JPH0439067A - Thermal printing head - Google Patents

Thermal printing head

Info

Publication number
JPH0439067A
JPH0439067A JP14537690A JP14537690A JPH0439067A JP H0439067 A JPH0439067 A JP H0439067A JP 14537690 A JP14537690 A JP 14537690A JP 14537690 A JP14537690 A JP 14537690A JP H0439067 A JPH0439067 A JP H0439067A
Authority
JP
Japan
Prior art keywords
layer
electrodes
electrode
fiber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14537690A
Other languages
Japanese (ja)
Inventor
Jiro Muto
武藤 次郎
Osamu Kuwabara
桑原 治
Akihiko Abe
阿部 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP14537690A priority Critical patent/JPH0439067A/en
Publication of JPH0439067A publication Critical patent/JPH0439067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To easily position a thin-film heating resistor layer to electrodes to perform an efficient production by a method wherein the electrodes are disposed across a projected insulating layer provided on a substrate, and the thin-film heating resistor layer is formed in a belt form on the projected insulating layer in an electrode aligning direction so as to connect to the electrodes at the both skirt parts beyond said insulating layer. CONSTITUTION:On a film substrate 10, a selection electrode 11 and a common electrode 12 are patterned. Ni and Au are laminated to form a metal layer. A resist is patterned on the metal layer. The metal layer is masked by the resist to be etched for removing an unnecessary part. Then, the selection electrode 11 and the common electrode 12 made of the metal layer are formed in a staggered form. After that, an adhesive 17 is applied between end parts 13, 14 opposed to the selection electrode 11 and the common electrode 12. A fiber 16 is bonded on the film substrate 10. The adhesive 17 is intruded between the periphery of the fiber 16 and the end parts 13, 14. After that, the adhesive 17 is dried, and a thin-film heating resistor layer 18 is formed on the fiber 16. In this manner, the thin-film heating resistor layer 18 is formed beyond the fiber 16 with the both ends thereof connected to the end parts 13, 14 of the electrodes 11, 12.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は感熱印字を行なうサーマル印字ヘッドに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal print head that performs thermal printing.

び第8図に示す構造のものが知られている。このサーマ
ル印字ヘッドは、薄膜成形技術によりセラミック基板l
上に隆起部2を形成し、この隆起部2上にこれを乗り越
えて両側に延びる薄膜発熱抵抗層3を等間隔に多数配列
形成した上、各薄膜発熱抵抗層3を挟んで対向する選択
電極4と共通電極5を形成して、各薄膜発熱抵抗層3の
一端側に選択電極4を接続し、他端側に共通電極5を接
続し、これらの上面を絶縁性の保;lll6で覆った構
造となっている。
The structures shown in Fig. 8 and 8 are known. This thermal print head uses a ceramic substrate using thin film molding technology.
A raised part 2 is formed on the raised part 2, and a large number of thin film heat generating resistive layers 3 extending over the raised part 2 and extending on both sides are arranged at equal intervals, and selection electrodes are arranged facing each other with each thin film heating resistive layer 3 in between. 4 and a common electrode 5 are formed, the selection electrode 4 is connected to one end side of each thin film heating resistance layer 3, the common electrode 5 is connected to the other end side, and the upper surfaces of these are covered with an insulating material 6. It has a similar structure.

このサーマル印字ヘッドでは、選択電極4に選択的に印
字電流が供給されると、薄膜発熱抵抗層3に電流が流れ
て薄膜発熱抵抗層3が選択的に発熱し、この熱で感熱印
字を行なう。この場合、薄膜発熱抵抗層3の発熱部分は
隆起部2により他の部分よりも突き出されているから、
発熱部分の紙当たりがよく、鮮明な印字ができる。
In this thermal print head, when a printing current is selectively supplied to the selection electrode 4, the current flows through the thin film heat generating resistor layer 3, which selectively generates heat, and this heat is used to perform thermal printing. . In this case, since the heat generating portion of the thin film heat generating resistor layer 3 is protruded from other portions by the raised portion 2,
The heat-generating part hits the paper well, allowing for clear printing.

