JP4691719B2 - Separation apparatus and liquid fractionation apparatus using the same - Google Patents

Separation apparatus and liquid fractionation apparatus using the same Download PDF

Info

Publication number
JP4691719B2
JP4691719B2 JP2004164317A JP2004164317A JP4691719B2 JP 4691719 B2 JP4691719 B2 JP 4691719B2 JP 2004164317 A JP2004164317 A JP 2004164317A JP 2004164317 A JP2004164317 A JP 2004164317A JP 4691719 B2 JP4691719 B2 JP 4691719B2
Authority
JP
Japan
Prior art keywords
hole
pipe
separation device
bolt
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004164317A
Other languages
Japanese (ja)
Other versions
JP2005342599A (en
Inventor
年昭 宮本
秀雄 向坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Electronics Co Ltd
Original Assignee
Honda Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Electronics Co Ltd filed Critical Honda Electronics Co Ltd
Priority to JP2004164317A priority Critical patent/JP4691719B2/en
Publication of JP2005342599A publication Critical patent/JP2005342599A/en
Application granted granted Critical
Publication of JP4691719B2 publication Critical patent/JP4691719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、気体中に浮遊する霧状の液滴、煙などの浮遊物質を凝集させて気体から分離する分離装置、及びこれを用いて被処理液中の成分を分溜する液体分溜装置に関する。   The present invention relates to a separation device that aggregates floating substances such as mist droplets and smoke floating in a gas and separates them from the gas, and a liquid fractionation device that fractionates components in a liquid to be treated using the separation device About.

空気中に浮遊する霧状の液滴や煙を凝集させて、気体から分離する分離装置としては、霧状の液滴や煙を含む気体を冷却するもの、金属繊維からなるフィルタ(ワイヤデミスタ)を透過させるもの(例えば、特許文献1参照)、静電捕集方式などを用いた電気集塵によるもの(例えば、特許文献2参照)、旋回気流を用いたサイクロン方式などの手法が知られている。   Separation devices that aggregate mist-like droplets and smoke floating in the air and separate them from gas include those that cool mist-like droplets and smoke-containing gas, and metal fiber filters (wire demisters) There are known methods such as those that transmit light (for example, see Patent Document 1), those that use electrostatic dust collection using an electrostatic collection method (for example, see Patent Document 2), and a cyclone method that uses a swirling airflow. Yes.

特開平10−66818JP-A-10-66818 特開平10−382号公報(図1)Japanese Patent Laid-Open No. 10-382 (FIG. 1)

しかしながら、これらの方法による浮遊物質の捕集効率は、必ずしも十分とは言えず、浮遊物質を適切に回収できなかった。また、装置が大がかりになりがちであった。
本発明はかかる問題点に鑑みてなされたものであって、コンパクトでありながら、効率よく浮遊物質を気体から分離することができる分離装置、及びこれを用いた、コンパクトで被処理液に含まれている成分を効率よく分溜することができる液体分溜装置を提供することを目的とする。
However, the collection efficiency of suspended solids by these methods is not always sufficient, and the suspended solids cannot be recovered properly. In addition, the device tends to be large.
The present invention has been made in view of such problems, and is a compact separation apparatus that can efficiently separate suspended substances from a gas, and is compact and included in a liquid to be treated. It is an object of the present invention to provide a liquid fractionating device capable of efficiently fractionating existing components.

その解決手段は、気体中に浮遊する浮遊物質を凝集させて上記気体から分離する分離装置であって、内部に上記浮遊物質を含む気体を流通させる管貫通孔を有する管部材と、上記管部材の管長方向少なくとも一部の径方向周囲を取り囲み、この管部材を加振する超音波振動発生源であって、この管部材のうち、上記超音波振動発生源に取り囲まれる部分の少なくとも一部において、超音波振動を生じさせて、上記管部材から放射される空中超音波で上記管貫通孔内に管内定在波音場を形成する超音波振動発生源と、を備える分離装置である。   The solution is a separation device that agglomerates floating substances suspended in a gas and separates them from the gas, and includes a tube member having a tube through-hole through which the gas containing the suspended substance flows, and the tube member An ultrasonic vibration source that surrounds at least a portion of the tube length direction of the tube and vibrates the tube member, and at least a part of the tube member is surrounded by the ultrasonic vibration source. And an ultrasonic vibration generating source that generates ultrasonic vibration and forms an in-tube standing wave sound field in the pipe through-hole by aerial ultrasonic waves radiated from the pipe member.

本発明の分離装置は、管部材と超音波振動発生源とを有しており、超音波振動発生源は、管部材の管長方向少なくとも一部の径方向周囲を取り囲み、管部材を加振し、超音波振動発生源で取り囲まれる部分の少なくとも一部において、超音波振動を生じさせて、管貫通孔内に、管内定在波音場を形成する。
これにより、管貫通孔内に導入された霧状の液滴や煙等の浮遊物質は、その定在波音場の節部に集まると共に、浮遊物質同士が衝突して一体化し、次第に大きな粒子となる。すると、空中に浮遊していることができず、重力に従って落下し、菅部材の内周面に付着したり、別途設けた捕集容器へ落下する。
空中超音波は、気中での進行と共に急激に減衰するが、本発明の分離装置では、側壁部を超音波振動させ、この側壁部から空中超音波を放射させることにより、この側壁部の内側の内部流通空間において、側壁部のすぐ近くの気体中に浮遊する浮遊物質に空中超音波を照射し振動させることができるから、効率よく浮遊物質を凝集させることができる。
The separation device of the present invention includes a tube member and an ultrasonic vibration generation source. The ultrasonic vibration generation source surrounds at least a part of the tube member in the tube length direction and vibrates the tube member. Then, ultrasonic vibration is generated in at least a part of the portion surrounded by the ultrasonic vibration generating source to form an in-tube standing wave sound field in the through-hole.
As a result, suspended substances such as mist-like droplets and smoke introduced into the tube through-holes gather at the nodes of the standing wave sound field, and the suspended substances collide with each other and gradually become larger particles. Become. Then, it cannot float in the air, falls according to gravity, adheres to the inner peripheral surface of the gutter member, or falls into a separate collection container.
The aerial ultrasonic wave attenuates abruptly as it progresses in the air. However, in the separation device of the present invention, the side wall is ultrasonically vibrated, and the aerial ultrasonic wave is emitted from the side wall, so that In the internal circulation space, airborne ultrasonic waves can be applied to the suspended matter suspended in the gas in the immediate vicinity of the side wall to vibrate, so that the suspended matter can be efficiently aggregated.

かくして、本発明の分離装置では、気体と浮遊物質とを効率よく分離することができる。
しかも本発明の分離装置は、管部材の管長方向少なくとも一部の径方向周囲を、取り囲むように超音波振動発生源を配置している。従って、コンパクトな分離装置となる。
Thus, in the separation device of the present invention, gas and suspended solids can be efficiently separated.
Moreover, in the separation device of the present invention, the ultrasonic vibration generation source is arranged so as to surround at least a part of the pipe member in the pipe length direction in the radial direction. Therefore, it becomes a compact separation device.

なお、本発明の分離装置は、コンパクトであるから、既存の管の一部を、本発明の分離装置に取り替えることで、管内を流れる浮遊物質を分離するなどの利用も図ることができることができる。   In addition, since the separation apparatus of the present invention is compact, it can be used to separate floating substances flowing in the pipe by replacing a part of the existing pipe with the separation apparatus of the present invention. .

本発明の分離装置は、気体中から浮遊物質を回収し、有用な液体その他の物質を得たい場合、即ち液体回収装置や物質回収装置として用いるほか、気体中から浮遊物質を除去し、浮遊物質のない気体を得たい場合、即ち、浮遊物質除去装置としても用いることができる。   The separation device of the present invention collects suspended solids from a gas and obtains a useful liquid or other material, that is, is used as a liquid recovery device or a material recovery device. When it is desired to obtain a gas free of air, that is, it can be used as a suspended substance removing device.

浮遊物質としては、気体中に浮遊し、互いに衝突することにより一体化して大きくなることができる粒子状の物質が挙げられ、例えば、霧状の水滴、油滴などの液滴や、たばこの煙、排気ガス等に含まれるαパーティクルなどが挙げられる。さらに、霧状の液滴としては、この液滴を液体として回収すること、あるいは気体から除去することが望まれる液滴であればいずれのものでも良く、例えば、水、アルコール、水とアルコールの混合液、金属イオン等を含んだ水、有機溶剤、油などの液体の液滴が挙げられる。   Examples of suspended substances include particulate substances that float in a gas and can be integrated and enlarged by colliding with each other. For example, droplets such as mist-like water drops, oil drops, and cigarette smoke And α particles contained in exhaust gas and the like. Further, the mist-like droplet may be any droplet as long as it is desired to recover the droplet as a liquid or to be removed from the gas, for example, water, alcohol, water and alcohol. Liquid droplets such as water containing a mixed liquid, metal ions, an organic solvent, and oil can be used.

また、超音波振動発生源としては、管部材の径方向周囲を取り囲む形態で超音波振動を発生させるもので有ればいずれのものでも良く、圧電素子、磁歪素子などを用いた筒状の超音波振動子が挙げられる。特に、強力な超音波振動を生じさせるため、筒状のボルト部材を用いたボルト締め型ランジュバン型超音波振動子を用いると良い。なお、筒状のボルト部材を本発明における管部材として兼用することもできる。   Any ultrasonic vibration source may be used as long as it generates ultrasonic vibration in a form surrounding the circumference of the pipe member, and a cylindrical superstructure using a piezoelectric element, a magnetostrictive element, or the like. A sound wave vibrator is mentioned. In particular, in order to generate strong ultrasonic vibration, a bolt-clamped Langevin type ultrasonic vibrator using a cylindrical bolt member may be used. A cylindrical bolt member can also be used as the tube member in the present invention.

また、管部材としては、使用する気体あるいは浮遊物質、加工の容易性、超音波振動の減衰の生じにくさ等を考慮して材質等を選定すればよいが、例えば、音響インピーダンスの高い、ステンレスなどの金属やアルミナ等のセラミックを用いるのが好ましい。
また管部材としては、まっすぐな直管を用いることができるほか、管部材の径方向周囲を取り囲む形態で超音波振発生源を配置できれば良く、曲がっていたり、さらには螺旋状であっても良い。
管部材の管貫通孔内に形成される管内定在波音場としては、管貫通孔内において、空中超音波の振動の大きな部分(腹部に相当)と小さな部分(節部に相当)とが形成されていれば良く、振動の小さな部分でも超音波振動の振幅が完全に無くなるとは限らない。一般に、振動の小さな部分(節部)に浮遊物質が集まりこの部分で凝集が起こりやすい。
浮遊物質が霧状の液滴である場合には、管部材の内周面などに液滴が付着し液体化した後に、この液体を液流路を通じて回収すれば効率よく回収できる。例えば、管部材を水平よりも傾けるあるいは鉛直線に平行にして、液体を管部材の内周面に沿って移動させる手法が挙げられる。
In addition, as a pipe member, a material or the like may be selected in consideration of a gas or a floating substance to be used, ease of processing, difficulty in attenuation of ultrasonic vibration, and the like. It is preferable to use metals such as alumina and ceramics such as alumina.
Further, as the pipe member, a straight straight pipe can be used, and it is only necessary that the ultrasonic vibration generation source can be arranged in a form surrounding the circumference in the radial direction of the pipe member, and it may be bent or further spiral. .
As a standing wave sound field formed in the pipe through-hole of the pipe member, a large part (corresponding to the abdomen) and a small part (corresponding to the node part) of ultrasonic vibration are formed in the pipe through-hole. It is sufficient that the amplitude of the ultrasonic vibration is not completely eliminated even in a small vibration portion. In general, suspended substances gather in a portion (node) where vibration is small, and aggregation is likely to occur in this portion.
In the case where the suspended substance is a mist-like droplet, the liquid can be efficiently recovered by collecting the liquid through the liquid flow path after the droplet adheres to the inner peripheral surface of the tube member and liquefies. For example, there is a method in which the liquid is moved along the inner peripheral surface of the pipe member by tilting the pipe member from the horizontal or parallel to the vertical line.

さらに、上記の分離装置であって、パイプ貫通孔を備えるパイプ部材であって、前記超音波振動発生源の前記管長方向の一方側に、前記管貫通孔に上記パイプ貫通孔を連通させた状態で配置されてなり、上記超音波振動発生源によりこのパイプ部材において超音波振動を生じ、このパイプ部材から放射される空中超音波で、上記パイプ貫通孔内にパイプ内定在波音場が形成されるパイプ部材を備える分離装置とすると良い。   Furthermore, in the above separation device, a pipe member having a pipe through hole, the pipe through hole communicating with the pipe through hole on one side of the ultrasonic vibration generation source in the tube length direction The ultrasonic vibration generation source generates ultrasonic vibrations in the pipe member, and a standing wave sound field in the pipe is formed in the pipe through-hole by aerial ultrasonic waves radiated from the pipe member. A separation device including a pipe member is preferable.

本発明の分離装置では、管部材、超音波振動発生源のほか、パイプ部材を備え、このパイプ部材においても、超音波振動発生源により超音波振動を生じて、パイプ貫通孔内にパイプ内定在波音場が形成される。従って、管部材内のみならず、パイプ部材内においても気体と浮遊物質とを分離することができるから、さらに効率よく浮遊物質を気体から分離することができる。   In the separation device of the present invention, a pipe member is provided in addition to a pipe member and an ultrasonic vibration generation source. Also in this pipe member, ultrasonic vibration is generated by the ultrasonic vibration generation source, and the pipe is fixed in the pipe through hole. A wave field is formed. Therefore, since the gas and the suspended substance can be separated not only in the pipe member but also in the pipe member, the suspended substance can be more efficiently separated from the gas.

また、パイプ部材も、使用する気体あるいは浮遊物質、加工の容易性、超音波振動の減衰の生じにくさ等を考慮して材質等を選定すればよいが、例えば、音響インピーダンスの高い、ステンレスなどの金属やアルミナ等のセラミックを用いるのが好ましい。
パイプ部材のパイプ貫通孔内に形成されるパイプ内定在波音場も、管内定在波音場と同様、パイプ貫通孔内において、空中超音波の振動の大きな部分(腹部に相当)と小さな部分(節部に相当)とが形成されていれば良く、振動の小さな部分でも超音波振動の振幅が完全に無くなるとは限らない。
浮遊物質が霧状の液滴である場合には、パイプ部材の内周面を水平に対して傾けておき、内周面に付着した液体をこの内周面に沿って移動させるとよい。
The pipe member may also be selected in consideration of the gas or suspended material to be used, the ease of processing, the difficulty of attenuation of ultrasonic vibration, etc., for example, stainless steel with high acoustic impedance, etc. It is preferable to use ceramics such as metals and alumina.
In the pipe standing wave sound field formed in the pipe through-hole of the pipe member, the large part (corresponding to the abdomen) of the vibration of the air ultrasonic wave and the small part (node) in the pipe through-hole are the same as in the pipe standing wave sound field. And the amplitude of the ultrasonic vibration is not necessarily completely eliminated even in a small vibration portion.
When the suspended substance is a mist-like droplet, the inner peripheral surface of the pipe member may be inclined with respect to the horizontal, and the liquid adhering to the inner peripheral surface may be moved along the inner peripheral surface.

