
On the other hand, an upper metal casing 5 and a lower metal casing 6 having heat dissipation fins 4 are formed so as to be tightened with screws 8 using O-rings 7.

ここで、下部金属筐体6の中央部はセラミツク
基板2の装着可能なマージン部を残して窓開けさ
れており、このマージン部にセラミツク基板2が
半田付けされる構造をとつている。
Here, a window is opened in the center of the lower metal casing 6, leaving a margin where the ceramic substrate 2 can be attached, and the ceramic substrate 2 is soldered to this margin.

そして、上部金属筐体5の中には各種のフルオ
ロカーボンや液体窒素(N2)、またヘリウム
(He)ガスなどの冷媒9が封入されるか或いは循
環する構造が考えられている。
A structure in which a refrigerant 9 such as various fluorocarbons, liquid nitrogen (N2), or helium (He) gas is sealed or circulated in the upper metal casing 5 has been considered.

然し、かかる冷却構造をとる半導体装置を動作
させて評価テストを行つたところ、次のような原
因で下部金属筐体6とセラミツク基板2との接合
部で気密漏れが起き易いことが判つた。
However, when a semiconductor device having such a cooling structure was operated and evaluated, it was found that airtight leakage easily occurs at the joint between the lower metal casing 6 and the ceramic substrate 2 due to the following reasons.

セラミツク基板2と下部金属筐体6との間で
熱膨張の差に起因して発生する応力。
Stress generated due to the difference in thermal expansion between the ceramic substrate 2 and the lower metal casing 6.

冷媒を封止してある場合、電力印加の際に冷
媒の温度上昇により生ずる内圧の上昇。
If the refrigerant is sealed, an increase in internal pressure caused by the temperature rise of the refrigerant when power is applied.

ネジ8の締付けが均一に行われないことによ
る起こる応力。
Stress caused by uneven tightening of the screws 8.

これらのことから、セラミツク基板2と下部金
属筐体6とを直接に半田付けする構造は適当でな
いことが判つた。
From these facts, it has been found that a structure in which the ceramic substrate 2 and the lower metal casing 6 are directly soldered is not appropriate.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

以上記したように多数の半導体チツプを搭載し
たセラミツク基板を金属筐体に装着し、その中に
冷媒を封入して冷却する冷却構造において、セラ
ミツク基板を直接に金属筐体に半田付けすると接
合部での破壊が起きやすく、気密漏れを生じ易い
ことが問題である。
As described above, in a cooling structure in which a ceramic substrate mounted with a large number of semiconductor chips is mounted on a metal casing and cooled by sealing a refrigerant therein, if the ceramic substrate is directly soldered to the metal casing, the joints The problem is that it is easy to break down and cause airtight leaks.

〔問題点を解決するための手段〕 上記の問題は垂直方向に配置した超弾性金属板
を挟んで上下の対称位置に前記セラミツク基板と
熱膨張係数の近似した金属板を熔接した金属部材
があり、該金属部材の一端に前記セラミツク基板
を半田付けすると共に、他端をボルト締めにより
前記上部金属筐体と固定する下部金属筐体部にO
リングを用いて気密封止する構造をとる半導体装
置の冷却構造により解決することができる。
[Means for solving the problem] The above problem is solved by the fact that there is a metal member in which a metal plate having a thermal expansion coefficient similar to the ceramic substrate is welded to the ceramic substrate at a vertically symmetrical position with a superelastic metal plate placed vertically in between. , the ceramic substrate is soldered to one end of the metal member, and the other end is fixed to the upper metal casing by bolting.
This problem can be solved by a cooling structure for a semiconductor device that uses a ring for airtight sealing.

〔作用〕[Effect]

本考案はセラミツク基板を直接に下部金属筐体
に半田付けする構造を改め、セラミツク基板と熱
膨張係数の近似した金属を用いて半田付けすると
共に、中間に超弾性をもつ金属を介在させること
によつて、側面と表面などあらゆる方向から加わ
る歪を総て吸収するようにしたものである。
The present invention has changed the structure in which the ceramic substrate is directly soldered to the lower metal casing, and is now soldered using a metal with a thermal expansion coefficient similar to that of the ceramic substrate, and a superelastic metal is interposed in between. Therefore, it is designed to absorb all the strain applied from all directions, including the sides and the surface.