[従来の技術] 従来、サーマル印字ヘッドとして、第7図およ[発明が
解決しようとする課題] しかし、上述したサーマル印字ヘッドにおいては、薄膜
発熱抵抗層3が各発熱部ごとに独立して形成されている
ので、印字ドツトの高密度化が要求されると、これに伴
って薄膜発熱抵抗層3の間隔が微細化するため、薄膜発
熱抵抗層3の形成に精度の高い技術が要求される。しか
も、上述したサーマル印字ヘッドでは、各薄膜発熱抵抗
層3の両端に選択電極4および共通電極5の端部を重ね
合わせなければならないため、各電極4.5を形成する
際の位置合わせが難しく、高い精度が要求され、非能率
的であるという問題がある。
[Prior Art] Conventionally, as a thermal print head, as shown in FIG. Therefore, when a higher density of printed dots is required, the spacing between the thin film heat generating resistor layers 3 becomes finer, so a highly accurate technique is required to form the thin film heat generating resistor layer 3. Ru. Moreover, in the thermal print head described above, the ends of the selection electrode 4 and the common electrode 5 must be overlapped on both ends of each thin film heat generating resistor layer 3, which makes it difficult to align when forming each electrode 4.5. , which requires high precision and is inefficient.

なお、上述した問題を解消するために、予め基板上に選
択電極と共通電極を交互に配列し、これらの電極上にそ
の配列方向に沿って導電インク等の発熱抵抗層を印刷に
より厚い膜厚で帯状に形成するサーマル印字ヘッドが検
討されている。しかし、このサーマル印字ヘッドでは、
発熱抵抗層の膜厚が厚いので、抵抗値のバラツキが大き
く、しかも発熱部分である電極間の発熱抵抗層が低く形
成され、かつ電極上の発熱抵抗層が高く形成されるため
、記録紙に接触する接触面が−様な平坦面にならず、高
密度ドツトでは印字品質が悪くなるという問題がある。
In order to solve the above-mentioned problem, select electrodes and common electrodes are arranged alternately on the substrate in advance, and a heat-generating resistive layer such as conductive ink is printed on these electrodes along the direction of arrangement to create a thick film. A band-shaped thermal print head is being considered. However, with this thermal print head,
Since the thickness of the heating resistor layer is thick, there is a large variation in the resistance value.Moreover, the heating resistor layer between the electrodes, which is the heating part, is formed low, and the heating resistive layer on the electrode is formed high. There is a problem in that the contact surface that comes into contact does not become a -like flat surface, and printing quality deteriorates with high-density dots.

この発明の目的は、薄膜発熱抵抗層の形状が単純で、高
い製作技術が要求されるず、しかも電極に対する位置合
わせが容易にでき、能率的に生産することのできるサー
マル印字ヘッドを提供することである。
An object of the present invention is to provide a thermal print head in which the shape of the thin film heating resistor layer is simple, does not require sophisticated manufacturing technology, and can be easily aligned with the electrodes, and can be manufactured efficiently. It is.

[課題を解決するための手段] この発明は上述した目的を達成するために、基板上に突
状絶縁層を設けるとともに、この突状絶縁層を挟んでそ
の両側に電極を配列し、前記突状絶縁層上にこれを乗り
越えてその両側の裾部で前記電極に接続される薄膜発熱
抵抗層を前記電極の配列方向に沿って帯状に形成したも
のである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a protruding insulating layer on a substrate, and arranges electrodes on both sides of the protruding insulating layer to sandwich the protruding insulating layer. A thin film heat generating resistor layer is formed in a band shape along the arrangement direction of the electrodes on the shaped insulating layer and connected to the electrodes at the skirts on both sides thereof.