さらに、請求項2に記載の分離装置であって、前記パイプ部材は、径方向寸法に対して、管長方向寸法が長い形態を有する分離装置とすると良い。   Further, in the separation device according to claim 2, the pipe member may be a separation device having a form in which a dimension in a pipe length direction is longer than a dimension in a radial direction.

本発明の分離装置では、パイプ部材を径に比して管長が長いパイプの形態としている。このため、パイプ部材からパイプ貫通孔内に放射され、減衰しやすい空中超音波の強度も、パイプの径方向寸法が小さければ減衰はあまり大きくならない。また、管長方向の長い距離に亘って、霧状の液滴などの浮遊物質をパイプ部材内のパイプ内定在波音場に通すことができる。このため、より多くの浮遊物質を凝集させて効率よく気体と分離させることができる。   In the separation device of the present invention, the pipe member is in the form of a pipe having a pipe length longer than the diameter. For this reason, the intensity of the aerial ultrasonic wave that is radiated from the pipe member into the pipe through-hole and easily attenuates does not increase so much if the radial dimension of the pipe is small. In addition, suspended substances such as mist droplets can be passed through the standing wave sound field in the pipe member over a long distance in the tube length direction. For this reason, more suspended solids can be aggregated and efficiently separated from the gas.

あるいは、請求項1に記載の分離装置であって、前記管部材は、前記超音波振動発生源よりも、前記管長方向の一方側に突出する一方側突出部であって、上記超音波振動発生源によりこの一方側突出部において超音波振動を生じ、この一方側突出部における前記管貫通孔内に突出部定在波音場が形成される一方側突出部、及び、前記超音波振動発生源よりも、前記管長方向の他方側に突出する他方側突出部であって、上記超音波振動発生源によりこの他方側突出部において超音波振動を生じ、この他方側突出部における上記管貫通孔内に上記突出部内定在波音場が形成される他方側突出部、の少なくともいずれかを有する分離装置とすると良い。   Alternatively, in the separation device according to claim 1, the tube member is a one-side protruding portion that protrudes to one side in the tube length direction from the ultrasonic vibration generation source, and the ultrasonic vibration generation The ultrasonic vibration is generated in the one side protruding portion by the source, the one side protruding portion in which the protruding portion standing wave sound field is formed in the tube through hole in the one side protruding portion, and the ultrasonic vibration generating source. The other side protruding portion protruding to the other side in the tube length direction, the ultrasonic vibration generating source generates ultrasonic vibration in the other side protruding portion, and the inside of the tube through hole in the other side protruding portion. It is preferable that the separation device has at least one of the other-side protruding portion where the in-projecting standing wave sound field is formed.

本発明の分離装置では、管部材は、突出部内定在波音場が形成される一方側突出部、及び他方側突出部の少なくともいずれかを有している。つまり、管部材は、管貫通孔内に管内定在波音場を形成するほか、一方側突出部及び他方側突出部の少なくともいずれかにおいて、突出部内定在波音場が形成されている。このため、管内定在波音場のみならず、突出部内定在波音場においても、気体と浮遊物質とを分離することができるから、さらに効率よく浮遊物質を気体から分離することができる。
しかも、本発明の分離装置では、管部材が一方側突出部、及び他方側突出部の少なくともいずれかを有する構成としているので、別途パイプ部材を用意したりこれを取り付ける必要もなく、取り扱いが容易である。
In the separation device of the present invention, the tube member has at least one of a one-side protruding portion and an other-side protruding portion in which a standing-wave standing-wave sound field is formed. That is, the tube member forms an in-tube standing wave sound field in the tube through-hole, and an in-projection standing wave sound field is formed in at least one of the one side protrusion and the other side protrusion. For this reason, since the gas and the suspended solid can be separated not only in the standing wave acoustic field in the tube but also in the standing standing acoustic field, the suspended matter can be more efficiently separated from the gas.
Moreover, in the separation device of the present invention, since the pipe member has at least one of the one side protruding portion and the other side protruding portion, there is no need to prepare a pipe member or attach it separately, and handling is easy. It is.

なお、管部材の一方側突出部における管貫通孔内、及び、他方側突出部における管貫通孔内パイに形成される突出部内定在波音場も、管内定在波音場と同様、空中超音波の振動の大きな部分(腹部に相当)と小さな部分(節部に相当)とが形成されていれば良く、振動の小さな部分でも超音波振動の振幅が完全に無くなるとは限らない。   In addition, the standing wave sound field in the protruding part formed in the pipe through hole in the one side protruding part of the pipe member and in the pipe through hole in the other side protruding part is also the same as the in-pipe standing wave sound field. It is only necessary to form a large vibration portion (corresponding to the abdomen) and a small portion (corresponding to the node portion), and the amplitude of the ultrasonic vibration is not necessarily completely eliminated even in the small vibration portion.

さらに他の解決手段は、気体中に浮遊する浮遊物質を凝集させて上記気体から分離する分離装置であって、ボルト締めランジュバン型振動子を備え、上記ボルト締めランジュバン型振動子のうち、ボルト部材は、このボルト締めランジュバン型振動子の軸線に沿って自身を貫通するボルト貫通孔を含む円筒状ボルト部材であり、上記ボルト締めランジュバン型振動子は、少なくとも上記ボルト貫通孔を含んで、自身を上記軸線に沿って貫通する貫通流通孔であって、上記浮遊物質を含む気体を流通させる貫通流通孔を有する分離装置である。   Still another solution is a separation device that agglomerates floating substances suspended in a gas and separates them from the gas, and includes a bolt-clamped Langevin vibrator, and among the bolt-clamped Langevin vibrators, a bolt member Is a cylindrical bolt member including a bolt through-hole penetrating itself along the axis of the bolt-tightened Langevin vibrator, and the bolt-tightened Langevin vibrator includes at least the bolt through-hole, It is a separation device having a through-flow hole penetrating along the axis and through which a gas containing the suspended substance flows.

本発明の分離装置は、ボルトが円筒状ボルト部材であるボルト締めランジュバン型振動子を備える。ボルト締めランジュバン型振動子を所定の周波数で駆動すると、その軸線方向(円筒型ボルト部材の管長方向)に伸縮する振動が生じる。
ところで、一般に、ボルト締めランジュバン型振動子は、圧電素子,磁歪素子など振動を生じる円環状の素子を、2つの部材で挟み、これらに挿通したボルト部材あるいはボルト部材とナット部材とで互いに締結して、2つの部材で素子を圧縮した構成を有している。従って、ボルト部材は、直接あるいはナット部材を介して素子を挟む2つの部材に係合しており、このボルト部材には、引張応力が掛かっている。
The separation device of the present invention includes a bolt-tightened Langevin type vibrator in which the bolt is a cylindrical bolt member. When the bolted Langevin type vibrator is driven at a predetermined frequency, vibration that expands and contracts in the axial direction (the tube length direction of the cylindrical bolt member) is generated.
By the way, in general, a bolt-clamped Langevin type vibrator sandwiches an annular element that generates vibration, such as a piezoelectric element and a magnetostrictive element, between two members, and is fastened to each other by a bolt member or a bolt member and a nut member that are inserted through these elements. The element is compressed by two members. Therefore, the bolt member is engaged with two members that sandwich the element directly or via a nut member, and tensile stress is applied to the bolt member.

従って、ボルト締めランジュバン型振動子が軸線方向に伸縮すると、このボルト締めランジュバン型振動子内では、円筒状ボルト部材が伸縮する。それに伴って、円筒状ボルトの内壁面は、軸線に直交する径方向に、その径が拡径及び縮径する呼吸振動を生じる。この呼吸振動によって、円筒状ボルト内のボルト貫通孔において、その内壁面から軸線に向かって、空中超音波が放射され、軸線に向かって超音波が集中する形態となる。
従って、貫通流通孔うち、少なくともボルト貫通孔内の内部空間にボルト内定在波音場が形成される。このため、この貫通流通孔内に霧状の液滴などの浮遊物質を導入すると、浮遊物質は、そのボルト内定在波音場の節部に集まると共に、浮遊物質同士が衝突して一体化し、次第に大きな粒子となる。すると、空中に浮遊していることができず、重力に従って落下し、ボルト貫通孔の内周面等に付着する。かくして、浮遊物質を気体から分離することができる。
また、ボルト締めランジュバン型振動子の円筒状ボルト部材のボルト貫通孔を、貫通流通孔に含めているので、コンパクトな分離装置となる。しかも強力なボルト内定在波音場をボルト貫通孔内に形成することができるので、高い効率で浮遊物質を回収できる。
Accordingly, when the bolted Langevin type vibrator expands and contracts in the axial direction, the cylindrical bolt member expands and contracts in the bolt tightened Langevin type vibrator. Along with this, the inner wall surface of the cylindrical bolt generates respiratory vibrations whose diameter increases and decreases in the radial direction orthogonal to the axis. Due to this breathing vibration, in the bolt through hole in the cylindrical bolt, aerial ultrasonic waves are emitted from the inner wall surface toward the axis, and the ultrasonic waves are concentrated toward the axis.
Accordingly, a standing wave sound field within the bolt is formed at least in the internal space of the through hole of the through hole. For this reason, when floating substances such as mist-like droplets are introduced into the through-flow holes, the floating substances gather at the nodes of the standing wave sound field in the bolt, and the floating substances collide with each other and gradually integrate. Large particles. Then, it cannot float in the air, falls according to gravity, and adheres to the inner peripheral surface or the like of the bolt through hole. Thus, suspended solids can be separated from the gas.
In addition, since the bolt through hole of the cylindrical bolt member of the bolted Langevin type vibrator is included in the through circulation hole, a compact separation device is obtained. Moreover, since a strong standing wave sound field in the bolt can be formed in the bolt through-hole, suspended matter can be recovered with high efficiency.

なお、ボルト締めランジュバン型超音波振動子の軸線を水平から傾けておく、あるいは鉛直に保持しておくなどにより、適宜の液体の流路や浮遊物質の排出路を構成しておけば、浮遊物質を効率的に回収することができる。   If the axis of the bolted Langevin type ultrasonic transducer is tilted from the horizontal or held vertically, an appropriate liquid flow path or floating substance discharge path can be configured. Can be efficiently recovered.

さらに、請求項4に記載の分離装置であって、パイプ貫通孔を備えるパイプ部材であって、前記ボルト締めランジュバン型振動子の一方端に、前記貫通流通孔に上記パイプ貫通孔を連通させた状態で固着してなり、上記ボルト締めランジュバン型振動子によりこのパイプ部材において超音波振動を生じ、このパイプ部材から放射される空中超音波で、上記パイプ貫通孔内にパイプ内定在波音場が形成されるパイプ部材を備える分離装置とすると良い。   Furthermore, it is a separation apparatus of Claim 4, Comprising: It is a pipe member provided with a pipe through-hole, Comprising: The said pipe through-hole was connected with the said through-flow hole at the one end of the said bolt fastening Langevin type vibrator. The pipe-clamped Langevin type vibrator generates ultrasonic vibrations in the pipe member, and a standing wave sound field in the pipe is formed in the pipe through-hole by the aerial ultrasonic wave radiated from the pipe member. It is good to set it as the separation apparatus provided with the pipe member made.

本発明の分離装置では、ボルト締めランジュバン型振動子を備えるほか、この一方端にパイプ貫通孔を備えるパイプ部材固着を固着してなる。このパイプ部材においても、ボルト締めランジュバン型振動子による超音波振動を生じて、パイプ貫通孔内にパイプ内定在波音場が形成される。従って、円筒状ボルト部材のボルト貫通孔内のみならず、パイプ部材内においても気体と浮遊物質とを分離することができるから、さらに効率よく浮遊物質を気体から分離することができる。   In the separation device of the present invention, a bolt-clamped Langevin type vibrator is provided, and a pipe member having a pipe through hole is fixed to one end thereof. Also in this pipe member, ultrasonic vibration is generated by the bolted Langevin type vibrator, and a standing wave sound field in the pipe is formed in the pipe through hole. Therefore, since the gas and the floating substance can be separated not only in the bolt through hole of the cylindrical bolt member but also in the pipe member, the floating substance can be more efficiently separated from the gas.

なお、パイプ部材は、径方向寸法に対して、管長方向寸法が長い形態を有するのが好ましい。
パイプ部材を径に比して管長が長い管の形態とすると、パイプ部材からパイプ貫通孔内に放射され、減衰しやすい空中超音波の強度も、パイプの径方向寸法が小さければ減衰はあまり大きくならない。また、管長方向の長い距離に亘って、霧状の液滴などの浮遊物質をパイプ部材内のパイプ内定在波音場に通すことができる。このため、より多くの浮遊物質を凝集させて効率よく気体と分離させることができる。
In addition, it is preferable that a pipe member has a form with a long pipe length direction dimension with respect to a radial direction dimension.
If the pipe member is in the form of a tube that is long compared to its diameter, the intensity of the aerial ultrasonic wave that is radiated from the pipe member into the pipe through-hole and easily attenuates will be too great if the radial dimension of the pipe is small. Don't be. In addition, suspended substances such as mist droplets can be passed through the standing wave sound field in the pipe member over a long distance in the tube length direction. For this reason, more suspended solids can be aggregated and efficiently separated from the gas.

あるいは、請求項4に記載の分離装置であって、前記円筒状ボルト部材は、前記ボルト締めランジュバン型振動子よりも、前記軸線の一方側に突出する一方側突出部であって、上記ボルト締めランジュバン型振動子によりこの一方側突出部において超音波振動を生じ、この一方側突出部における前記ボルト貫通孔内に突出部内定在波音場が形成される一方側突出部、及び、前記ボルト締めランジュバン型振動子よりも、前記軸線の他方側に突出する他方側突出部であって、上記ボルト締めランジュバン型振動子によりこの他方側突出部において超音波振動を生じ、この他方側突出部における上記ボルト貫通孔内に上記突出部内定在波音場が形成される他方側突出部、の少なくともいずれかを有する分離装置とすると良い。   Alternatively, in the separation device according to claim 4, the cylindrical bolt member is a one-side protruding portion that protrudes to one side of the axis line relative to the bolt-tightened Langevin type vibrator, A one-side protruding portion in which a standing wave sound field is formed in the bolt through hole in the one-side protruding portion by the ultrasonic vibration generated in the one-side protruding portion by the Langevin-type vibrator, and the bolt-tightened Langevin The other side protruding portion that protrudes to the other side of the axis than the type vibrator, and the bolt tightening Langevin type vibrator generates ultrasonic vibration in the other side protruding portion, and the bolt in the other side protruding portion It is preferable that the separation device has at least one of the other protruding portion in which the standing wave sound field in the protruding portion is formed in the through hole.