ここで、セラミツクス基板としてはガラスセラ
ミツクス多層基板、アルミナ多層基板、ガラス入
りイミド多層基板などが用いられており、この熱
膨張係数はそれぞれ4.4×10-6/℃,8.6×10-6
℃,13×10-6/℃である。
Here, as the ceramic substrate, a glass ceramic multilayer substrate, an alumina multilayer substrate, a glass-filled imide multilayer substrate, etc. are used, and their thermal expansion coefficients are 4.4×10 -6 /°C and 8.6×10 -6 /°C, respectively.
℃, 13×10 -6 /℃.

ここで、微細パターンを含む多層基板を形成す
るには焼成温度が900℃以下ですむガラスセラミ
ツク基板が最も適し、一般に用いられている。
Here, in order to form a multilayer substrate including a fine pattern, a glass ceramic substrate, which requires a firing temperature of 900° C. or lower, is most suitable and is generally used.

一方、金属筐体の構成材料としてはアルミニウ
ム・マグネシウム(Al・Mg)合金などが一般的
に用いられており、JIS A 5052(Al・Mg合金)
の熱膨張係数は21×10-6/℃である。
On the other hand, aluminum-magnesium (Al-Mg) alloys are commonly used as constituent materials for metal casings, and JIS A 5052 (Al-Mg alloys) are commonly used.
The coefficient of thermal expansion of is 21×10 -6 /°C.

本考案はこのように約一桁違う熱膨張係数の接
合に原因する応力を緩和あるいは吸収する方法と
して熱膨張係数がセラミツク基板に近似している
金属板を用い、また超弾性金属板を用いて伸長と
収縮により発生する応力を吸収するようにした。
The present invention uses a metal plate with a thermal expansion coefficient similar to that of a ceramic substrate and a superelastic metal plate as a method to alleviate or absorb the stress caused by bonding with thermal expansion coefficients that differ by about one order of magnitude. It is designed to absorb stress caused by expansion and contraction.

第2図は本考案に係る半導体冷却構造の断面図
で、第1図は部分拡大断面図である。
FIG. 2 is a sectional view of the semiconductor cooling structure according to the present invention, and FIG. 1 is a partially enlarged sectional view.

すなわち、垂直方向に配置した超弾性金属板1
0を挟んで上下対称位置に熱膨張係数がセラミツ
ク基板2と近似する金属板11を熔接したものを
準備しておき、この一端にセラミツク基板2を鑞
付けなどの方法で接合し、また他端は下部金属筐
体6の上に置き、Oリング7を配し、従来と同様
にネジ8を用いて上部金属筐体5と下部金属筐体
とを気密封止し固定する。
That is, the superelastic metal plate 1 arranged in the vertical direction
A metal plate 11 having a coefficient of thermal expansion similar to that of the ceramic substrate 2 is welded at vertically symmetrical positions across 0, and the ceramic substrate 2 is bonded to one end by a method such as brazing, and the other end is welded. is placed on the lower metal casing 6, an O-ring 7 is arranged, and the upper metal casing 5 and the lower metal casing are hermetically sealed and fixed using screws 8 as in the conventional case.

このような構造をとるとセラミツク基板2と金
属板11とは熱膨張係数が近似していることか
ら、この間では熱膨張係数の差による破壊は起こ
らず、また金属筐体5,6との熱膨張係数の差に
より生ずる応力は超弾性金属板10の形成により
吸収できるので、従来のような破壊は無くなり、
信頼性の高い冷却構造が実用化できる。
With such a structure, the ceramic substrate 2 and the metal plate 11 have similar coefficients of thermal expansion, so no damage will occur between them due to the difference in coefficient of thermal expansion, and there will be no heat exchange between them and the metal casings 5 and 6. The stress caused by the difference in expansion coefficients can be absorbed by the formation of the superelastic metal plate 10, so the conventional breakage is eliminated.
A highly reliable cooling structure can be put into practical use.

