JPH0438442B2 - - Google Patents

Info

Publication number
JPH0438442B2
JPH0438442B2 JP29263887A JP29263887A JPH0438442B2 JP H0438442 B2 JPH0438442 B2 JP H0438442B2 JP 29263887 A JP29263887 A JP 29263887A JP 29263887 A JP29263887 A JP 29263887A JP H0438442 B2 JPH0438442 B2 JP H0438442B2
Authority
JP
Japan
Prior art keywords
small
small particles
medium
particles
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29263887A
Other languages
Japanese (ja)
Other versions
JPH01135515A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP29263887A priority Critical patent/JPH01135515A/en
Publication of JPH01135515A publication Critical patent/JPH01135515A/en
Publication of JPH0438442B2 publication Critical patent/JPH0438442B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流体中に混入している実質的に比重
差のない物質を分離する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating substances mixed in a fluid that have substantially no difference in specific gravity.

[従来の技術] 流体中に媒質以外の物質が混入している場合、
その物質は一般には遠心分離法によつて分離する
ことができるが、その物質が流体と実質的に同じ
密度を有している場合には、遠心分離法を用いる
ことができない。
[Prior art] When a substance other than the medium is mixed in the fluid,
The substance can generally be separated by centrifugation, but if the substance has substantially the same density as the fluid, centrifugation cannot be used.

[発明が解決しようとする問題点] 本発明は、上記流体中における比重差のない物
質を簡単に分離する方法を提供しようとするもの
である。
[Problems to be Solved by the Invention] The present invention aims to provide a method for easily separating substances with no difference in specific gravity in the above-mentioned fluid.

[問題点を解決するための手段、作用] 上記目的を達成するため、本発明の方法は、媒
質と比重差のない小粒子が混入している流体中に
超音波を照射し、その音場内における小粒子に音
圧振幅の小さい方向への力を作用させて、小粒子
を音圧振幅の小さい位置に集合させ、この集合に
より小粒子が高密度に含まれている部分を分離抽
出することを特徴とするものである。
[Means and effects for solving the problem] In order to achieve the above object, the method of the present invention irradiates ultrasonic waves into a fluid containing small particles with no difference in specific gravity from the medium, and A force is applied to the small particles in the direction of the small sound pressure amplitude, so that the small particles gather at a position where the sound pressure amplitude is small, and from this aggregation, a part containing a high density of small particles is separated and extracted. It is characterized by:

さらに具体的に説明すると、一般に、体積Vの
小球に超音波を照射したとき、小球に作用する超
音波の放射圧による力Fは次式で表わされる
(W.L.Nyborg 著,Ultrasound:its
applications in medicine and biology,F,
J,Fry 編(1978年)。
To explain more specifically, in general, when a small sphere of volume V is irradiated with ultrasound, the force F due to the radiation pressure of the ultrasound acting on the small sphere is expressed by the following formula (WLNyborg, Ultrasound:its
applications in medicine and biology, F.
Edited by Fry, J. (1978).

F=VY〓KE−V(1−γ)〓PE ……(1) KE:運動エネルギーの時間平均 PE:ポテンシヤルエネルギーの時間平均 〓:空間の勾配(グラデイエント)演算子 γ:小球と媒質の圧縮性の比 Y:小球の密度ρSと媒質の密度ρ0の関数 Y=3・(ρS−ρ0)/2ρS+ρ0 ……(2) ここで、もし、小球と媒質の密度が等しければ
(ρS=ρ0)、Y=0となり、(1)式右辺の第1項は0
になる。
F=VY〓K E −V(1−γ)〓P E ……(1) K E : Time average of kinetic energy P E : Time average of potential energy 〓 : Gradient operator in space γ : Small Ratio of compressibility between sphere and medium Y: Function of density of sphere ρ S and density of medium ρ 0 Y=3・(ρ S −ρ 0 )/2ρ S0 ……(2) Here, if If the densities of the small sphere and the medium are equal (ρ S = ρ 0 ), Y=0, and the first term on the right side of equation (1) is 0.
become.

そして、一般に、γ<1であるから、結局、 F∝−〓PE となり、小球にはポテンシヤル・エネルギーの勾
配とは逆向きに力が作用し、即ち、音場内におい
て音圧振幅の小さい方向に力が作用することにな
る。
In general, since γ<1, the result is F∝−〓P E , and a force acts on the small sphere in the opposite direction to the gradient of potential energy, that is, when the sound pressure amplitude is small in the sound field. A force will be applied in the direction.

従つて、媒質中の3次元定在波音場内に媒質と
同じ密度の小粒子が多量に混入していた場合、そ
の小粒子は最終的には音圧振幅最小の位置に落着
くことになり、この小粒子の集合部分を細管等に
より吸引抽出することにより、小粒子が高密度に
含まれている部分を分離することができる。
Therefore, if a large number of small particles with the same density as the medium are mixed in a three-dimensional standing wave sound field in a medium, the small particles will eventually settle at the position where the sound pressure amplitude is minimum. By suctioning and extracting this collection of small particles using a thin tube or the like, it is possible to separate a portion containing a high density of small particles.