本発明の分離装置では、ボルト締めランジュバン型振動子の円筒状ボルト部材は、自身即ち、この円筒状ボルト部材を除くボルト締めランジュバン型振動子よりも、軸線の一方側に突出する一方側突出部、及び、円筒状ボルト部材を除くボルト締めランジュバン型振動子よりも、軸線の他方側に突出する他方側突出部の少なくともいずれかを有している。しかも、一方側突出部及び他方側突出部におけるボルト貫通孔内には、突出部定在波音場が形成される。
このように、ボルト締めランジュバン型振動子内における円筒状ボルト部材の伸縮に伴う呼吸振動のみならず、一方側突出部及び他方側突出部の少なくともいずれかにおいて、それらのボルト貫通孔内に突出部内定在波音場が形成されるので、この部分でも気体から浮遊物質を分離できる。従って、コンパクトで、さらに高い効率で浮遊物質を回収できる。
In the separation device of the present invention, the cylindrical bolt member of the bolted Langevin type vibrator is itself, that is, the one-side protruding portion that projects to one side of the axis than the bolted Langevin type vibrator excluding the cylindrical bolt member. And it has at least any one of the other side protrusion parts which protrude in the other side of an axis rather than the bolt fastening Langevin type vibrator except a cylindrical bolt member. In addition, a protruding portion standing wave sound field is formed in the bolt through holes in the one side protruding portion and the other side protruding portion.
Thus, not only respiratory vibration accompanying expansion and contraction of the cylindrical bolt member in the bolt-tightened Langevin type vibrator, but also at least one of the one side projecting portion and the other side projecting portion is projected into the bolt through hole. Since an internal standing wave sound field is formed, suspended material can be separated from the gas even in this portion. Therefore, it is compact and can collect suspended solids with higher efficiency.

さらに他の解決手段は、気体中に浮遊する浮遊物質を凝集させて上記気体から分離する分離装置であって、素子貫通孔を有する複数の環状の圧電素子であって、自身の素子軸線に互いに同軸に配置された複数の圧電素子と、上記圧電素子の間に介在する電極板と、複数の上記圧電素子よりも上記素子軸線の基端側に位置し、上記素子軸線に沿う第1貫通孔を有する環状の第1環状部材と、複数の上記圧電素子よりも上記素子軸線の先端側に位置し、上記素子軸線に沿う第2貫通孔を有する環状の第2環状部材と、上記素子軸線に沿って貫通するボルト貫通孔を有する円筒状の円筒状ボルト部材であって、上記第1環状部材よりも上記素子軸線の基端側に突出し、上記圧電素子の素子貫通孔内及び上記第1環状部材の第1貫通孔内を通って、少なくとも上記第2環状部材の第2貫通孔内まで延在し、少なくとも上記第1環状部材よりも上記素子軸線の基端側に突出する突出部に形成された第1ネジ部、及び、上記第2貫通孔内で上記第2環状部材に締結される第2ネジ部を含む 円筒状ボルト部材と、上記第1環状部材よりも上記素子軸線の基端側からこの第1環状部材に当接するナット部材であって、上記第1環状部材と上記第2環状部材とで複数の上記圧電素子を上記素子軸線に沿う方向に圧縮すると共に、上記円筒状ボルト部材の上記第1ネジ部と上記第2ネジ部との間に引張応力を生じさせて、上記円筒状ボルト部材の上記第1ネジ部に締結されてなるナット部材と、を備える分離装置である。   Yet another solution is a separation device that agglomerates floating substances suspended in a gas and separates them from the gas, and is a plurality of annular piezoelectric elements having element through-holes, A plurality of piezoelectric elements arranged coaxially, an electrode plate interposed between the piezoelectric elements, and a first through hole that is located closer to the base end side of the element axis than the plurality of piezoelectric elements and extends along the element axis A first annular member having a ring shape, a second annular member having a second through-hole located on the tip side of the element axis with respect to the plurality of piezoelectric elements and having a second through hole along the element axis, and the element axis. A cylindrical cylindrical bolt member having a bolt through-hole penetrating along the element and projecting toward the base end side of the element axis from the first annular member, and in the element through-hole of the piezoelectric element and in the first annular Pass through the first through hole of the member, At least a first screw portion that extends into the second through-hole of the second annular member and is formed at a protruding portion that protrudes at least to the base end side of the element axis from the first annular member; and A cylindrical bolt member including a second screw portion fastened to the second annular member in the second through hole, and abuts on the first annular member from the base end side of the element axis rather than the first annular member. A nut member, wherein the first annular member and the second annular member compress a plurality of the piezoelectric elements in a direction along the element axis, and the first screw portion of the cylindrical bolt member and the first annular member. And a nut member that is fastened to the first screw portion of the cylindrical bolt member by generating a tensile stress between the two screw portions.

本発明の分離装置では、圧電素子、第1環状部材、第2環状部材のほか、円筒状ボルト部材にも素子軸線の方向に沿う貫通孔が空けられている。
また、圧電素子に所定周波数の駆動電圧を印加すると、圧電素子に発生する軸線方向の振動により、第1環状部材、第2環状部材、及び円筒状ボルト部材に超音波振動を生じる。この際、円筒状ボルト部材は、伸縮変形をすると共に、その軸線に直交する径方向にも、そのボルト貫通孔の径が拡縮する呼吸振動状の超音波振動が生じる。この円筒状ボルト部材に励起されたこの超音波振動によって、ボルト貫通孔壁から内側(軸線)に向かって放射される空中超音波でボルト貫通孔内にボルト内定在波音場が形成される。
そこで、このボルト貫通孔内に霧状の液滴等の浮遊物質を含む気体を導入すれば、浮遊物質は、そのボルト内定在波音場の節部に集まると共に、浮遊物質同士が衝突して一体化し、次第に大きな粒子となる。すると、空中に浮遊していることができず、重力に従って落下し、円筒状ボルト部材の内周面等に付着する。かくして、浮遊物質を気体から分離することができる。
また、円筒状ボルト部材の径方向周囲に圧電素子等が配置される構成でるので、コンパクトな分離装置となる。しかも強力なボルト内定在波音場をボルト貫通孔内に形成することができるので、高い効率で浮遊物質を回収できる。
In the separation device of the present invention, in addition to the piezoelectric element, the first annular member, and the second annular member, the cylindrical bolt member is also provided with a through hole along the direction of the element axis.
In addition, when a driving voltage having a predetermined frequency is applied to the piezoelectric element, ultrasonic vibration is generated in the first annular member, the second annular member, and the cylindrical bolt member due to the vibration in the axial direction generated in the piezoelectric element. At this time, the cylindrical bolt member expands and contracts, and also generates a breathing vibration-like ultrasonic vibration in which the diameter of the bolt through hole expands and contracts in the radial direction orthogonal to the axis. Due to the ultrasonic vibration excited by the cylindrical bolt member, an in-bolt standing wave sound field is formed in the bolt through-hole by aerial ultrasonic waves radiated from the wall of the bolt through-hole toward the inside (axis).
Therefore, if a gas containing floating substances such as mist droplets is introduced into the bolt through holes, the floating substances collect at the nodes of the standing wave sound field in the bolt and the floating substances collide with each other. And gradually become larger particles. Then, it cannot float in the air, falls according to gravity, and adheres to the inner peripheral surface or the like of the cylindrical bolt member. Thus, suspended solids can be separated from the gas.
Further, since the piezoelectric element or the like is arranged around the radial direction of the cylindrical bolt member, a compact separation device is obtained. Moreover, since a strong standing wave sound field in the bolt can be formed in the bolt through-hole, suspended matter can be recovered with high efficiency.

なお、円筒状ボルト部材が水平から傾いた状態、あるいは鉛直となる状態にして、適宜の液体の流路や浮遊物質の排出路を構成しておけば、浮遊物質を効率的に回収することができる。   In addition, if the cylindrical bolt member is inclined from the horizontal or in a vertical state, and an appropriate liquid flow path or floating substance discharge path is configured, the floating substance can be efficiently recovered. it can.

さらに、請求項7に記載の分離装置であって、パイプ貫通孔を備えるパイプ部材であって、前記第2環状部材の前記先端側に、前記第2貫通孔に上記パイプ貫通孔を連通させた状態で固着してなり、前記圧電素子の駆動によって生じさせる超音波振動により、このパイプ部材において超音波振動を生じ、このパイプ部材から放射される空中超音波で、上記パイプ貫通孔内に前記定在波音場が形成されるパイプ部材を備える分離装置とするのが好ましい。   Furthermore, it is a separation apparatus of Claim 7, Comprising: It is a pipe member provided with a pipe through-hole, Comprising: The said pipe through-hole was connected with the said 2nd through-hole at the said front end side of a said 2nd annular member. The ultrasonic vibration generated in the pipe member by the ultrasonic vibration generated by driving the piezoelectric element is fixed in a state, and the constant vibration is generated in the pipe through-hole by the aerial ultrasonic wave radiated from the pipe member. It is preferable that the separation device includes a pipe member in which a standing wave field is formed.

この分離装置では、第2環状部材の先端側にパイプ貫通孔を備えるパイプ部材固着を固着してなる。また、このパイプ部材においても、超音波振動によりパイプ貫通孔内にパイプ内定在波音場が形成される。従って、円筒状ボルト部材のボルト貫通孔内のみならず、パイプ部材内においても気体と浮遊物質とを分離することができるから、さらに効率よく浮遊物質を気体から分離することができる。   In this separation device, the pipe member fixing provided with the pipe through hole is fixed to the distal end side of the second annular member. Also in this pipe member, an in-pipe standing wave sound field is formed in the pipe through hole by ultrasonic vibration. Therefore, since the gas and the floating substance can be separated not only in the bolt through hole of the cylindrical bolt member but also in the pipe member, the floating substance can be more efficiently separated from the gas.

なお、パイプ部材は、径方向寸法に対して、管長方向寸法が長い形態を有するのが好ましい。
パイプ部材を径に比して管長が長い管の形態とすると、パイプ部材からパイプ貫通孔内に放射され、減衰しやすい空中超音波の強度も、パイプの径方向寸法が小さければ減衰はあまり大きくならない。また、管長方向の長い距離に亘って、霧状の液滴などの浮遊物質をパイプ部材内のパイプ内定在波音場に通すことができる。このため、より多くの浮遊物質を凝集させて効率よく気体と分離させることができる。
In addition, it is preferable that a pipe member has a form with a long pipe length direction dimension with respect to a radial direction dimension.
If the pipe member is in the form of a tube that is long compared to its diameter, the intensity of the aerial ultrasonic wave that is radiated from the pipe member into the pipe through-hole and easily attenuates will be too great if the radial dimension of the pipe is small. Don't be. In addition, suspended substances such as mist droplets can be passed through the standing wave sound field in the pipe member over a long distance in the tube length direction. For this reason, more suspended solids can be aggregated and efficiently separated from the gas.

あるいは、請求項7に記載の分離装置であって、前記円筒状ボルト部材は、前記第1環状部材よりも、前記素子軸線の基端側に突出する基端側突出部であって、前記圧電素子の駆動によりこの基端側突出部において超音波振動を生じ、この基端側突出部における前記ボルト貫通孔内に前記定在波音場が形成される基端側突出部、及び、前記第2環状部材よりも、前記素子軸線の先端側に突出する先端側突出部であって、上記圧電素子の駆動によりこの先端側突出部において超音波振動を生じ、この先端側突出部における上記ボルト貫通孔内に上記定在波音場が形成される先端側突出部、の少なくともいずれかを有する分離装置とするのが好ましい。   Alternatively, the separation device according to claim 7, wherein the cylindrical bolt member is a proximal-side protruding portion that protrudes toward the proximal end side of the element axis line with respect to the first annular member, and is the piezoelectric device. By driving the element, ultrasonic vibration is generated in the proximal-side protruding portion, and the standing-side protruding portion in which the standing wave sound field is formed in the bolt through hole in the proximal-side protruding portion, and the second A tip-side protruding portion that protrudes to the tip side of the element axis rather than the annular member, and generates ultrasonic vibration in the tip-side protruding portion by driving the piezoelectric element, and the bolt through hole in the tip-side protruding portion It is preferable that the separation device has at least one of a tip-side protruding portion in which the standing wave sound field is formed.

この分離装置では、円筒状ボルト部材は、第1環状部材よりも基端側に突出する基端側突出部、及び、第2環状部材よりも先端側に突出する先端側突出部、の少なくともいずれかを有している。しかも、基端側突出部及び先端側突出部におけるボルト貫通孔内には、突出部定在波音場が形成される。
このように、この分離装置では、円筒状ボルト部材の伸縮に伴う呼吸振動のみならず、基端側突出部及び先端側突出部の少なくともいずれかにおいて、それらのボルト貫通孔内に突出部内定在波音場が形成されるので、この部分でも気体から浮遊物質を分離できる。従って、コンパクトで、さらに高い効率で浮遊物質を回収できる。
In this separation device, the cylindrical bolt member is at least one of a proximal end protruding portion that protrudes more proximally than the first annular member and a distal end protruding portion that protrudes more distally than the second annular member. Have In addition, a protruding portion standing wave sound field is formed in the bolt through-holes in the proximal-side protruding portion and the distal-side protruding portion.
As described above, in this separation device, not only respiratory vibration accompanying expansion and contraction of the cylindrical bolt member, but also at least one of the proximal-side protruding portion and the distal-side protruding portion is fixed in the protruding portion in the bolt through hole. Since a wave sound field is formed, suspended matter can be separated from the gas even in this part. Therefore, it is compact and can collect suspended solids with higher efficiency.

さらに他の解決手段は、超音波振動により被処理液を霧化して、前記浮遊物質である霧状の液滴を放出する超音波霧化手段と、請求項1〜請求項7のいずれか1項に記載の分離装置と、を備える液体分溜装置である。   Still another solving means is an ultrasonic atomizing means for atomizing a liquid to be treated by ultrasonic vibration to release a mist-like liquid droplet that is the suspended substance, and any one of claims 1 to 7. And a separation apparatus according to the item.

本発明の液体分溜装置では、被処理液を超音波振動により霧化し、霧状の液滴を放出する。一般に、超音波振動によって、被処理液を霧化すると、例えば水とアルコールの混液など被処理液中に含まれる比較的比重の軽い成分(アルコール)と比較的比重の思い成分(水)のうち、比較的比重の軽い成分が相対的に小さな液滴(ミスト)となって飛散すること、あるいは、液滴として飛散しやすい成分と飛散しにくい成分があること判ってきている。
従って、超音波霧化手段によって生成した霧状の液滴(浮遊物質)を適宜回収して液体を得れば、分離装置から所望の成分の濃度が被処理液よりも相対的に高くなった液体が、あるいは、超音波霧化装置に、当初の被処理液よりも所望の成分の濃度が高くされた被処理液が得られる。
In the liquid fractionating device of the present invention, the liquid to be treated is atomized by ultrasonic vibration to discharge mist-like droplets. In general, when the liquid to be treated is atomized by ultrasonic vibration, for example, a relatively light specific component (alcohol) and a relatively specific gravity component (water) contained in the liquid to be treated, such as a mixture of water and alcohol. It has been found that a component having a relatively low specific gravity is scattered as a relatively small droplet (mist), or that there are a component that is likely to be scattered as a droplet and a component that is difficult to be scattered.
Therefore, if the liquid obtained by appropriately collecting the mist-like droplets (floating material) generated by the ultrasonic atomizing means, the concentration of the desired component from the separation device is relatively higher than the liquid to be treated. A liquid to be processed or a liquid to be processed in which the concentration of a desired component is higher than that of the original liquid to be processed is obtained in an ultrasonic atomizer.