〔実施例〕〔Example〕

超弾性金属板10の構成材料としてはチタン
(Ti)−51%ニツケル(Ni)合金を使用した。
A titanium (Ti)-51% nickel (Ni) alloy was used as a constituent material of the superelastic metal plate 10.

また、半導体チツプを搭載するセラミツク基板
2の構成材料として熱膨張係数が4.4×10-6/℃
のガラスセラミツクスを用いているので金属板1
1の構成材料として膨張係数が4.5×10-6/℃の
42アロイ(Ni42%あとFe)を用いた。
Furthermore, the thermal expansion coefficient of the ceramic substrate 2 on which the semiconductor chip is mounted is 4.4×10 -6 /℃.
Since glass ceramics are used, metal plate 1
1 has an expansion coefficient of 4.5×10 -6 /℃.
42 alloy (42% Ni and Fe) was used.

ここで、超弾性金属板10と金属板11との熔
接は最大出力が400WのパルスNd−YAGレーザ
溶接機を用いて行い、またセラミツク基板2と金
属板11との接合法としては、第1図に示すよう
にセラミツク基板2の裏面の接合部に銅(Cu)
ペーストを印刷焼成してメタライズした後、メツ
キ処理して厚さ約5μmのNiメツキ層12を形成
し、金属板11と半田付けした。
Here, the superelastic metal plate 10 and the metal plate 11 are welded using a pulsed Nd-YAG laser welding machine with a maximum output of 400W. As shown in the figure, copper (Cu) is applied to the joint on the back side of the ceramic substrate 2.
After printing and firing the paste and metallizing it, plating was performed to form a Ni plating layer 12 with a thickness of about 5 μm, which was soldered to the metal plate 11.

そして、セラミツク基板2をつけた金属部材1
3の片方にある金属板11を従来のように下部金
属筐体6と積層し、Oリング7を介して上部金属
筐体5とネジ8で封止することにより冷却構造が
完成する。
Then, a metal member 1 with a ceramic substrate 2 attached thereto.
The cooling structure is completed by laminating the metal plate 11 on one side of the housing 3 with the lower metal housing 6 as in the conventional manner, and sealing the upper metal housing 5 with the screw 8 via the O-ring 7.

この場合は金属筐体内に1気圧のHeガスを封
入し、Heリークデテクタを用いて気密性を試験
したところ1×10-8atm cc/s以下の高い気密
性をもつことが確認され、また−55℃〜+125℃
の温度サイクルを10サイクル行つたが気密性に変
化は認められず、高い信頼性をもつことが確認で
きた。
In this case, 1 atm of He gas was sealed in the metal casing, and when the airtightness was tested using a He leak detector, it was confirmed that it had a high airtightness of 1×10 -8 atm cc/s or less. −55℃~+125℃
After 10 temperature cycles, no change in airtightness was observed, confirming high reliability.

〔考案の効果〕[Effect of idea]

本考案によれば、金属筐体とセラミツク基板と
の熱膨張係数の差に起因する応力を容易に変形が
可能な超弾性金属板により吸収することができる
ことから接合部の破損による気密漏れはなくな
り、超寿命で信頼性の高い気密容器の形成が可能
となる。
According to the present invention, the stress caused by the difference in thermal expansion coefficient between the metal casing and the ceramic substrate can be absorbed by the easily deformable superelastic metal plate, eliminating airtight leakage due to damage to the joint. , it becomes possible to form a highly reliable airtight container with a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る金属筐体とセラミツク基
板との部分拡大断面図、第2図は本考案に係る半
導体装置の冷却構造の断面図、第3図は従来の半
導体装置の冷却構造で、Aは断面図、Bは平面
図、である。 図において、1は半導体チツプ、2はセラミツ
ク基板、5は上部金属筐体、6は下部金属筐体、
7はOリング、8はネジ、10は超弾性金属板、
11は金属板、13は金属部材、である。
FIG. 1 is a partially enlarged cross-sectional view of a metal casing and a ceramic substrate according to the present invention, FIG. 2 is a cross-sectional view of a cooling structure for a semiconductor device according to the present invention, and FIG. 3 is a conventional cooling structure for a semiconductor device. , A is a sectional view, and B is a plan view. In the figure, 1 is a semiconductor chip, 2 is a ceramic substrate, 5 is an upper metal casing, 6 is a lower metal casing,
7 is an O-ring, 8 is a screw, 10 is a superelastic metal plate,
11 is a metal plate, and 13 is a metal member.