この場合に、媒質中に超音波を照射することに
よつて、(1)式で表わされる超音波の放射圧による
力が流体中の物質に作用するため、たとえ比重差
がなくとも、流体の媒質とその中に存在する小粒
子との間に、圧縮性の差、あるいは音速の差や音
響インピーダンスの差があれば、0ではない有限
の力が小粒子に加わり、それが流体の媒質中を移
動していくため、小粒子を特定の場所に動かすこ
とが可能になり、高密度に集合させて分離するこ
とができる。
In this case, by irradiating ultrasonic waves into the medium, the force due to the ultrasonic radiation pressure expressed by equation (1) acts on the substance in the fluid, so even if there is no difference in specific gravity, the fluid If there is a difference in compressibility, speed of sound, or acoustic impedance between a medium and a small particle existing in it, a non-zero finite force will be applied to the small particle, which will , it is possible to move small particles to specific locations, allowing them to aggregate and separate at high density.

また、この方法では、実施例として後述するよ
うに、例えば円筒内の定在波音場中では、第2図
ないし第4図のような小粒子の凝集が見られ、超
音波の周波数を変えると共鳴状態の変化に対応し
て凝集形態が変化する。そのため、容器形状や超
音波の周波数を適切に選択することにより、凝集
をさらに特定の位置に集中させ、一層小粒子の抽
出分離を容易にすることができる。
In addition, with this method, as will be described later as an example, for example, in a standing wave sound field inside a cylinder, agglomeration of small particles as shown in Figures 2 to 4 is observed, and when the frequency of the ultrasound is changed, The aggregate morphology changes in response to changes in the resonance state. Therefore, by appropriately selecting the shape of the container and the frequency of the ultrasonic waves, it is possible to further concentrate the agglomeration in a specific position and facilitate the extraction and separation of small particles.

なお、この分離方法は、媒質中に定在波音場を
形成する場合に限られるものではなく、進行波音
場においても、ポテンシヤルエネルギー(あるい
は音圧振幅)に空間的な勾配をもたせることによ
つて実施することが可能である。
Note that this separation method is not limited to forming a standing wave sound field in a medium, but can also be applied to a traveling wave sound field by creating a spatial gradient in the potential energy (or sound pressure amplitude). It is possible to implement it.

[実施例] 第1図は、本発明の分離方法の実施に用いた装
置の構成を示すもので、直径が10cmの透明アクリ
ル樹脂製の円筒容器1内に媒質2としての塩水を
約50cmの深さに注入し、この媒質2中に直径が
0.5mm程度の多数のポリスチレン粒子3を浮遊さ
せた。媒質2は、塩分の濃度によつてポリスチレ
ン粒子3と密度を一致させた。円筒容器1の下面
には超音波送波器4を取付けている。
[Example] Figure 1 shows the configuration of an apparatus used to carry out the separation method of the present invention, in which salt water as a medium 2 is placed in a cylindrical container 1 made of transparent acrylic resin with a diameter of 10 cm to a depth of about 50 cm. injected into the medium 2 with a diameter of
A large number of polystyrene particles 3 of about 0.5 mm were suspended. The density of the medium 2 was made to match that of the polystyrene particles 3 by the concentration of salt. An ultrasonic transmitter 4 is attached to the lower surface of the cylindrical container 1.

このような装置を用い、上記超音波送波器4か
ら送波して、水面との間に定在波を形成し、3次
元定在波音場内におけるポリスチレン粒子3の分
離を試みた。
Using such a device, waves were transmitted from the ultrasonic transmitter 4 to form standing waves between the waves and the water surface, and an attempt was made to separate the polystyrene particles 3 in a three-dimensional standing wave sound field.

円筒内部は平面波ではなく複雑な圧力分布とな
るが、定在波の音圧振幅の分布に対応して、ポリ
スチレン粒子3が音圧振幅最小の位置に落着くた
め、円筒内の3次元的な圧力場において一部にポ
リスチレン粒子3を高密度に集合させることがで
きた。なお、小形のセンサを用いて圧力分布を測
ることにより、圧力の小さい部分に粒子が集まつ
ていることが確かめられた。
The pressure inside the cylinder is not a plane wave but a complex pressure distribution, but the polystyrene particles 3 settle at the position of the minimum sound pressure amplitude in accordance with the distribution of the sound pressure amplitude of the standing wave, so the three-dimensional pressure distribution inside the cylinder The polystyrene particles 3 could be assembled in a high density in a part of the pressure field. By measuring the pressure distribution using a small sensor, it was confirmed that particles were concentrated in areas with low pressure.

第2図ないし第4図は、上記超音波送波器4か
ら30.35kHz、31.19kHz及び31.79kHzの超音波を送
波した場合の粒子の凝集状態を示している。
FIGS. 2 to 4 show the state of particle aggregation when ultrasonic waves of 30.35 kHz, 31.19 kHz, and 31.79 kHz are transmitted from the ultrasonic transmitter 4.