なお、このようにして分溜できる物質としては、成分の比重差などにより、超音波振動による霧化で、液滴(ミスト)中の成分比が被処理液水における成分比と異なる性質を有するもので有れば良い。
例えば、水とエチルアルコールの混液(酒、もろみ、発酵液など)を霧化することで、分離装置からアルコール濃度を高めた水とアルコールの混液を得ることができる。また、有機溶媒を含む廃水を霧化することで、分離装置から有機溶媒の濃度を高めた混液を得ることができる。また、柑橘類などの香り成分を溶かし込んだアルコールを霧化することで、分離装置でアルコールを回収すると共に、超音波霧化装置から香り成分の濃度が濃縮されたアルコールを得ることができる。また、醤油など香り成分やアミノ酸などを含む水溶液を霧化することで、超音波霧化手段と分離装置からは、それぞれ異なる成分が濃縮された水溶液が得られる。あるいは重い金属イオンと軽い金属イオンを含んだ水溶液を霧化することで、超音波霧化手段からは、重い金属イオンが濃縮された水溶液を、分離装置からは、軽い金属イオンが濃縮された水溶液を得ることができる。
In addition, as a substance that can be fractionated in this way, due to the difference in specific gravity of the components, the component ratio in the droplet (mist) is different from the component ratio in the liquid to be treated due to atomization by ultrasonic vibration. It only has to be a thing.
For example, by atomizing a mixed solution of water and ethyl alcohol (such as liquor, moromi, fermented liquid), a mixed solution of water and alcohol with an increased alcohol concentration can be obtained from the separation device. Moreover, the liquid mixture which raised the density | concentration of the organic solvent can be obtained from the separator by atomizing the wastewater containing an organic solvent. Moreover, alcohol which melt | dissolved fragrance components, such as citrus fruits, is atomized, and while recovering alcohol with a separator, the alcohol by which the density | concentration of the fragrance component was concentrated from an ultrasonic atomizer can be obtained. Further, by atomizing an aqueous solution containing a scent component such as soy sauce or an amino acid, an aqueous solution in which different components are concentrated can be obtained from the ultrasonic atomizing means and the separation device. Alternatively, by atomizing an aqueous solution containing heavy metal ions and light metal ions, the ultrasonic atomizing means provides an aqueous solution enriched with heavy metal ions, and from the separation device an aqueous solution enriched with light metal ions. Can be obtained.

なお、上述の液体分溜装置において、前記分離装置の前記排出口から排出された気体を、前記超音波霧化手段に戻してなる液体分溜装置とするのが好ましい。
この液体分溜装置では、液体分溜装置全体における気体の流れが閉回路となっていることで、気体に含まれている水蒸気や各成分の蒸気、回収しきれなかったミストなどが外気へ放出されるのを防止でき、より適切に被処理液から所望の成分を分離することができる。
In the above-described liquid fractionating device, it is preferable to use a liquid fractionating device in which the gas discharged from the discharge port of the separation device is returned to the ultrasonic atomizing means.
In this liquid fractionator, the gas flow in the entire liquid fractionator is a closed circuit, so that water vapor contained in the gas, vapor of each component, mist that could not be recovered, etc. are released to the outside air. The desired component can be separated from the liquid to be treated more appropriately.

本発明にかかる分離装置及びこれを用いた液体分溜装置の実施の形態を、図面を参照して説明する。   Embodiments of a separation apparatus and a liquid fractionation apparatus using the same according to the present invention will be described with reference to the drawings.

実施例にかかる液体分溜装置及び分離装置について、図1〜図3を参照して説明する。図1は、本実施例にかかる液体分溜装置100全体の構成を示す説明図である。図2は、本実施例にかかる分離装置120の概略構成を示す説明図である。図3は、本実施例にかかる分離装置120の構造を示す説明図である。   A liquid fractionator and a separator according to an embodiment will be described with reference to FIGS. FIG. 1 is an explanatory diagram showing the overall configuration of the liquid fractionating device 100 according to the present embodiment. FIG. 2 is an explanatory diagram illustrating a schematic configuration of the separation device 120 according to the present embodiment. FIG. 3 is an explanatory diagram illustrating the structure of the separation device 120 according to the present embodiment.

まず、本実施例の液体分溜装置100について説明する。本実施例の液体分溜装置100は、被処理液LQ1を分溜処理して、処理済み被処理液LQ2と、液化回収液LQ3とを得る装置である。例えば、水とエチルアルコールの混液(酒やもろみなど)を被処理液LQ1とした場合、相対的にエチルアルコール濃度が低い処理済み被処理液LQ2と、相対的にエチルアルコール濃度が高い液化回収液LQ3とに分溜する。   First, the liquid fractionating device 100 of the present embodiment will be described. The liquid fractionating device 100 according to the present embodiment is a device that obtains a treated liquid LQ2 and a liquefied recovery liquid LQ3 by fractionating the liquid LQ1 to be treated. For example, when a mixed liquid of water and ethyl alcohol (such as liquor or moromi) is used as the liquid LQ1, the liquid LQ2 that has been processed with a relatively low ethyl alcohol concentration and the liquid recovery liquid that has a relatively high ethyl alcohol concentration. Distill into LQ3.

液体分溜装置100は、図1に示すように、主に、超音波霧化装置10と、分離装置120とからなる。超音波霧化装置10は、被処理液容器11とこの底部に設置された霧化用超音波振動子12とこれを駆動する霧化駆動回路13と被処理液容器11内のミストMIを圧送する圧送ファン14とを備える。
この超音波霧化装置10では、被処理液容器11の被処理液投入口11aから投入された被処理液LQ1に、被処理液容器11の底部に設置された霧化用超音波振動子12からの超音波振動を加える。すると被処理液LQ1は超音波が照射された部分が噴水状に盛り上がり、その先端部が超音波によって細分化されて霧状の液滴であるミストMIが形成される。圧送ファン14で生じさせた気流により、このミストMIを、空気と共にミスト排出口11bから排出する。なお、被処理液容器11には、処理済み被処理液LQ2を排出する液排出口11cも備えている。
As shown in FIG. 1, the liquid fractionating device 100 mainly includes an ultrasonic atomizing device 10 and a separation device 120. The ultrasonic atomizer 10 pumps the liquid container 11 to be treated, the ultrasonic vibrator 12 for atomization installed at the bottom, the atomization drive circuit 13 that drives the ultrasonic vibrator 12, and the mist MI in the liquid container 11 to be treated. A pressure-feeding fan 14.
In the ultrasonic atomizing device 10, the ultrasonic transducer 12 for atomization installed at the bottom of the liquid container 11 to be processed is added to the liquid LQ <b> 1 to be processed which is supplied from the liquid inlet 11 a of the liquid container 11 to be processed. Apply ultrasonic vibration from. Then, in the liquid LQ1, the portion irradiated with the ultrasonic waves rises like a fountain, and the tip portion thereof is subdivided by the ultrasonic waves to form a mist MI that is a mist-like droplet. The mist MI is discharged from the mist discharge port 11b together with the air by the air flow generated by the pressure feeding fan 14. The liquid container 11 also includes a liquid discharge port 11c for discharging the processed liquid LQ2.

ミストMIは、次述する分離装置120に送られ、ここで液化されて液化回収液LQ3として回収される。
ただし、必要に応じて、図1に破線で示すように、分離装置120の前に、前処理装置WDを配置する場合がある。例えば、水とエチルアルコールの混液を分溜する場合において、超音波霧化装置10でミストMIを発生させた場合、一般的に、比重の軽いエチルアルコールは、相対的に粒子径の小さな(例えば、φ0.3μm程度の)ミストとなり易い。一方、比重の重い水は粒子径の大きな(例えば、φ3μm程度の)ミストあるいは液滴になりやすい。そこで、前処理装置WDにおいて、大きな粒子径のミストや液滴を除去するのが好ましい。例えば前処理装置WDとして、具体的には、入口と出口との間に大きな空間を設け、気中での大きな粒子の沈降を利用して軽い(径の小さな)粒子を選別する粒子選別室や、金属メッシュや多数の金属繊維内を通すワイヤデミスタなどを設けることができる。これらによって除去回収された液体は、廃棄するあるいは被処理液容器11に戻せば良い。また、必要に応じて、分離装置120に送られる前に、前処理装置WDとして、上述の大きなミストを除去する装置を用いることなく、あるいはこれらと共に、空気及びミストMIを冷却し、分離装置120における凝集を助けるための冷却器を設けることもできる。
The mist MI is sent to the separation device 120 described below, where it is liquefied and recovered as a liquefied recovered liquid LQ3.
However, if necessary, as shown by a broken line in FIG. 1, a pretreatment device WD may be arranged in front of the separation device 120. For example, in the case of distilling a mixture of water and ethyl alcohol, when the mist MI is generated by the ultrasonic atomizer 10, in general, ethyl alcohol having a low specific gravity has a relatively small particle diameter (for example, It is easy to become a mist (about φ0.3 μm). On the other hand, water with a high specific gravity tends to be a mist or droplet having a large particle diameter (for example, about φ3 μm). Therefore, it is preferable to remove mist and droplets having a large particle diameter in the pretreatment device WD. For example, as a pretreatment device WD, specifically, a large space is provided between the inlet and the outlet, and a particle sorting chamber for sorting light (small diameter) particles by using sedimentation of large particles in the air. A wire demister that passes through a metal mesh or a large number of metal fibers can be provided. The liquid removed and recovered by these may be discarded or returned to the liquid container 11 to be processed. In addition, before being sent to the separation device 120 as necessary, the air and mist MI are cooled without using the device for removing the large mist described above as the pretreatment device WD, or together with them, and the separation device 120 is used. It is also possible to provide a cooler to aid in agglomeration.

分離装置120は、気体(本実施例では空気)中に浮遊するミストMIを捕集し液体化して、ミストMIと気体(空気)とを分離する。本実施例の分離装置120は、図2、図3に示すように、ボルト締めランジュバン型振動子(以下単に、振動子ともいう)140と、その先端(図3(a)中、右側)に固着されたパイプ部材130とを備え、導入口120N及び排出口120Tを有し、振動子140及びパイプ部材130の内部を貫通する通気貫通孔120Iを有する。   The separation device 120 collects and liquefies the mist MI suspended in the gas (air in this embodiment), and separates the mist MI from the gas (air). As shown in FIGS. 2 and 3, the separation device 120 of the present embodiment includes a bolted Langevin type vibrator (hereinafter also simply referred to as a vibrator) 140 and a tip thereof (right side in FIG. 3A). The pipe member 130 is fixed, has an inlet 120N and an outlet 120T, and has a ventilation through hole 120I that penetrates the vibrator 140 and the pipe member 130.

このうち、振動子140は、ボルトとして、円筒状ボルト部材147を用いる点を除き、公知のボルト締めランジュバン型超音波振動子の構造を有している。具体的には、複数枚(本例では4枚)の厚み方向に分極された円環状の圧電素子142とこれらの間に挟まれた電極板143とを、これらの内側に挿通された円筒状ボルト部材147及びナット146により、ステンレスなどの金属材からなる前面板144及び裏打ち板145で挟持してなる。   Among these, the vibrator 140 has a known bolt-clamped Langevin type ultrasonic vibrator structure except that a cylindrical bolt member 147 is used as a bolt. Specifically, a plurality of (four in this example) annular piezoelectric elements 142 polarized in the thickness direction and an electrode plate 143 sandwiched between them are cylindrically inserted through these elements. The bolt member 147 and the nut 146 are sandwiched between the front plate 144 and the backing plate 145 made of a metal material such as stainless steel.

具体的には、振動子140において、前面板144の前面板貫通孔144Hに形成したボルト締結ネジ部144SC1と円筒状ボルト部材147の先端部分に形成した第2ネジ部147SC2とが締結されている。また、4枚の圧電素子142及び電極板143が、圧電素子142の素子軸線142AXが軸線140AXに一致するように積層され、これらが前面板144と裏打ち板145とで挟持され、それらの内部に、円筒状ボルト部材147が挿通されている。さらに、円筒状ボルト部材147のうち、基端側に設けられ、裏打ち板145よりも基端側(図3中、左側)に突出している第1ネジ部147SC1と、ナット146のネジ部146SCとを螺合され、圧電素子142に軸線140AX方向の圧縮応力が掛かるように、円筒状ボルト部材147とナット146とが締結されてなる。なお、円筒状ボルト部材147のうち、第1ネジ部147SC1と第2ネジ部147SC2との間の中間部147Mには、軸線140AX方向に引張応力が掛かっている。   Specifically, in the vibrator 140, a bolt fastening screw portion 144SC1 formed in the front plate through hole 144H of the front plate 144 and a second screw portion 147SC2 formed in the tip portion of the cylindrical bolt member 147 are fastened. . In addition, the four piezoelectric elements 142 and the electrode plate 143 are stacked so that the element axis 142AX of the piezoelectric element 142 coincides with the axis 140AX, and these are sandwiched between the front plate 144 and the backing plate 145, and inside thereof A cylindrical bolt member 147 is inserted. Furthermore, among the cylindrical bolt members 147, a first screw portion 147SC1 provided on the base end side and protruding to the base end side (left side in FIG. 3) from the backing plate 145, and a screw portion 146SC of the nut 146, The cylindrical bolt member 147 and the nut 146 are fastened so that the piezoelectric element 142 is subjected to compressive stress in the direction of the axis 140AX. In addition, tensile stress is applied to the intermediate portion 147M between the first screw portion 147SC1 and the second screw portion 147SC2 in the cylindrical bolt member 147 in the direction of the axis 140AX.

この円筒状ボルト部材147は、内部にボルト貫通孔147Iを有する。また、前面板144には、前面板貫通孔144Hが形成されている。従って、振動子140は、基端側に導入口140N、先端側に排出口140Tを有し、その軸線140AXに沿って、振動子貫通孔140Iを有する構造となっている。なお、図2に示すように、導入口140Nは、分離装置120の導入口120Nにもなっている。   The cylindrical bolt member 147 has a bolt through hole 147I inside. Further, a front plate through hole 144H is formed in the front plate 144. Therefore, the vibrator 140 has a structure having an introduction port 140N on the proximal end side and a discharge port 140T on the distal end side and a vibrator through hole 140I along the axis 140AX. As shown in FIG. 2, the introduction port 140 </ b> N is also the introduction port 120 </ b> N of the separation device 120.