Claims (1)

【実用新案登録請求の範囲】 IC,LSIなどの半導体装置チツプ1を搭載した
セラミツク基板2を金属筐体に装着し、冷媒を用
いて冷却する構造として、 垂直方向に配置した超弾性金属板10を挟んで
上下の対称位置に前記セラミツク基板2と熱膨張
係数の近似した金属板11を熔着した金属部材1
3があり、該金属部材13の一端に前記セラミツ
ク基板2を半田付けすると共に、他端をボルト8
締めにより上部金属筐体5と固定する下部金属筐
体6にOリング7を用いて気密封止する構造をと
ることを特徴とする半導体装置の冷却構造。
[Scope of Claim for Utility Model Registration] A superelastic metal plate 10 vertically arranged in a structure in which a ceramic substrate 2 on which a semiconductor device chip 1 such as an IC or LSI is mounted is attached to a metal casing and cooled using a refrigerant. A metal member 1 in which a metal plate 11 having a thermal expansion coefficient similar to that of the ceramic substrate 2 is welded to a vertically symmetrical position with the ceramic substrate 2 in between.
3, the ceramic substrate 2 is soldered to one end of the metal member 13, and the other end is connected to a bolt 8.
A cooling structure for a semiconductor device, characterized in that a lower metal casing 6 is fixed to an upper metal casing 5 by tightening and is hermetically sealed using an O-ring 7.
JP16524086U 1986-10-28 1986-10-28 Expired JPH0445250Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16524086U JPH0445250Y2 (en) 1986-10-28 1986-10-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16524086U JPH0445250Y2 (en) 1986-10-28 1986-10-28

Publications (2)

Publication Number Publication Date
JPS6370157U JPS6370157U (en) 1988-05-11
JPH0445250Y2 true JPH0445250Y2 (en) 1992-10-23

Family

ID=31095098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16524086U Expired JPH0445250Y2 (en) 1986-10-28 1986-10-28

Country Status (1)

Country Link
JP (1) JPH0445250Y2 (en)

Also Published As

Publication number Publication date
JPS6370157U (en) 1988-05-11

Similar Documents

Publication Publication Date Title
US6912130B2 (en) Combined member of aluminum-ceramics
US5223741A (en) Package for an integrated circuit structure
US4506108A (en) Copper body power hybrid package and method of manufacture
US5843807A (en) Method of manufacturing an ultra-high density warp-resistant memory module
US4034469A (en) Method of making conduction-cooled circuit package
KR20030028462A (en) High rigidity, multi-layered, semiconductor package and method of making the same
JP3207150B2 (en) Semiconductor package
JP3207149B2 (en) Method of fixing low thermal conductivity cap to high thermal conductivity substrate
JPH0445250Y2 (en)
JPS60257156A (en) Heat conductive cooling module device
US5036584A (en) Method of manufacture of copper cored enclosures for hybrid circuits
US5126511A (en) Copper cored enclosures for hybrid circuits
JPS60253248A (en) Heat conductive cooling module device
JPS63173348A (en) Semiconductor device
JP2523942B2 (en) Bare chip mounting structure
JPH0677361A (en) Multi-chip module
JPH0617312Y2 (en) Semiconductor device cooling structure
JPS58225656A (en) Semiconductor device
JPH06204352A (en) Semiconductor ceramic package board and lid
JPS6321766A (en) Copper-ceramics joint for double side mounting
JPS6129161A (en) Thermal conductive cooling module device
JPH0677362A (en) Electronic circuit apparatus
JPS6129160A (en) Thermal conductive cooling module device
JPH06140527A (en) Sealing device component for semiconductor
JPH03234047A (en) Semiconductor device