[作用] この発明によれば、基板上に突状絶縁層を挟んでその両
側に配列された各電極に突状絶縁層を乗り越えてその両
側の裾部で接続される薄膜発熱抵抗層を前記電極の配列
方向に沿って帯状に形成したので、発熱部の間隔が微細
化しても、薄膜発熱抵抗層の発熱部分を分離させて形成
する必要がない、そのため、薄膜発熱抵抗層を容易に形
成することができ、薄膜発熱抵抗層を各電極に重ね合わ
せる際の位置合わせが極めて簡単にでき、能率的に生産
することができる。
[Function] According to the present invention, the thin film heating resistor layer is connected to each electrode arranged on both sides of the protruding insulating layer on both sides of the protruding insulating layer by climbing over the protruding insulating layer and being connected at the base portions on both sides of the protruding insulating layer. Since the electrodes are formed in a band shape along the direction in which the electrodes are arranged, even if the spacing between the heat generating parts becomes finer, there is no need to separate the heat generating parts of the thin film heat generating resistor layer.Therefore, the thin film heat generating resistor layer can be easily formed. This makes it possible to extremely easily align the thin film heat generating resistor layer on each electrode, and to efficiently produce the thin film heat generating resistor layer.

[実施例] 以下、第1図〜第6図を参照して、この発明の一実施例
を説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第1図および第2図はサーマル印字ヘッドの要部を示す
、これらの図において、lOはフィルム基板である。こ
のフィルム基板lOはポリイミド等の合成樹脂よりなる
。その上面には幅方向の全域に亘って選択電極11およ
び共通電極12が多数離間対向して配列されている(図
では4個ずつ示されているが、実際には多数個ある)0
選択電極11および共通電極12は、CuやA1.もし
くはその表面ににi、^U等のメツキを施した単層また
は多層の金属層よりなり、その膜厚は10gm程度と比
較的厚く形成することにより後述する如く、その輻が3
0〜704m程度と小さい場合にも大電流の導通を可能
としている。この場合、選択電極11は第2図に示すよ
うに、それぞれ細い帯状に形成され、これらが等間隔1
例えば16ドツ) / m mであれば、82.5gm
程度の間隔で平行に配列され、かつ共通電極12側の各
端部13が一直線上に揃って設けられている。共通電極
12は櫛型に形成されている。すなわち、選択電極ll
側の一端部14は選択電極11と同じ形状に形成され1
選択電極11の各端部13から所定間隔だけ離れ、かつ
その配列方向に交互に位置がずれた所謂千鳥状に配列さ
れている。また、共通電極12の他端部15は上述した
一端部14の配列方向に沿って幅広の帯状に形成され、
各一端部14が接続されている。
1 and 2 show the main parts of a thermal print head. In these figures, IO is a film substrate. This film substrate 1O is made of synthetic resin such as polyimide. On its upper surface, a large number of selection electrodes 11 and common electrodes 12 are arranged facing each other and spaced apart from each other over the entire area in the width direction (four electrodes are shown in each figure, but there are actually many selection electrodes 12).
The selection electrode 11 and the common electrode 12 are made of Cu or A1. Alternatively, it is made of a single or multi-layer metal layer with plating of i, ^U, etc. on its surface, and by forming the film to be relatively thick, about 10 gm, as described later, the radius can be increased to 3.
Even when the distance is as small as 0 to 704 m, it is possible to conduct a large current. In this case, as shown in FIG.
For example, if it is 16 dots) / mm, it is 82.5gm
They are arranged in parallel at a certain interval, and the respective ends 13 on the common electrode 12 side are aligned in a straight line. The common electrode 12 is formed into a comb shape. That is, selection electrode ll
One end 14 of the side is formed in the same shape as the selection electrode 11.
They are arranged in a so-called zigzag pattern, spaced apart from each end 13 of the selection electrode 11 by a predetermined interval, and alternately shifted in the arrangement direction. Further, the other end portion 15 of the common electrode 12 is formed in a wide band shape along the arrangement direction of the one end portion 14 described above,
Each end 14 is connected.