また、振動子140の先端側(図3(a)中、右側)、即ち、前面板144の先端側には、ステンレス材からなるパイプ部材130が締結、固着されている。このパイプ部材130は、軸線140AXと同軸に配置され、内部を貫通するパイプ貫通孔130Iを有し、先端側(図3中、右側)を排出口130Tとし、基端側を導入口130Nとした筒状の部材である。従って、パイプ貫通孔130Iは、前面板144の前面板貫通孔144Hに、従って、振動子140の振動子貫通孔140Iに、また、円筒状ボルト部材147のボルト貫通孔147Iに連通した状態とされている。なお、図2に示すように、排出口130Tは、分離装置120の排出口120Tにもなっている。   A pipe member 130 made of stainless steel is fastened and fixed to the distal end side of the vibrator 140 (right side in FIG. 3A), that is, the distal end side of the front plate 144. This pipe member 130 is arranged coaxially with the axis 140AX, has a pipe through hole 130I that penetrates the inside, and has a distal end side (right side in FIG. 3) as a discharge port 130T and a proximal end side as an introduction port 130N. It is a cylindrical member. Therefore, the pipe through hole 130I is in a state of communicating with the front plate through hole 144H of the front plate 144, and thus with the vibrator through hole 140I of the vibrator 140, and with the bolt through hole 147I of the cylindrical bolt member 147. ing. As shown in FIG. 2, the discharge port 130 </ b> T is also a discharge port 120 </ b> T of the separation device 120.

このパイプ部材130は、直棒円管形状のパイプ部131と、このパイプ部131の基端側(図3(a)中、左側)に位置し、パイプ部131より径大で、前面板144に当接する径大当接部132と、前面板144の前面板貫通孔144Hの先端部に形成されたパイプ部材締結ネジ部144SC2に螺合して、パイプ部材130を前面板144に締結する締結ネジ部133SCとを有する。   The pipe member 130 is a straight circular pipe-shaped pipe portion 131, and is located on the proximal end side (left side in FIG. 3A) of the pipe portion 131 and is larger in diameter than the pipe portion 131 and has a front plate 144. Fastened to fasten the pipe member 130 to the front plate 144 by screwing into the large-diameter contact portion 132 that comes into contact with the pipe member fastening screw portion 144SC2 formed at the front end portion of the front plate through hole 144H of the front plate 144. And a threaded portion 133SC.

振動子140は、駆動回路PW(図2参照)を用いて適宜の周波数で駆動することにより、その軸線140AX方向に伸縮する超音波振動を生じさせることができる。この際、円筒状ボルト部材147も伸縮させられるが、それに伴って、この円筒状ボルト部材147(さらに詳細には、その中間部147M)において、その内周面147Sが、軸線140AXに直交する径方向(図3(a)中、上下方向)に、その内径が拡径および縮径する呼吸振動CU(図3(b)参照)を生じる。このため、この内周面147Sからボルト貫通孔147I内の軸線140AXに向かって、空中超音波AU1が放射される。すると、ボルト貫通孔147I内には、この空中超音波AU1によるボルト内定在波音場SS1が形成される。   The vibrator 140 can generate ultrasonic vibration that expands and contracts in the direction of the axis 140AX by being driven at an appropriate frequency using the drive circuit PW (see FIG. 2). At this time, the cylindrical bolt member 147 is also expanded and contracted. Accordingly, in the cylindrical bolt member 147 (more specifically, the intermediate portion 147M), the inner peripheral surface 147S has a diameter perpendicular to the axis 140AX. In a direction (vertical direction in FIG. 3A), a respiratory vibration CU (see FIG. 3B) whose inner diameter expands and contracts is generated. For this reason, the aerial ultrasonic wave AU1 is radiated from the inner peripheral surface 147S toward the axis 140AX in the bolt through hole 147I. Then, an in-bolt standing wave sound field SS1 is formed in the bolt through hole 147I by the aerial ultrasonic wave AU1.

このボルト内定在波音場SS1は、円筒状ボルト部材147のボルト貫通孔147I内に、空中超音波AU1の振幅の大きな場所(腹部)と、相対的に振幅の小さな場所(節部)とを含んでいる。このボルト内定在波音場SS1は、軸線140AXを中心とする呼吸振動CUによって、図3(b)に破線で示すように、節部や腹部が同心円(同心円筒)上に並ぶ音場となる。
特に、本実施例では、円筒状ボルト147は、円管状であるので、軸線140AXに向かって空中超音波AU1を集中させることができるから、軸線140AX近傍に強力なボルト内定在波音場SS1を形成できる。
This in-bolt standing wave sound field SS1 includes, in the bolt through hole 147I of the cylindrical bolt member 147, a location (abdomen) where the aerial ultrasonic wave AU1 has a large amplitude and a location (node) where the amplitude is relatively small. It is out. This in-bolt standing wave sound field SS1 becomes a sound field in which nodes and abdomen are arranged on a concentric circle (concentric cylinder) as shown by a broken line in FIG. 3B due to the respiratory vibration CU centered on the axis 140AX.
In particular, in this embodiment, since the cylindrical bolt 147 is circular, the aerial ultrasonic wave AU1 can be concentrated toward the axis 140AX, so that a strong in-bolt standing wave sound field SS1 is formed in the vicinity of the axis 140AX. it can.

さらに、振動子140は、前面板144を通じて、パイプ部材130を加振する。このため、このパイプ部材130のうちパイプ部131にも、超音波振動が生じる。具体的には、図3(b)に示す、円筒状ボルト部材147と同様の呼吸振動CU、あるいは、図3(c)に一点鎖線及び破線で示すように、パイプ部131をなす壁部が周方向に屈曲するような管定在波振動BUを生じる。いずれにしても、このパイプ部131に生じた呼吸振動CUまたは管定在波振動BUにより、パイプ部131の内周面131Sから、軸線140AXに向けて進行する空中超音波AU2が放射され、パイプ貫通孔130Iには、この空中超音波AU2によるパイプ内定在波音場SS2が形成される。
本実施例では、パイプ部131は、円管状であるので、軸線140AXに向かって空中超音波AU2を集中させることができるから、軸線140AX近傍に強力なパイプ内定在波音場SS2を形成できる。
Further, the vibrator 140 vibrates the pipe member 130 through the front plate 144. For this reason, ultrasonic vibration also occurs in the pipe portion 131 of the pipe member 130. Specifically, a breathing vibration CU similar to the cylindrical bolt member 147 shown in FIG. 3B or a wall portion forming the pipe portion 131 as shown by a one-dot chain line and a broken line in FIG. A tube standing wave vibration BU that bends in the circumferential direction is generated. In any case, the aerial ultrasonic wave AU2 traveling toward the axis 140AX is radiated from the inner peripheral surface 131S of the pipe portion 131 by the respiratory vibration CU or the tube standing wave vibration BU generated in the pipe portion 131, and the pipe An in-pipe standing wave sound field SS2 is formed in the through-hole 130I by the aerial ultrasonic wave AU2.
In the present embodiment, since the pipe portion 131 has a circular tube shape, the aerial ultrasonic wave AU2 can be concentrated toward the axis 140AX, so that a strong in-pipe standing wave sound field SS2 can be formed in the vicinity of the axis 140AX.

そこで、図2に示すように、分離装置120の通気貫通孔120I(具体的には、振動子貫通孔140Iおよびパイプ貫通孔130I)内に、導入口120N(導入口140N)からミストMIを含む空気を、ミスト通路121のミストノズル122を用いて吹き込む。すると、ミストMIは、ボルト内定在波音場SS1およびパイプ内定在波音場SS2により振動させられ、超音波浮遊の原理に従って節部に集められると共に、ミストMI同士が衝突して互いに一体化し、ミストMIの粒子径が大きくなる。すると、重力に逆らって空中を浮遊することができなくなり、落下して円筒状ボルト部材147の内周面147Sやパイプ部材130の内周面130Sに付着することとなる。
かくして、この分離装置120の軸線140AXを水平より傾けておけば、導入口120Nまたは排出口120Tから、回収容器124にミストMIを液化して得た液化回収液LQ3を溜めることができる。
Therefore, as shown in FIG. 2, the mist MI is introduced from the introduction port 120N (introduction port 140N) into the ventilation through hole 120I (specifically, the vibrator through hole 140I and the pipe through hole 130I) of the separation device 120. Air is blown using the mist nozzle 122 in the mist passage 121. Then, the mist MI is vibrated by the standing wave sound field SS1 in the bolt and the standing wave sound field SS2 in the pipe, and is collected at the node according to the principle of ultrasonic floating, and the mists MI collide with each other to be integrated with each other. The particle size of becomes larger. Then, it cannot float in the air against gravity and falls and adheres to the inner peripheral surface 147S of the cylindrical bolt member 147 and the inner peripheral surface 130S of the pipe member 130.
Thus, if the axis 140AX of the separation device 120 is tilted from the horizontal, the liquefied recovered liquid LQ3 obtained by liquefying the mist MI can be stored in the recovery container 124 from the inlet 120N or the outlet 120T.

また、本実施例の分離装置120では、図3(a)を参照すれば容易に理解できるように、直管状で、ボルト貫通孔147Iの直径Dに比してその軸線140AX方向の長さLBが長い円筒状ボルト部材147を使用した。一般に、空気中では、円筒状ボルト部材147の内周面147Sから放射される空中超音波はその進行と共に急激に減衰する。しかし、本実施例では、その軸線140AX方向の長さLBに比して細径のボルト貫通孔147Iが形成されているため、空中超音波AU1のボルト貫通孔147I内での減衰は少なく、内周面147Sのすぐ近くを通るミストMIに空中超音波AU1を照射することができるから、ミストMIが大きく振動させられる。このため、ミストMIを効率よく凝集させ、液化して回収することができる。
しかも、ボルト貫通孔147Iは、直径Dに比して長さLBが大きいから、軸線140AX方向の長い距離に亘って、繰り返しミストMIに空中超音波AUを照射することができるから、さらに確実にミストMIを回収することができる。
Further, in the separation device 120 of this embodiment, as can be easily understood with reference to FIG. 3A, the length is LB in the direction of the axis 140AX as compared with the diameter D of the bolt through hole 147I. A long cylindrical bolt member 147 was used. In general, in the air, the aerial ultrasonic wave radiated from the inner peripheral surface 147S of the cylindrical bolt member 147 is attenuated rapidly as it progresses. However, in this embodiment, since the bolt through hole 147I having a small diameter is formed as compared with the length LB in the direction of the axis 140AX, the attenuation of the aerial ultrasonic wave AU1 in the bolt through hole 147I is small. Since the aerial ultrasonic wave AU1 can be applied to the mist MI that passes in the immediate vicinity of the peripheral surface 147S, the mist MI is greatly vibrated. For this reason, the mist MI can be efficiently aggregated and liquefied and recovered.
In addition, since the bolt through hole 147I has a length LB larger than the diameter D, the mist MI can be repeatedly irradiated with the aerial ultrasonic wave AU over a long distance in the axis 140AX direction. Mist MI can be collected.

これは、パイプ部材130についても同様である。即ち、図3(a)を参照すれば容易に理解できるように、パイプ部材130のパイプ部131は、直管状で、パイプ貫通孔130Iの直径DPに比して軸線140AX方向の長さLPが長い。このため、内周面1301Sから放射される空中超音波AU2のボルト貫通孔147I内での減衰は少なく、内周面131Sのすぐ近くを通るミストMIに空中超音波AU2を照射することができるから、ミストMIが大きく振動させられる。このため、ミストMIを効率よく凝集させ、液化して回収することができる。
しかも、パイプ貫通孔130Iは、直径DPに比して長さLPが大きいから、軸線140AX方向の長い距離に亘って、繰り返しミストMIに空中超音波AU2を照射することができるから、さらに確実にミストMIを回収することができる。
The same applies to the pipe member 130. That is, as can be easily understood with reference to FIG. 3A, the pipe portion 131 of the pipe member 130 is straight and has a length LP in the direction of the axis 140AX as compared to the diameter DP of the pipe through-hole 130I. long. Therefore, the aerial ultrasonic wave AU2 radiated from the inner peripheral surface 1301S is less attenuated in the bolt through hole 147I, and the aerial ultrasonic wave AU2 can be irradiated to the mist MI passing through the immediate vicinity of the inner peripheral surface 131S. The mist MI is vibrated greatly. For this reason, the mist MI can be efficiently aggregated and liquefied and recovered.
In addition, since the pipe through-hole 130I has a length LP larger than the diameter DP, the mist MI can be repeatedly irradiated with the aerial ultrasonic wave AU2 over a long distance in the direction of the axis 140AX. Mist MI can be collected.

かくして、この分離装置120においては、通気貫通孔120Iに導入されたミストMIを含んだ空気(気体)から、効率よくミストMIを回収し、空気とミストMIとを分離し、ミストMIから液化回収液LQ3を回収することができる。   Thus, in the separation device 120, the mist MI is efficiently recovered from the air (gas) containing the mist MI introduced into the ventilation through-hole 120I, and the air and the mist MI are separated and liquefied and recovered from the mist MI. The liquid LQ3 can be recovered.

しかも、本実施例の分離装置120は、管状の円筒状ボルト部材147を中心にして、その周囲に圧電素子142等によりボルト締めランジュバン型振動子140を構成し、さらに、その先端側にパイプ部材130を配置した形態を有している。このため、前述した冷却等によってミストMIを回収する場合の機械構成の分離装置に比して、コンパクトな形態となる。さらにこのような場合のみならず、管部材を別途外部から超音波振動子によって超音波振動させる形態の分離装置に比しても、コンパクトな分離装置となる。   In addition, the separation device 120 of the present embodiment has a bolted Langevin type vibrator 140 formed by a piezoelectric element 142 or the like around a tubular cylindrical bolt member 147, and a pipe member on the tip side thereof. 130 is arranged. For this reason, it becomes a compact form compared with the separation apparatus of the machine structure in the case of collect | recovering mist MI by the cooling etc. which were mentioned above. Furthermore, not only in such a case, the separation device is compact even when compared with a separation device in which the tube member is separately ultrasonically vibrated by an ultrasonic vibrator from the outside.

分離装置120でミストMIが分離された空気は、排出口131Tから排出される。この排出された空気は、外気(外界)へ放出することもできるが、図1に示す本実施例の液体分溜装置100では、図示しない通路を通じて、再び圧送ファン14によって、超音波霧化装置10の被処理液容器11に戻す閉回路101が構成されている。このような循環タイプの液体分溜装置100とすることで、例えば、空気中にミストではなく蒸気(気体)として含まれているアルコール、あるいは回収し切れなかったミストMIを、外気に放出することなく超音波霧化装置10に戻すことができ、放出によるロスを減少させることができる。   The air from which the mist MI has been separated by the separation device 120 is discharged from the discharge port 131T. The discharged air can be discharged to the outside air (outside), but in the liquid fractionating device 100 of this embodiment shown in FIG. 1, the ultrasonic atomizer is again fed by the pressure feed fan 14 through a passage not shown. A closed circuit 101 is configured to return to the ten liquid containers 11 to be processed. By using such a circulation type liquid fractionator 100, for example, alcohol contained in the air as vapor (gas) instead of mist or mist MI that could not be recovered is released to the outside air. Without being returned to the ultrasonic atomizer 10, and loss due to the emission can be reduced.