[発明の効果] このような本発明の分離法によれば、流体中に
おける比重差のない物質を簡単かつ容易に分離抽
出することができる。
[Effects of the Invention] According to the separation method of the present invention, substances with no difference in specific gravity in a fluid can be simply and easily separated and extracted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の実施に用いた装置の構
成図、第2図はないし第4図は上記装置による小
粒子の凝集状態を示す説明図である。 1……円筒容器、2……媒質、3……ポリスチ
レン粒子、4……超音波送波器。
FIG. 1 is a block diagram of an apparatus used to carry out the method of the present invention, and FIGS. 2 to 4 are explanatory diagrams showing the state of aggregation of small particles by the above-mentioned apparatus. 1... Cylindrical container, 2... Medium, 3... Polystyrene particles, 4... Ultrasonic wave transmitter.

Claims (1)

【特許請求の範囲】[Claims] 1 媒質と比重差のない小粒子が混入している流
体中に超音波を照射し、その音場内における小粒
子に音圧振幅の小さい方向への力を作用させて、
小粒子を音圧振幅の小さい位置に集合させ、この
集合により小粒子が高密度に含まれている部分と
分離抽出することを特徴とする流体中における比
重差のない物質の分離法。
1. Ultrasonic waves are irradiated into a fluid containing small particles with no difference in specific gravity from the medium, and a force is applied to the small particles in the sound field in the direction of small sound pressure amplitude.
A method for separating substances in a fluid with no difference in specific gravity, which is characterized by gathering small particles in a position where the sound pressure amplitude is small, and separating and extracting small particles from a part containing a high density of small particles through this aggregation.
JP29263887A 1987-11-19 1987-11-19 Method for separating substances having no specific gravity differences in fluid Granted JPH01135515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29263887A JPH01135515A (en) 1987-11-19 1987-11-19 Method for separating substances having no specific gravity differences in fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29263887A JPH01135515A (en) 1987-11-19 1987-11-19 Method for separating substances having no specific gravity differences in fluid

Publications (2)

Publication Number Publication Date
JPH01135515A JPH01135515A (en) 1989-05-29
JPH0438442B2 true JPH0438442B2 (en) 1992-06-24

Family

ID=17784377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29263887A Granted JPH01135515A (en) 1987-11-19 1987-11-19 Method for separating substances having no specific gravity differences in fluid

Country Status (1)

Country Link
JP (1) JPH01135515A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691718B2 (en) * 2004-06-02 2011-06-01 本多電子株式会社 Separation apparatus and liquid fractionation apparatus using the same
JP4691719B2 (en) * 2004-06-02 2011-06-01 本多電子株式会社 Separation apparatus and liquid fractionation apparatus using the same
US7340957B2 (en) 2004-07-29 2008-03-11 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US8266950B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, LLP Particle analysis in an acoustic cytometer

Also Published As

Publication number Publication date
JPH01135515A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
JPH0440647B2 (en)
Meng et al. Acoustic tweezers
Destgeer et al. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves
EP0236449B1 (en) Apparatus for acoustically removing particles from a magnetic separation matrix
US4983189A (en) Methods and apparatus for moving and separating materials exhibiting different physical properties
AU565842B2 (en) Injection for ultra sonic diagnosis
CN106964176A (en) Application for separating oil with the ultrasonic harmony swimming skills art of water and for preparing water
CA2870018A1 (en) Acoustophoretic enhanced system for use in tanks
Williams et al. The Effects of the Microbubble Suspension SH U 454 (Echovist®) on Ultrasound‐Induced Cell Lysis In a Rotating Tube Exposure System
Mizushima et al. Interaction between acoustic cavitation bubbles and dispersed particles in a kHz-order-ultrasound-irradiated water
JPH0438442B2 (en)
Howkins Measurements of the resonant frequency of a bubble near a rigid boundary
Williams et al. The role of non-acoustic factors in the induction and proliferation of cavitational activity in vitro (cell suspensions)
Alp et al. Investigation of the processing of colemanite tailings by ultrasonic sound waves
Nyborg Theoretical criterion for acoustic aggregation
Hu et al. Trapping, transportation and separation of small particles by an acoustic needle
Williams Absence of meaningful thresholds for bioeffect studies on cell suspensions in vitro.
Beveridge et al. Imaging based on the ultrasonic vibration potential
US20200001293A1 (en) Real-time cell-surface marker detection
FR2279449A1 (en) Dispersion of solid particles in liq - stored in flexible container, by ultra-sonic vibrations from transducers in container
Sollner The Application of Sonic and Ultrasonic Waves in Colloid Chemistry.
JP2745047B2 (en) Apparatus and method for separating magnetotactic bacteria
Barnard et al. Parametric acoustic receiving array
Muramatsu et al. An innovative unit operation of particle separation/classification by irradiating low‐frequency ultrasound into water
Pohl MECHANICALLY INDUCED STIMULATION OF ELECTROMAGNETIC RADIATION—A NEW ELECTROKINETIC PHENOMENON

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term