選択電極11および共通電極12の対向間には、第1図
に示すように、ファイバ16が配置され、接着剤17に
よりフィルム基板10に接着されている、ファイバ16
はガラス、石英、樹脂等からなる線状のものであり、透
明であっても、透明でなくてもよい、このファイバ16
は太さが50gm程度であり、各電極11.12の上面
よりも上方に突出して設けられている。接着剤17は熱
ストレスに対して信頼性の良いポリイミド系のものが望
ましいが、これに限られない。
As shown in FIG. 1, a fiber 16 is arranged between the selection electrode 11 and the common electrode 12, which are bonded to the film substrate 10 with an adhesive 17.
This fiber 16 is a linear material made of glass, quartz, resin, etc., and may or may not be transparent.
has a thickness of approximately 50 gm, and is provided so as to protrude above the upper surface of each electrode 11, 12. The adhesive 17 is preferably made of polyimide, which has good reliability against thermal stress, but is not limited thereto.

また、ファイバ16上には薄膜発熱抵抗層18が電極1
1.12の配列方向に沿って帯状に設けられている。す
なわち、薄膜発熱抵抗層18は。
Further, a thin film heat generating resistance layer 18 is provided on the fiber 16 at the electrode 1.
1.12 are provided in a band shape along the arrangement direction. That is, the thin film heating resistance layer 18 is.

電極11.12の対向間よりも広い幅の帯状に形成され
、ファイバ16を乗り越え、その両側端が選択電極11
の端部13および共通電極12の一端部14上に延びて
接続されている。この薄膜発熱抵抗層18は丁aN、T
a2N等の窒化タンタルよりなり、膜厚が1000λ程
度に薄(形成されている。そして、これらの上面には保
護層19が設けられている。この保護層19はS i0
2等の耐湿用保護膜20とTa205等の耐摩耗用保護
膜21の2層構造となっているが、単層構造であっても
よい。
It is formed into a band shape with a width wider than the width between the opposing electrodes 11 and 12, and extends over the fiber 16, and both ends thereof are connected to the selection electrode 11.
and one end 14 of the common electrode 12 and are connected to each other. This thin film heat generating resistor layer 18 has a thickness of T
It is made of tantalum nitride such as a2N and has a thin film thickness of about 1000λ.A protective layer 19 is provided on the upper surface of these.This protective layer 19 is made of Si0
Although it has a two-layer structure consisting of a moisture-resistant protective film 20 such as No. 2 and a wear-resistant protective film 21 such as Ta205, it may have a single-layer structure.

なお、フィルム基板lOには図示しないが各選択電極1
1に選択的に印字電流を供給する駆動トランジスタ、お
よびこの駆動トランジスタを制御する制御素子等が一体
に設けられている。
Although not shown in the figure, each selection electrode 1 is provided on the film substrate IO.
A drive transistor that selectively supplies a printing current to the drive transistor 1, a control element that controls the drive transistor, and the like are integrally provided.

次に、W43図〜第6図を参照して、上述したサーマル
印字ヘッドの製造工程を説明する。
Next, the manufacturing process of the above-mentioned thermal print head will be explained with reference to FIGS. W43 to 6.

まず、第3図に示すように、フィルム基板lO上に選択
電極11および共通電極12をパターン形成する。すな
わち、フィルム基板lO上にCrヲ真空蒸着法またはス
パッタ法等で被着し、その上にCuを電解メツキにより
積層し、さらにその上にXiとAuを順次電解メツキに
より積層する。これにより、膜厚が10pm程度の金属
層が形成される。
First, as shown in FIG. 3, a selection electrode 11 and a common electrode 12 are patterned on a film substrate IO. That is, Cr is deposited on the film substrate IO by vacuum evaporation or sputtering, Cu is laminated thereon by electrolytic plating, and then Xi and Au are laminated thereon in sequence by electrolytic plating. As a result, a metal layer having a thickness of about 10 pm is formed.