なお、図1に破線で示すように、必要に応じて、分離装置120の後に後処理装置HTを配置することもできる。例えば、前述のように冷却器を用いたためなどにより、超音波霧化装置10に戻される空気の気温が低くなりすぎている場合には、事前に空気を加熱するヒータを設けることができる。また、ヒータに代えて、駆動回路PWや超音波霧化装置10の霧化駆動回路13、前処理装置WDで用いた冷却器等から生じる廃熱を用いて、空気を加熱することもできる。   In addition, as shown by the broken line in FIG. 1, the post-processing device HT can be arranged after the separation device 120 as necessary. For example, when the temperature of the air returned to the ultrasonic atomizer 10 is too low due to the use of a cooler as described above, a heater for heating the air can be provided in advance. Moreover, it can replace with a heater and can also heat air using the waste heat which arises from the cooler etc. which were used for the drive circuit PW, the atomization drive circuit 13 of the ultrasonic atomizer 10, and the pre-processing apparatus WD.

このように本実施例の液体分溜装置100では、超音波霧化装置10のほか、振動子140の円筒状ボルト部材147およびパイプ部材130のパイプ部131を超音波振動させてミストMIを液化する分離装置120を用いた。このため、超音波霧化装置10で、被処理液LQ1からミストMIを生成する場合にも加熱等の熱によらず超音波により霧化することができる。また、分離装置120でも、加熱や冷却によらず、超音波によりミストMIを凝集させ液化した。従って、加熱や冷却によるエネルギーの消費が抑制され、効率よく被処理液を分溜することができる。さらに、処理済み被処理液LQ2のみならず、液化回収液LQ3にも熱的変化が生じにくいため、風味や香りを構成する成分など熱変化により破壊や変質が生じやすい成分を含む被処理液LQ1を分溜する場合にも、成分の変質を防ぐことができる。   Thus, in the liquid fractionating device 100 of this embodiment, in addition to the ultrasonic atomizing device 10, the cylindrical bolt member 147 of the vibrator 140 and the pipe portion 131 of the pipe member 130 are ultrasonically vibrated to liquefy the mist MI. Separation device 120 was used. For this reason, even when the mist MI is generated from the liquid LQ1 to be processed by the ultrasonic atomizer 10, it can be atomized by ultrasonic waves regardless of heat such as heating. In the separation device 120, the mist MI was condensed and liquefied by ultrasonic waves regardless of heating or cooling. Therefore, energy consumption due to heating and cooling is suppressed, and the liquid to be processed can be efficiently distilled. Furthermore, since not only the treated liquid LQ2 but also the liquefied recovery liquid LQ3 is less susceptible to thermal changes, the liquid LQ1 containing a component that easily breaks or deteriorates due to a thermal change such as a component constituting a flavor or aroma. Also when fractionating, it is possible to prevent alteration of the components.

なお、本実施例1では、分離装置120において、ミストMIを凝集させて、液化回収液LQ3を得た例を示した。しかし、分離装置120は、本実施例1のミストMI(液滴)のみならず、煙草などの煙微粒子や、自動車排気ガス中のパーティクルなど、互いに衝突させることで凝集させて大きな粒子にできる浮遊粒子を含めば、いずれのものでも空気から分離することができる。
また、本実施例では、空気中にミストMIを浮遊させたが、酸化などによる変質を防止するべく、窒素などの不活性雰囲気、その他、被処理液LQ1等の性質に応じて、他の気体を用い、これを循環させることもできる。
In the first embodiment, the example in which the mist MI is aggregated in the separation device 120 to obtain the liquefied recovered liquid LQ3 is shown. However, the separation device 120 is not only the mist MI (droplet) of the first embodiment, but also smoke particles such as cigarettes, particles in automobile exhaust gas, and the like that can be aggregated into large particles by colliding with each other. Any particle can be separated from the air as long as the particles are included.
Further, in this embodiment, the mist MI is suspended in the air. However, in order to prevent alteration due to oxidation or the like, other gases such as an inert atmosphere such as nitrogen and other gases depending on the properties of the liquid to be processed LQ1 and the like are used. This can also be circulated.

(変形例)
ついで、上述の実施例の変形例について、図4を参照して説明する。上述の実施例の液体分溜装置100のうち分離装置120においては、図3に示すように、円筒状ボルト部材147は、その軸線方向長さが比較的短く、ナット146から前面板144の途中までの長さしかなかった。このため、振動子140とは別に、パイプ部材130を振動子140の先端側に設けていた。
これに対し、本変形例の液体分溜装置200の分離装置220では、ボルト締めランジュバン型振動子240を貫く長い軸線方向長さを有する円筒状ボルト部材247を用い、パイプ部材を備えない点で異なる。従って、異なる部分について説明し、同様な部分については、説明を省略あるいは簡略化する。
(Modification)
Next, a modification of the above-described embodiment will be described with reference to FIG. In the separation device 120 of the liquid fractionating device 100 of the above-described embodiment, as shown in FIG. 3, the cylindrical bolt member 147 has a relatively short axial length, and the nut 146 is in the middle of the front plate 144. It was only up to length. For this reason, the pipe member 130 is provided on the tip side of the vibrator 140 separately from the vibrator 140.
On the other hand, the separation device 220 of the liquid fractionating device 200 of the present modification uses a cylindrical bolt member 247 having a long axial direction length that penetrates the bolted Langevin type vibrator 240 and does not include a pipe member. Different. Therefore, different parts will be described, and description of similar parts will be omitted or simplified.

本変形例の液体分溜装置200において、超音波霧化装置10、前処理装置WD、後処理装置HTは、実施例1と同様である(図1参照)。また、本変形例における分離装置220において、その振動子240は、前述の実施例と同様、複数枚(本例では4枚)の厚み方向に分極された円環状の圧電素子142とこれらの間に挟まれた電極板143とを、これらの内側に挿通された円筒状ボルト部材247及びナット146により、前面板244及び裏打ち板145で挟持してなる。   In the liquid fractionating device 200 of this modification, the ultrasonic atomizer 10, the pretreatment device WD, and the posttreatment device HT are the same as those in the first embodiment (see FIG. 1). Further, in the separation device 220 according to the present modification, the vibrator 240 includes a plurality of (four in this example) annular piezoelectric elements 142 polarized in the thickness direction and a gap between them as in the above-described embodiment. The electrode plate 143 sandwiched between the front plate 244 and the backing plate 145 is sandwiched between a cylindrical bolt member 247 and a nut 146 inserted inside the electrode plate 143.

但し、振動子240のうち、円筒状ボルト部材247の形態が、実施例のものと異なり、図4(a)に示すように、軸線240AX方向に長く、前面板244よりも先端側(図4(a)中、右側)に突出している。
具体的には、振動子240においては、前面板244の前面板貫通孔244Hに形成したボルト締結ネジ部244SCと円筒状ボルト部材247の途中部分に形成した第2ネジ部147SC2とが締結されている。また、4枚の圧電素子142及び電極板143が、圧電素子142の素子軸線142AXが軸線240AXに一致するように積層され、これらが前面板244と裏打ち板145とで挟持され、それらの内部に、円筒状ボルト部材247が挿通されている。さらに、円筒状ボルト部材247のうち、基端側に設けられ、裏打ち板145よりも基端側(図4中、左側)に突出している第1ネジ部247SC1と、ナット146のネジ部146SCとを螺合し、圧電素子142に軸線240AX方向の圧縮応力が掛かるように、円筒状ボルト部材247とナット146とが締結されてなる。
However, the shape of the cylindrical bolt member 247 of the vibrator 240 is different from that of the embodiment, and as shown in FIG. 4A, it is longer in the direction of the axis 240AX and on the tip side than the front plate 244 (FIG. 4). It protrudes in (a), right side).
Specifically, in the vibrator 240, a bolt fastening screw portion 244SC formed in the front plate through hole 244H of the front plate 244 and a second screw portion 147SC2 formed in the middle portion of the cylindrical bolt member 247 are fastened. Yes. The four piezoelectric elements 142 and the electrode plate 143 are stacked so that the element axis 142AX of the piezoelectric element 142 coincides with the axis 240AX, and these are sandwiched between the front plate 244 and the backing plate 145, and inside thereof A cylindrical bolt member 247 is inserted. Further, among the cylindrical bolt member 247, a first screw portion 247SC1 provided on the base end side and protruding to the base end side (left side in FIG. 4) from the backing plate 145, and a screw portion 146SC of the nut 146, The cylindrical bolt member 247 and the nut 146 are fastened so that the piezoelectric element 142 is subjected to compressive stress in the direction of the axis 240AX.

なお、円筒状ボルト部材247のうち、第1ネジ部247SC1と第2ネジ部247SC2との間の中間部247Mには、軸線240AX方向に引張応力が掛かっている。しかも、円筒状ボルト部材247は、前面板244より先端側に突出する先端側突出部247Pを有している。   In the cylindrical bolt member 247, a tensile stress is applied to the intermediate portion 247M between the first screw portion 247SC1 and the second screw portion 247SC2 in the direction of the axis 240AX. Moreover, the cylindrical bolt member 247 has a front end side protruding portion 247P that protrudes from the front plate 244 to the front end side.

この円筒状ボルト部材247は、内部にボルト貫通孔247Iを有する。従って、振動子240は、基端側に導入口240N、先端側に排出口240Tを有し、その軸線240AXに沿って、振動子貫通孔240I(ボルト貫通孔247I)を有する構造となっている。なお、図4に示すように、円筒状ボルト部材247に基端側の端である導入口240Nは、分離装置220の導入口220Nにもなっている。また、円筒状ボルト部材247に先端側の端である排出口240Tは、分離装置220の排出口220Tにもなっている。   The cylindrical bolt member 247 has a bolt through hole 247I inside. Therefore, the vibrator 240 has an introduction port 240N on the base end side, a discharge port 240T on the tip side, and a vibrator through hole 240I (bolt through hole 247I) along the axis 240AX. . As shown in FIG. 4, the introduction port 240 </ b> N, which is the proximal end of the cylindrical bolt member 247, also serves as the introduction port 220 </ b> N of the separation device 220. Further, the discharge port 240 </ b> T which is the end on the tip side of the cylindrical bolt member 247 is also a discharge port 220 </ b> T of the separation device 220.

本変形例においても、振動子240を、駆動回路PW(図2参照)により適宜の周波数で駆動することにより、その軸線240AX方向に伸縮する超音波振動を生じさせることができる。この際、円筒状ボルト部材247のうち、第1ネジ部247SC1と第2ネジ部247SC2との間の中間部247Mも伸縮させられる。それに伴って、この円筒状ボルト部材247の中間部247Mにおいて、その内周面247MSが、軸線240AXに直交する径方向(図4(a)中、上下方向)に、その内径が拡径および縮径する呼吸振動CU(図4(b)参照)を生じる。このため、この中間部247Mの内周面247MSからボルト貫通孔247I内で、詳細には、中間部247Mにおけるボルト貫通孔247MI内で、内周面247MSから軸線240AXに向かって、空中超音波AU3が放射される。すると、中間部247Mにおけるボルト貫通孔247MI内には、この空中超音波AU3による中間部内定在波音場SS3が形成される。   Also in this modified example, by driving the vibrator 240 at an appropriate frequency by the drive circuit PW (see FIG. 2), it is possible to generate ultrasonic vibration that expands and contracts in the direction of the axis 240AX. At this time, the intermediate portion 247M between the first screw portion 247SC1 and the second screw portion 247SC2 of the cylindrical bolt member 247 is also expanded and contracted. Accordingly, in the intermediate portion 247M of the cylindrical bolt member 247, the inner peripheral surface 247MS is expanded and contracted in the radial direction (vertical direction in FIG. 4A) perpendicular to the axis 240AX. A respiration vibration CU (see FIG. 4B) is generated. Therefore, in the bolt through hole 247I from the inner peripheral surface 247MS of the intermediate portion 247M, specifically, in the bolt through hole 247MI in the intermediate portion 247M, the aerial ultrasonic wave AU3 from the inner peripheral surface 247MS toward the axis 240AX. Is emitted. Then, an in-intermediate standing wave sound field SS3 is formed by the aerial ultrasonic wave AU3 in the bolt through hole 247MI in the intermediate portion 247M.

この中間部内定在波音場SS3は、中間部247Mのボルト貫通孔247MI内に、空中超音波AU3の振幅の大きな場所(腹部)と、相対的に振幅の小さな場所(節部)とを含んでいる。この中間部内定在波音場SS3は、軸線240AXを中心とする呼吸振動CUによって、図4(b)に破線で示すように、節部や腹部が同心円(同心円筒)上に並ぶ音場となる。
特に、本変形例では、円筒状ボルト247は、円管状であるので、軸線240AXに向かって空中超音波AU3を集中させることができるから、軸線240AX近傍に強力な中間部内定在波音場SS3を形成できる。
This intermediate part standing wave sound field SS3 includes a place (abdomen) where the amplitude of the aerial ultrasonic wave AU3 is large and a place (node part) where the amplitude is relatively small in the bolt through hole 247MI of the intermediate part 247M. Yes. This in-middle standing wave sound field SS3 becomes a sound field in which nodes and abdomen are arranged on a concentric circle (concentric cylinder) as shown by a broken line in FIG. 4B due to the respiratory vibration CU centered on the axis 240AX. .
In particular, in this modification, since the cylindrical bolt 247 is circular, the aerial ultrasonic wave AU3 can be concentrated toward the axis 240AX, so that a strong intermediate standing wave sound field SS3 is provided in the vicinity of the axis 240AX. Can be formed.