そして、この金属層上にフォトリングラフィ技術により
レジストをパターン形成し、このレジストをマスクとし
て金属層をエツチングし、金属層の不要な部分を除去す
る。この結果、金属層よりなる選択電極11および共通
電極12が離間して千鳥状に形成される。しかる後、選
択電極11と共通電極12の対向する端部13.14間
にポリイミド系の接着剤17を各電極11.12の配列
方向に沿って帯状に塗布する。
Then, a resist is patterned on this metal layer by photolithography technology, and the metal layer is etched using this resist as a mask to remove unnecessary portions of the metal layer. As a result, the selection electrode 11 and the common electrode 12 made of metal layers are formed in a staggered manner and spaced apart from each other. Thereafter, a polyimide adhesive 17 is applied in a band-like manner between the opposing ends 13, 14 of the selection electrode 11 and the common electrode 12 along the arrangement direction of each electrode 11, 12.

次に、第4図に示すように、太さが50μm程度のファ
イバ16を接着剤17によりフィルム基板10に接着す
る。すると、ファイバ16はその上部が各電極11.1
2の上面よりも上方に突出して設けられる。このとき、
ファイバ16は断面が円形状であるから、ファイバ16
が接着剤17を押圧すると、余分な接着剤17がファイ
バ16の外周面に沿って競上がる。これにより、ファイ
バ16の外周と各電極11.12の端部13.14との
間に接着剤17が緩やかに傾斜して設けられることとな
る。
Next, as shown in FIG. 4, a fiber 16 having a thickness of approximately 50 μm is bonded to the film substrate 10 using an adhesive 17. Then, the fiber 16 has its upper part connected to each electrode 11.1.
It is provided so as to protrude above the upper surface of 2. At this time,
Since the fiber 16 has a circular cross section, the fiber 16
When the fiber 16 presses the adhesive 17, the excess adhesive 17 rises along the outer peripheral surface of the fiber 16. Thereby, the adhesive 17 is provided with a gentle slope between the outer periphery of the fiber 16 and the end 13.14 of each electrode 11.12.

この後、接着剤17を乾燥した上、ファイバ16上に薄
膜発熱抵抗層18を形成する。この場合には、メタルマ
スクを用いて形成する方法と、フォトリングラフィ技術
により形成する2通りの方法がある。前者の方法は、第
5図に示すように、フィルム基板lO上にメタルマスク
22を配置して窒化タンタルを被着する方法である。こ
の場合、メタルマスク22はS*発熱抵抗JIJ18と
対応する箇所に帯状の開口部23が形成されている。し
たがって、メタルマスク22をフィルム基板lO上に配
置すると、薄膜発熱抵抗層18の形成領域のみが露出す
ることとなる。この状態で、窒化タンタルをスパッタ法
により被着した上、メタルマスク22を取り除くと、メ
タルマスク22の開口部23と対応する箇所にのみ窒化
タンタルが電極11.12の配列方向に沿って帯状に被
着される。これにより、薄膜発熱抵抗層18がファイバ
16上を乗り越え、その両側端が電極11.12の端部
13.14に接続されて形成される。
Thereafter, after drying the adhesive 17, a thin film heating resistance layer 18 is formed on the fiber 16. In this case, there are two methods: one using a metal mask and the other using photolithography. The former method, as shown in FIG. 5, is a method in which a metal mask 22 is placed on a film substrate 10 and tantalum nitride is deposited on it. In this case, the metal mask 22 has a strip-shaped opening 23 formed at a location corresponding to the S* heating resistor JIJ18. Therefore, when the metal mask 22 is placed on the film substrate IO, only the region where the thin film heating resistor layer 18 is formed will be exposed. In this state, when tantalum nitride is deposited by sputtering and the metal mask 22 is removed, tantalum nitride is formed in a band shape only in the locations corresponding to the openings 23 of the metal mask 22 along the arrangement direction of the electrodes 11 and 12. be coated. As a result, a thin film heating resistor layer 18 is formed over the fiber 16, with both ends connected to the ends 13.14 of the electrodes 11.12.