さらに、振動子240は、円筒状ボルト部材247の先端側突出部247Pをも加振する。このため、この先端側突出部247Pにも、超音波振動が生じる。具体的には、図4(b)に示す、中間部247Mと同様の呼吸振動CU、あるいは、図4(c)に一点鎖線及び破線で示すように、先端側突出部247Pの壁面が周方向に屈曲するような管定在波振動BUを生じる。いずれにしても、この先端側突出部247Pに生じた呼吸振動CUまたは管定在波振動BUにより、先端側突出部247Pの内周面247PSから、軸線240AXに向けて進行する空中超音波AU4が放射され、先端側突出部247Pのボルト貫通孔247PIには、この空中超音波AU4による突出部内定在波音場SS4が形成される。
本変形例では、先端側突出部247Pも、円管状であるので、軸線240AXに向かって空中超音波AU4を集中させることができるから、軸線240AX近傍に強力な突出部内定在波音場SS4を形成できる。
Furthermore, the vibrator 240 also vibrates the tip side protruding portion 247P of the cylindrical bolt member 247. For this reason, ultrasonic vibration is also generated in the tip side protruding portion 247P. Specifically, the respiratory vibration CU similar to that of the intermediate portion 247M shown in FIG. 4B, or the wall surface of the tip side protruding portion 247P is circumferential as shown by the alternate long and short dash line and broken line in FIG. The tube standing wave vibration BU is bent. In any case, the aerial ultrasonic wave AU4 traveling from the inner peripheral surface 247PS of the tip side protrusion 247P toward the axis 240AX is caused by the respiratory vibration CU or the tube standing wave vibration BU generated in the tip side protrusion 247P. The in-projection standing wave sound field SS4 is formed by the aerial ultrasonic wave AU4 in the bolt through hole 247PI of the tip side projection 247P.
In the present modification, since the tip side protruding portion 247P is also circular, the aerial ultrasonic wave AU4 can be concentrated toward the axis 240AX, so that a strong standing standing standing sound field SS4 is formed in the vicinity of the axis 240AX. it can.

そこで、本変形例の分離装置220の通気貫通孔220I(具体的には、振動子貫通孔240I、ボルト貫通孔247I)内に、導入口220N(導入口240N)からミストMIを含む空気を、ミスト通路121のミストノズル122(図2参照)を用いて吹き込む。すると、ミストMIは、中間部内定在波音場SS3および突出部内定在波音場SS4により振動させられ、落下して円筒状ボルト部材247の内周面247Sに付着することとなる。かくして、この分離装置220から、回収容器124にミストMIを液化して得た液化回収液LQ3を溜めることができる。   Therefore, the air containing the mist MI from the inlet 220N (introduction port 240N) into the ventilation through hole 220I (specifically, the vibrator through hole 240I and the bolt through hole 247I) of the separation device 220 of the present modification, It blows in using the mist nozzle 122 (refer FIG. 2) of the mist channel | path 121. FIG. Then, the mist MI is vibrated by the intermediate portion standing wave sound field SS3 and the protruding portion standing wave sound field SS4, and falls to adhere to the inner peripheral surface 247S of the cylindrical bolt member 247. Thus, the liquefied recovered liquid LQ3 obtained by liquefying the mist MI can be stored in the recovery container 124 from the separation device 220.

また、本変形例の分離装置220では、図4(a)を参照すれば容易に理解できるように、直管状で、ボルト貫通孔247Iの直径Dに比してその軸線240AX方向の長さLB2が長い円筒状ボルト部材247を使用した。このため、本変形例の分離装置220でも、ミストMIを効率よく凝集させ、液化して回収することができる。
しかも、ボルト貫通孔247Iは、直径Dに比して長さLB2が長いから、軸線240AX方向の長い距離に亘って、繰り返しミストMIに空中超音波AU3,AU4を照射することができるから、さらに確実にミストMIを回収することができる。
Further, in the separation device 220 of this modification, as can be easily understood with reference to FIG. 4A, the length is LB2 in the direction of the axis 240AX as compared with the diameter D of the bolt through hole 247I. A long cylindrical bolt member 247 was used. For this reason, also in the separation apparatus 220 of this modification, the mist MI can be efficiently aggregated, liquefied and recovered.
Moreover, since the bolt through-hole 247I has a length LB2 that is longer than the diameter D, the mist MI can be repeatedly irradiated with the aerial ultrasonic waves AU3 and AU4 over a long distance in the axis 240AX direction. The mist MI can be reliably recovered.

かくして、この分離装置220においても、通気貫通孔220Iに導入されたミストMIを含んだ空気(気体)から、効率よくミストMIを回収し、空気とミストMIとを分離し、ミストMIから液化回収液LQ3を回収することができる。   Thus, also in this separation device 220, the mist MI is efficiently recovered from the air (gas) containing the mist MI introduced into the ventilation through hole 220I, and the air and the mist MI are separated and liquefied and recovered from the mist MI. The liquid LQ3 can be recovered.

しかも、本変形例の分離装置220は、管状の円筒状ボルト部材247を中心にして、その周囲に圧電素子142等によりボルト締めランジュバン型振動子240を構成し、さらに、この円筒状ボルト部材247を洗面板244よりも先端側に突出させて先端側突出部247Pを設けた構成としている。前述の実施例の分離装置120と同様、前述した冷却等によってミストMIを回収する場合の機械構成の分離装置に比して、コンパクトな形態となる。さらにこのような場合のみならず、管部材を別途外部から超音波振動子によって超音波振動させる形態の分離装置に比しても、コンパクトな分離装置となる。   In addition, the separation device 220 according to the present modification has a bolted Langevin type vibrator 240 formed of a piezoelectric element 142 or the like around the cylindrical cylindrical bolt member 247, and the cylindrical bolt member 247. Is configured to protrude toward the tip side from the wash plate 244, and a tip side protruding portion 247P is provided. Similar to the separation device 120 of the above-described embodiment, it becomes a compact form as compared with the separation device having a mechanical configuration in which the mist MI is recovered by cooling or the like. Furthermore, not only in such a case, the separation device is compact even when compared with a separation device in which the tube member is separately ultrasonically vibrated by an ultrasonic vibrator from the outside.

さらに、前述した実施例の分離装置120では、振動子140のほかに、パイプ部材130を備えていた。これに対し、本変形例の分離装置220は、パイプ部材も不要であり、さらに簡易な構成である。また、本変形例の分離装置220では、軸線240AXの方向に一本の円筒状ボルト部材247が貫く構造となっているので、分離装置220の通気貫通220Iは、円筒状ボルト部材247の内周面247Sのみで囲まれている。従って、継ぎ目や段差などが無く、円筒状ボルト部材247の内周面247Sに付着したミストなどの浮遊物質を、容易に回収することができ、洗浄等も容易である。   Furthermore, the separation device 120 of the above-described embodiment includes the pipe member 130 in addition to the vibrator 140. On the other hand, the separation device 220 of this modification does not require a pipe member and has a simpler configuration. Further, in the separation device 220 of this modification example, since one cylindrical bolt member 247 penetrates in the direction of the axis 240AX, the ventilation penetration 220I of the separation device 220 is formed on the inner periphery of the cylindrical bolt member 247. It is surrounded only by the surface 247S. Therefore, there are no joints or steps, and floating substances such as mist adhering to the inner peripheral surface 247S of the cylindrical bolt member 247 can be easily recovered, and cleaning and the like are easy.

分離装置220でミストMIが分離された空気は、排出口231Tから排出される。この排出された空気は、実施例と同じく、図1に示すように、図示しない通路を通じて、再び超音波霧化装置10に戻される。かくして、本変形例の分離装置も、閉回路201を構成している。   The air from which the mist MI has been separated by the separation device 220 is discharged from the discharge port 231T. As in the embodiment, the discharged air is returned to the ultrasonic atomizer 10 again through a passage (not shown) as shown in FIG. Thus, the separation device of this modification also forms a closed circuit 201.

このように本変形例の液体分溜装置200では、円筒状ボルト部材147を超音波振動させてミストMIを液化する分離装置220を用いた。このため、実施例と同じく、加熱や冷却によるエネルギーの消費が抑制され、効率よく被処理液を分溜することができる。   Thus, in the liquid fractionating device 200 of this modification, the separation device 220 that liquefies the mist MI by ultrasonically vibrating the cylindrical bolt member 147 is used. For this reason, similarly to the embodiment, energy consumption due to heating and cooling is suppressed, and the liquid to be treated can be efficiently distilled.

以上において、本発明を実施例および変形例に即して説明したが、本発明は上述の実施例および変形例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施例では、ボルト締めランジュバン型振動子140の先端側に、パイプ部材130を固着した形態の分離装置120を示したが、パイプ部材130が無い分離装置、即ち、ボルト締めランジュバン型振動子140のみを分離装置としても良い。あるいはこれとは逆に、振動子140の基端側にも、別途パイプ部材を設けるようにしても良い。
In the above, the present invention has been described with reference to the embodiments and the modified examples. However, the present invention is not limited to the above-described embodiments and modified examples, and can be appropriately modified and applied without departing from the gist thereof. Needless to say, it can be done.
For example, in the embodiment, the separation device 120 in which the pipe member 130 is fixed to the distal end side of the bolt tightened Langevin type vibrator 140 is shown. However, the separation device without the pipe member 130, that is, the bolt tightened Langevin type vibrator 140 is shown. Only 140 may be a separation device. Alternatively, on the contrary, a pipe member may be separately provided on the base end side of the vibrator 140.

また、変形例では、円筒状ボルト部材247として、前面板244の先端側(図4(a)中、右方)に突出する先端側突出部247Pを有するものを例示した。しかし、これに代えて、図4(a)に破線で示すように、裏打ち板245の基端側(図4(a)中、左方)に突出する基端側突出部247Qを有し、この基端側突出部247Qにおけるボルト貫通孔247QIにおいて、突出部内定在波音場SS4(図4(b),(c)参照)により、ミストMIを液化して回収するようにしても良い。あるいは、先端側突出部247Pおよび基端側突出部247Qの両者を有するようにしても良い。   Further, in the modified example, the cylindrical bolt member 247 is exemplified as having a front end side protruding portion 247P that protrudes to the front end side of the front plate 244 (rightward in FIG. 4A). However, instead of this, as shown by a broken line in FIG. 4 (a), it has a base-side protruding portion 247Q that protrudes to the base end side of the backing plate 245 (leftward in FIG. 4 (a)), In the bolt through hole 247QI in the base end side protruding portion 247Q, the mist MI may be liquefied and collected by the standing portion standing wave sound field SS4 (see FIGS. 4B and 4C). Or you may make it have both the front end side protrusion part 247P and the base end side protrusion part 247Q.

また、本実施例および変形例では、ボルト締めランジュバン型振動子140,240の一部をなす円筒状ボルト部材147,247を、ミストMIを通す通気貫通孔140I,240Iの一部または全部として利用した。しかし、ボルト締めランジュバン型振動子の円筒状ボルト部材とは別に、この円筒状ボルト部材の内部を通る管部材を設け、このボルト締めランジュバン型振動子で管部材に超音波振動を生じさせるようにしても良い。   Further, in the present embodiment and the modification, the cylindrical bolt members 147 and 247 forming a part of the bolt tightened Langevin type vibrators 140 and 240 are used as a part or all of the ventilation through holes 140I and 240I through which the mist MI is passed. did. However, in addition to the cylindrical bolt member of the bolted Langevin type vibrator, a tube member that passes through the inside of the cylindrical bolt member is provided, and the bolted Langevin type vibrator generates ultrasonic vibration in the pipe member. May be.

実施例及び変形例に係る液体分溜装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the liquid fractionating apparatus which concerns on an Example and a modification. 実施例にかかる液体分溜装置のうち、分離装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of a separation apparatus among the liquid fractionation apparatuses concerning an Example. 実施例にかかる分離装置の構造を示す説明図であり、(a)は縦断面図、(b)はA−A’断面またはB−B’断面における振動の様子を示す説明図、(c)はB−B’断面における他の振動の様子を示す説明図である。It is explanatory drawing which shows the structure of the separation apparatus concerning an Example, (a) is a longitudinal cross-sectional view, (b) is explanatory drawing which shows the mode of the vibration in an AA 'cross section or a BB' cross section, (c). These are explanatory drawings which show the mode of the other vibration in a BB 'cross section. 変形例にかかる分離装置の構造を示す説明図であり、(a)は縦断面図、(b)はC−C’断面またはD−D’断面における振動の様子を示す説明図、(c)はD−D’断面における他の振動の様子を示す説明図である。It is explanatory drawing which shows the structure of the separation apparatus concerning a modification, (a) is a longitudinal cross-sectional view, (b) is explanatory drawing which shows the mode of a vibration in CC 'cross section or DD' cross section, (c). These are explanatory drawings which show the mode of the other vibration in DD 'cross section.

符号の説明Explanation of symbols

100,200 液体分離装置
10 超音波霧化装置(超音波霧化手段)
11 被処理液容器
12 霧化用超音波振動子
LQ1 被処理液
LQ2 処理済み被処理液
LQ3 液化回収液
MI ミスト(霧状の液滴、浮遊物質)
120,220 分離装置
120I,220I 通気貫通孔
130 パイプ部材
130I パイプ貫通孔
130S (パイプ部材の)内周面
131 パイプ部
131S (パイプ部の)内周面
140,240 ボルト締めランジュバン型振動子(超音波振動発生源)
140AX,240AX (ボルト締めランジュバン型振動子の)軸線
140I,240I 振動子貫通孔(貫通流通孔)
142 圧電素子
142AX 素子軸線
143 電極
144,244 前面板(第2環状部材)
144H,244H 前面板貫通孔(第2貫通孔)
145 裏打ち板(第1環状部材)
146 ナット(ナット部材)
147,247 円筒状ボルト部材(管部材)
147S,247S (円筒状ボルト部材の)内周面
147I,247I ボルト貫通孔(管貫通孔)
147SC1,247SC1 (円筒状ボルト部材の)第1ネジ部
147SC2,247SC2 (円筒状ボルト部材の)第2ネジ部
247P 先端側突出部(一方側突出部)
247PI 先端側突出部におけるボルト貫通孔(一方側突出部におけるボルト貫通孔)
247Q 基端側突出部(他方側突出部)
247QI 基端側突出部におけるボルト貫通孔(他方側突出部におけるボルト貫通孔)
AU1,AU2,AU3,AU4 空中超音波
SS1 ボルト内定在波音場(管内定在波音場)
SS2 パイプ内定在波音場
SS3 中間部内定在波音場(管内定在波音場)
SS4 突出部内定在波音場
100,200 Liquid separation device 10 Ultrasonic atomization device (ultrasonic atomization means)
11 Processed liquid container 12 Atomizing ultrasonic transducer LQ1 Processed liquid LQ2 Processed processed liquid LQ3 Liquefied recovery liquid MI Mist (mist droplets, suspended substances)
120, 220 Separating devices 120I, 220I Ventilation through hole 130 Pipe member 130I Pipe through hole 130S (Pipe member) inner peripheral surface 131 Pipe portion 131S (Pipe portion) inner peripheral surface 140, 240 Bolt tightening Langevin type vibrator (super Sound wave generation source)
140AX, 240AX Axis 140I, 240I (through bolted Langevin type vibrator) vibrator through hole (through through hole)
142 Piezoelectric element 142AX Element axis line 143 Electrodes 144, 244 Front plate (second annular member)
144H, 244H Front plate through hole (second through hole)
145 Backing plate (first annular member)
146 Nut (nut member)
147,247 Cylindrical bolt member (tube member)
147S, 247S Inner circumferential surface 147I, 247I of bolt (cylindrical bolt member) Bolt through hole (tube through hole)
147SC1, 247SC1 First screw portion (for cylindrical bolt member) 147SC2, 247SC2 Second screw portion 247P (for cylindrical bolt member) Tip side protruding portion (one side protruding portion)
247PI Bolt through-hole in tip side protruding part (bolt through-hole in one side protruding part)
247Q Base end side protrusion (other side protrusion)
247QI Bolt through hole in the base end side protrusion (bolt through hole in the other side protrusion)
AU1, AU2, AU3, AU4 Aerial ultrasonic wave SS1 Standing wave sound field in bolt (Standing wave sound field in pipe)
SS2 Standing wave sound field in the pipe SS3 Standing wave sound field in the middle part (Standing wave sound field in the pipe)
SS4 Standing wave sound field in the protrusion