そのため、薄膜発熱抵抗MI18は特にその発熱部分が
ファイバ16により他の部分よりも上方に均一な高さで
突出する。なお、窒化タンタルが被着される際には、フ
ァイバ16と各電極11.12の間に接着剤17が緩や
かに傾斜して設けられているので、薄膜発熱抵抗層18
が薄くても断線することなく良好に形成される。
Therefore, the heat generating portion of the thin film heat generating resistor MI18 in particular protrudes above other portions at a uniform height due to the fiber 16. Note that when the tantalum nitride is deposited, since the adhesive 17 is provided with a gentle slope between the fiber 16 and each electrode 11.12, the thin film heating resistance layer 18
Even if the wire is thin, it can be formed well without breaking.

また、後者の方法は、フィルム基板lOの全表面に窒化
タンタルをスパッタ法により被着し、その表面にレジス
トを塗布し、このレジストをフォトリングラフィ技術に
よりパターン形成し、このレジストをマスクとして窒化
タンタルの被膜をエツチングし、不要な部分を除去する
方法である。この方法でも、上述と同様に、WIM発熱
抵抗抵抗層を形成することができる。
In addition, in the latter method, tantalum nitride is deposited on the entire surface of the film substrate lO by sputtering, a resist is applied to the surface, a pattern is formed on this resist by photolithography technology, and the nitride layer is nitrided using this resist as a mask. This method involves etching the tantalum film and removing unnecessary parts. With this method as well, the WIM heating resistance layer can be formed in the same manner as described above.

なお、いずれの方法においても、窒化タンタルをスパッ
タ法により被着する際には、フィルム基板10を冷却装
@24で冷却しながら行なう、この冷却装置24は、フ
ィルム基板lOを載置するステンレス製の金属板25の
下に複数の冷却管26を配置し、この冷却管26内に冷
却液27を流通させて冷却する構造のものである。実験
では、冷却を行なわない場合にはフィルム基板1051
50〜200℃前後まで加熱されたが、冷却を行なった
場合には50〜80℃前後となり、フィルム基板lOに
何等熱変形を生ずることなく、窒化タンタルを均一かつ
平坦に成膜することができた。
In either method, when depositing tantalum nitride by sputtering, the film substrate 10 is cooled in a cooling device @24. A plurality of cooling pipes 26 are arranged under the metal plate 25, and a cooling liquid 27 is made to flow through the cooling pipes 26 to cool the pipe. In the experiment, when cooling is not performed, the film substrate 1051
Although it was heated to around 50 to 200°C, when it was cooled, the temperature was around 50 to 80°C, making it possible to form a uniform and flat tantalum nitride film without causing any thermal deformation on the film substrate. Ta.

最後に、146図に示すように、全表面に薄膜発熱抵抗
層18および電極11.12を保護する保護層19を設
ける。この保護層19は2層構造である。そのため、ま
ず、全表面にS i02を熱酸化処理やCV D (C
hei+1cal Vapor Deposition
)法により成長させて耐湿用保護膜20を形成し、この
後その表面にTa205をCVD法により成長させて耐
摩耗用保護膜21を形成する。この場合にも、冷却装置
24で冷却しながら各保護膜20.21を形成するので
、上述と同様、熱ストレスを抑え。
Finally, as shown in FIG. 146, a protective layer 19 is provided on the entire surface to protect the thin film heating resistor layer 18 and the electrodes 11 and 12. This protective layer 19 has a two-layer structure. Therefore, first, Si02 was applied to the entire surface by thermal oxidation treatment or CVD (C
hei+1cal Vapor Deposition
) to form a moisture-resistant protective film 20, and then a wear-resistant protective film 21 is formed by growing Ta205 on its surface by CVD. In this case as well, since each of the protective films 20 and 21 is formed while being cooled by the cooling device 24, thermal stress is suppressed as described above.

各保護膜20.21の形成を安定した状態で行なうこと
ができる。また、薄膜発熱抵抗層18の発熱部分と対応
する箇所の保護1119は、その周囲全域の保護M19
よすも充分に突出して形成される。そのため、薄膜発熱
抵抗1j18の発熱部分は記録紙等に対する紙当たりが
良くなり、印字品質が良く、鮮明な印字を行なうことが
可能となる。
Each protective film 20, 21 can be formed in a stable state. Further, the protection 1119 of the portion corresponding to the heat generating portion of the thin film heat generating resistor layer 18 is the protection M19 of the entire surrounding area.
Yosu is also formed with sufficient protrusion. Therefore, the heat generating portion of the thin film heat generating resistor 1j18 has good contact with the recording paper, etc., and it is possible to perform clear printing with good print quality.

なお、この発明は上述した実施例に限定されるものでは
ない0例えば、基板はフィルム基板lOである必要Iま
なく、ガラス基板、石英基板、セラミック基板等であっ
てもよい、また、薄膜発熱抵抗層18は窒化タンタルで
ある必要はなく、酸化ルテニウム(Ru02)、あるい
はポリシリコンにイオンをドープしたもの等でもよい、
また、薄膜発熱抵抗層18を突出させる突状絶縁層は、
ファイバ16である必要はなく、5i02 、3iN等
の絶縁物質を突状に成長させたものでもよい、さらに、
選択型all、および共通電極12は必ずしも千鳥状に
配列される必要はなく、各電極11.12の端部13.
14が向かい合うように離間対向して配列されていても
よい。
Note that this invention is not limited to the embodiments described above.For example, the substrate need not be a film substrate, but may be a glass substrate, a quartz substrate, a ceramic substrate, etc. The resistance layer 18 is not necessarily made of tantalum nitride, but may be made of ruthenium oxide (Ru02) or polysilicon doped with ions.
Further, the protruding insulating layer that makes the thin film heat generating resistance layer 18 protrude is as follows:
It does not have to be the fiber 16, but may be one made of an insulating material such as 5i02 or 3iN grown in a convex shape.Furthermore,
The selection type all and common electrodes 12 do not necessarily have to be arranged in a staggered manner, and the ends 13. of each electrode 11.12.
14 may be arranged in a spaced-apart manner so as to face each other.

[発明の効果] 以上詳細に説明したように、この発明によれば、基板上
に突状絶縁層を挟んでその両側に配列された各電極に突
状絶縁層を乗り越えてその両側の裾部で接続される薄膜
発熱抵抗層を前記電極の配列方向に沿って帯状にyIj
成したので、発熱部の間隔が微細化しても、薄膜発熱抵
抗層の発熱部分を分離させて形成する必要がない、その
ため、薄膜発熱抵抗層を容易に形成することができ、薄
膜発熱抵抗層を各電極に重ね合わせる際の位置合わせが
極めて簡単にでき、能率的に生産することができる。
[Effects of the Invention] As described in detail above, according to the present invention, each electrode arranged on both sides of a protruding insulating layer on a substrate has a base portion on both sides of the protruding insulating layer. The thin film heat generating resistor layer connected with
Therefore, even if the interval between the heat generating parts becomes finer, there is no need to separate the heat generating parts of the thin film heat generating resistor layer.Therefore, the thin film heat generating resistor layer can be easily formed, and the thin film heat generating resistor layer can be easily formed. It is extremely easy to align the electrodes when superimposing them on each electrode, allowing for efficient production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図はこの発明の一実施例を示し、!@1図
は第2図のA−A断面図、第2図は保H層を設ける前の
状態の要部平面図、第3図はフィルム基板上に電極およ
び接着剤を設けた状態の断面図、第4図jよファイバを
!IC着した状態の断面図、第5図は冷却しながら薄膜
発熱抵抗層を形成した状態の断面図、第6図は冷却しな
がら保護層を形成した状態の断面図、第7図および第8
図は従来例を示し、第7図はその要部断面図、第8図は
保護層を設ける前の状態の要部平面図である。 lO・・・・・・フィルム基板、11・・・・・・選択
電極、12・・・・・・共通電極、16・・・・・・フ
ァイバ(突状絶縁層)、18・・・・・・薄膜発熱抵抗
層。 16フアイバ゛ 第 図 第 図 第 図 第 図 第 図 第 図 第 図 第 図
FIGS. 1 to 6 show an embodiment of this invention. @Figure 1 is a sectional view taken along line A-A in Figure 2, Figure 2 is a plan view of the main part before the H-retaining layer is provided, and Figure 3 is a cross-section with electrodes and adhesive provided on the film substrate. Figure, Figure 4 j, fiber! 5 is a sectional view of the IC attached, FIG. 5 is a sectional view of the thin film heating resistor layer formed while cooling, FIG. 6 is a sectional view of the protective layer formed while cooling, and FIGS. 7 and 8.
The figures show a conventional example; FIG. 7 is a cross-sectional view of the main part thereof, and FIG. 8 is a plan view of the main part before the protective layer is provided. lO...Film substrate, 11...Selection electrode, 12...Common electrode, 16...Fiber (protruding insulating layer), 18... ...Thin film heating resistance layer. 16 fiber diagram diagram diagram diagram diagram diagram diagram diagram diagram diagram diagram diagram diagram diagram diagram diagram diagram

Claims (1)

【特許請求の範囲】[Claims] 基板上に突状絶縁層を設けるとともに、この突状絶縁層
を挟んでその両側に電極を配列し、前記突状絶縁層上に
これを乗り越えてその両側の裾部で前記電極に接続され
る薄膜発熱抵抗層を前記電極の配列方向に沿って帯状に
形成したことを特徴とするサーマル印字ヘッド。
A protruding insulating layer is provided on the substrate, electrodes are arranged on both sides of the protruding insulating layer, and electrodes are connected to the electrodes at the bases on both sides of the protruding insulating layer by climbing over the protruding insulating layer. A thermal print head characterized in that a thin film heat generating resistor layer is formed in a strip shape along the direction in which the electrodes are arranged.
JP14537690A 1990-06-05 1990-06-05 Thermal printing head Pending JPH0439067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14537690A JPH0439067A (en) 1990-06-05 1990-06-05 Thermal printing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14537690A JPH0439067A (en) 1990-06-05 1990-06-05 Thermal printing head

Publications (1)

Publication Number Publication Date
JPH0439067A true JPH0439067A (en) 1992-02-10

Family

ID=15383804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14537690A Pending JPH0439067A (en) 1990-06-05 1990-06-05 Thermal printing head

Country Status (1)

Country Link
JP (1) JPH0439067A (en)

Similar Documents

Publication Publication Date Title
JPH0439067A (en) Thermal printing head
JP2518186B2 (en) Thermal print head
JPS5851830B2 (en) thermal head
JP2667734B2 (en) Manufacturing method of thermal print head
JPH0419155A (en) Thick film type thermal head
JP2686171B2 (en) Manufacturing method of thermal print head
US5234709A (en) Process for producing thermal head
JPS5812775A (en) Manufacture of thermal head
JP2575554B2 (en) Edge type thermal head
JPH0434989A (en) Manufacture of double-sided wiring board
JPH0443050A (en) Manufacture of thermal printing head
JPH03258558A (en) Printing head
JP2520374Y2 (en) Mask alignment mark
JPH0376657A (en) Thermal head
JP2873861B2 (en) Differential magnetoresistive element
JPS6243557B2 (en)
JPS62178364A (en) Electrothermal transfer recording head
JPH0630885B2 (en) Method of manufacturing thermal head
JPH03244558A (en) Printing head
JPH0270455A (en) Thermal head
JPH04163157A (en) Thermal head
JPH04351559A (en) Thermal head and its manufacture
JPS63122576A (en) Thermal head
JPS63185648A (en) Thermal head
JPH01214455A (en) Thermal printing head