Claims (8)

気体中に浮遊する浮遊物質を凝集させて上記気体から分離する分離装置であって、
内部に上記浮遊物質を含む気体を流通させる管貫通孔を有する管部材と、
上記管部材の管長方向少なくとも一部の径方向周囲を取り囲み、この管部材を加振する超音波振動発生源であって、
この管部材のうち、上記超音波振動発生源に取り囲まれる部分の少なくとも一部において、超音波振動を生じさせて、上記管部材から放射される空中超音波で上記管貫通孔内に管内定在波音場を形成する超音波振動発生源と、を備える
分離装置。
A separation device for aggregating suspended substances suspended in a gas and separating them from the gas,
A pipe member having a pipe through-hole through which a gas containing the floating substance flows, and
An ultrasonic vibration source that surrounds at least a portion of the pipe member in the pipe length direction and oscillates the pipe member,
Among the tube members, ultrasonic vibration is generated in at least a part of the portion surrounded by the ultrasonic vibration generation source, and the in-tube standing in the tube through-hole is generated by the aerial ultrasonic wave radiated from the tube member. A separation device comprising: an ultrasonic vibration generation source that forms a wave sound field.
請求項1に記載の分離装置であって、
パイプ貫通孔を備えるパイプ部材であって、
前記超音波振動発生源の前記管長方向の一方側に、前記管貫通孔に上記パイプ貫通孔を連通させた状態で配置されてなり、
上記超音波振動発生源によりこのパイプ部材において超音波振動を生じ、このパイプ部材から放射される空中超音波で、上記パイプ貫通孔内にパイプ内定在波音場が形成される
パイプ部材を備える
分離装置。
The separation device according to claim 1,
A pipe member having a pipe through-hole,
On one side of the tube length direction of the ultrasonic vibration generating source, the pipe through hole is arranged in a state where the pipe through hole is communicated,
An ultrasonic vibration is generated in the pipe member by the ultrasonic vibration generation source, and a standing wave sound field in the pipe is formed in the pipe through-hole by the aerial ultrasonic wave radiated from the pipe member. .
請求項1に記載の分離装置であって、
前記管部材は、
前記超音波振動発生源よりも、前記管長方向の一方側に突出する一方側突出部であって、
上記超音波振動発生源によりこの一方側突出部において超音波振動を生じ、この一方側突出部における前記管貫通孔内に突出部定在波音場が形成される
一方側突出部、及び、
前記超音波振動発生源よりも、前記管長方向の他方側に突出する他方側突出部であって、
上記超音波振動発生源によりこの他方側突出部において超音波振動を生じ、この他方側突出部における上記管貫通孔内に上記突出部内定在波音場が形成される
他方側突出部、
の少なくともいずれかを有する
分離装置。
The separation device according to claim 1,
The pipe member is
The one-side protruding portion that protrudes to one side in the tube length direction from the ultrasonic vibration generation source,
Ultrasonic vibration is generated in the one-side protruding portion by the ultrasonic vibration generating source, and a protruding portion standing wave sound field is formed in the tube through hole in the one-side protruding portion.
The other side protruding portion that protrudes to the other side in the tube length direction from the ultrasonic vibration generation source,
Ultrasonic vibration is generated in the other side protrusion by the ultrasonic vibration generation source, and the standing wave sound field in the protrusion is formed in the tube through hole in the other side protrusion.
A separation device having at least one of the following.
気体中に浮遊する浮遊物質を凝集させて上記気体から分離する分離装置であって、
ボルト締めランジュバン型振動子を備え、
上記ボルト締めランジュバン型振動子のうち、
ボルト部材は、このボルト締めランジュバン型振動子の軸線に沿って自身を貫通するボルト貫通孔を含む円筒状ボルト部材であり、
上記ボルト締めランジュバン型振動子は、
少なくとも上記ボルト貫通孔を含んで、自身を上記軸線に沿って貫通する貫通流通孔であって、上記浮遊物質を含む気体を流通させる貫通流通孔を有する
分離装置。
A separation device for aggregating suspended substances suspended in a gas and separating them from the gas,
It has a bolted Langevin type vibrator,
Among the bolted Langevin type vibrators,
The bolt member is a cylindrical bolt member including a bolt through-hole penetrating itself along the axis of the bolted Langevin type vibrator,
The bolted Langevin type vibrator is
A separator having a through-flow hole including at least the bolt through-hole and penetrating through itself along the axis, and through which a gas containing the floating substance flows.
請求項4に記載の分離装置であって、
パイプ貫通孔を備えるパイプ部材であって、
前記ボルト締めランジュバン型振動子の一方端に、前記貫通流通孔に上記パイプ貫通孔を連通させた状態で固着してなり、
上記ボルト締めランジュバン型振動子によりこのパイプ部材において超音波振動を生じ、このパイプ部材から放射される空中超音波で、上記パイプ貫通孔内にパイプ内定在波音場が形成される
パイプ部材を備える
分離装置。
The separation device according to claim 4,
A pipe member having a pipe through-hole,
It is fixed to one end of the bolted Langevin type vibrator in a state where the pipe through hole is communicated with the through circulation hole,
An ultrasonic vibration is generated in the pipe member by the bolted Langevin type vibrator, and a standing wave sound field in the pipe is formed in the pipe through-hole by an aerial ultrasonic wave radiated from the pipe member. apparatus.
請求項4に記載の分離装置であって、
前記円筒状ボルト部材は、
前記ボルト締めランジュバン型振動子よりも、前記軸線の一方側に突出する一方側突出部であって、
上記ボルト締めランジュバン型振動子によりこの一方側突出部において超音波振動を生じ、この一方側突出部における前記ボルト貫通孔内に突出部内定在波音場が形成される
一方側突出部、及び、
前記ボルト締めランジュバン型振動子よりも、前記軸線の他方側に突出する他方側突出部であって、
上記ボルト締めランジュバン型振動子によりこの他方側突出部において超音波振動を生じ、この他方側突出部における上記ボルト貫通孔内に上記突出部内定在波音場が形成される
他方側突出部、
の少なくともいずれかを有する
分離装置。
The separation device according to claim 4,
The cylindrical bolt member is
Than the bolted Langevin type vibrator, one side projecting portion projecting to one side of the axis,
Ultrasonic vibration is generated in the one-side protruding portion by the bolted Langevin-type vibrator, and a standing-wave sound field in the protruding portion is formed in the bolt through hole in the one-side protruding portion.
More than the bolted Langevin type vibrator, the other side protruding portion protruding to the other side of the axis,
Ultrasonic vibration is generated in the other side protrusion by the bolted Langevin type vibrator, and the standing wave sound field in the protrusion is formed in the bolt through hole in the other side protrusion.
A separation device having at least one of the following.
気体中に浮遊する浮遊物質を凝集させて上記気体から分離する分離装置であって、
素子貫通孔を有する複数の環状の圧電素子であって、
自身の素子軸線に互いに同軸に配置された
複数の圧電素子と、
上記圧電素子の間に介在する電極板と、
複数の上記圧電素子よりも上記素子軸線の基端側に位置し、上記素子軸線に沿う第1貫通孔を有する環状の第1環状部材と、
複数の上記圧電素子よりも上記素子軸線の先端側に位置し、上記素子軸線に沿う第2貫通孔を有する環状の第2環状部材と、
上記素子軸線に沿って貫通するボルト貫通孔を有する円筒状の円筒状ボルト部材であって、
上記第1環状部材よりも上記素子軸線の基端側に突出し、上記圧電素子の素子貫通孔内及び上記第1環状部材の第1貫通孔内を通って、少なくとも上記第2環状部材の第2貫通孔内まで延在し、
少なくとも上記第1環状部材よりも上記素子軸線の基端側に突出する突出部に形成された第1ネジ部、及び、
上記第2貫通孔内で上記第2環状部材に締結される第2ネジ部を含む
円筒状ボルト部材と、
上記第1環状部材よりも上記素子軸線の基端側からこの第1環状部材に当接するナット部材であって、
上記第1環状部材と上記第2環状部材とで複数の上記圧電素子を上記素子軸線に沿う方向に圧縮すると共に、上記円筒状ボルト部材の上記第1ネジ部と上記第2ネジ部との間に引張応力を生じさせて、
上記円筒状ボルト部材の上記第1ネジ部に締結されてなるナット部材と、を備える
分離装置。
A separation device for aggregating suspended substances suspended in a gas and separating them from the gas,
A plurality of annular piezoelectric elements having element through holes,
A plurality of piezoelectric elements arranged coaxially with each other on its own element axis;
An electrode plate interposed between the piezoelectric elements;
An annular first annular member that is located closer to the base end side of the element axis than the plurality of piezoelectric elements and has a first through hole along the element axis;
An annular second annular member that is located closer to the distal end side of the element axis than the plurality of piezoelectric elements and has a second through hole along the element axis;
A cylindrical cylindrical bolt member having a bolt through-hole penetrating along the element axis,
It protrudes from the first annular member to the base end side of the element axis, passes through the element through hole of the piezoelectric element and the first through hole of the first annular member, and at least the second of the second annular member. Extending into the through hole,
A first threaded portion formed at least in a protruding portion protruding toward the base end side of the element axis from the first annular member; and
A cylindrical bolt member including a second screw portion fastened to the second annular member in the second through hole;
A nut member that contacts the first annular member from the base end side of the element axis rather than the first annular member;
The first annular member and the second annular member compress the plurality of piezoelectric elements in a direction along the element axis, and between the first screw portion and the second screw portion of the cylindrical bolt member. Causing tensile stress to
And a nut member fastened to the first screw portion of the cylindrical bolt member.
超音波振動により被処理液を霧化して、前記浮遊物質である霧状の液滴を放出する超音波霧化手段と、
請求項1〜請求項7のいずれか1項に記載の分離装置と、を備える
液体分溜装置。
Ultrasonic atomizing means for atomizing the liquid to be treated by ultrasonic vibration and releasing the mist-like droplets which are the suspended substances;
A liquid fractionation device comprising: the separation device according to any one of claims 1 to 7.
JP2004164317A 2004-06-02 2004-06-02 Separation apparatus and liquid fractionation apparatus using the same Expired - Fee Related JP4691719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164317A JP4691719B2 (en) 2004-06-02 2004-06-02 Separation apparatus and liquid fractionation apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164317A JP4691719B2 (en) 2004-06-02 2004-06-02 Separation apparatus and liquid fractionation apparatus using the same

Publications (2)

Publication Number Publication Date
JP2005342599A JP2005342599A (en) 2005-12-15
JP4691719B2 true JP4691719B2 (en) 2011-06-01

Family

ID=35495453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164317A Expired - Fee Related JP4691719B2 (en) 2004-06-02 2004-06-02 Separation apparatus and liquid fractionation apparatus using the same

Country Status (1)

Country Link
JP (1) JP4691719B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106823665B (en) * 2016-12-29 2022-10-18 中国计量大学 Acoustic agglomeration device based on perforated plate vibration and dust removal method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509406A (en) * 1990-11-27 1994-10-20 ユーロピーアン アトミック エナージー コンミュニティ (ユーラトム) Acoustic chamber for exhaust gas fog treatment
JP2005254043A (en) * 2004-03-09 2005-09-22 Univ Nihon Removal method and apparatus for gaseous substance contained in gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135515A (en) * 1987-11-19 1989-05-29 Agency Of Ind Science & Technol Method for separating substances having no specific gravity differences in fluid
JPH0352678A (en) * 1989-07-21 1991-03-06 Koji Toda Aerial ultrasonic generator and ultrasonic flocculating device
JPH07212894A (en) * 1994-01-14 1995-08-11 Hiroyuki Yamane Ultrasonic wave source and suspended particle collector using same
JPH0819735A (en) * 1994-07-06 1996-01-23 Oozeki Kk Concentrating/fractionating apparatus and concentrating/fractionating method and alcohol producing method utilizing thereof
JPH08266891A (en) * 1995-04-03 1996-10-15 Hitachi Ltd Fine particle handling device
JP3499389B2 (en) * 1996-12-18 2004-02-23 アマノ株式会社 Suspended particle collection device
JP3367038B2 (en) * 1997-04-21 2003-01-14 株式会社 本家松浦酒造場 Alcohol solution alcohol separation equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509406A (en) * 1990-11-27 1994-10-20 ユーロピーアン アトミック エナージー コンミュニティ (ユーラトム) Acoustic chamber for exhaust gas fog treatment
JP2005254043A (en) * 2004-03-09 2005-09-22 Univ Nihon Removal method and apparatus for gaseous substance contained in gas

Also Published As

Publication number Publication date
JP2005342599A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP7351886B2 (en) Method and apparatus for separating and/or cleaning aerosols and solid particles and fibers from gases and solid particles and fibers from fluids by acoustophoresis
Riera et al. Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams
US6467350B1 (en) Cylindrical acoustic levitator/concentrator
US8454889B2 (en) Gas treatment system
KR102264464B1 (en) System for condensing and eliminating fine particle using multi frequency sound wave
EP3501619B1 (en) Apparatus for collecting particles within a fluid
Yan et al. Removal of fine particles in WFGD system using the simultaneous acoustic agglomeration and supersaturated vapor condensation
RU2447926C2 (en) Method of coagulating foreign particles in gas flows
JP4691719B2 (en) Separation apparatus and liquid fractionation apparatus using the same
JPH0647346A (en) Ultrasonic generating source and floated particle collector using the same
JP3471536B2 (en) Ultrasonic collection method and apparatus for suspended particles
JP4403254B2 (en) Liquid recovery apparatus and liquid fractionation apparatus
JP4691718B2 (en) Separation apparatus and liquid fractionation apparatus using the same
EP0316622B1 (en) Method and apparatus for elutriation of shaped particles of polymeric resin
KR102264465B1 (en) Method for condensing and eliminating fine particle using multi frequency sound wave
JP2005254043A (en) Removal method and apparatus for gaseous substance contained in gas
RU2725584C1 (en) Device for ultrasonic coagulation of foreign particles in gas flows
Gallego-Juarez New technologies in high-power ultrasonic industrial applications
JPH06262149A (en) Cleaning method by focused ultrasonic wave
JP6488513B2 (en) Focused sound field generator
US20220134273A1 (en) Method and apparatus for cleaning an air flow from particles
FI116122B (en) Apparatus and method for purifying air from unwanted gases and particles
Motoi et al. Agglomeration of aerosol using intense standing wave field of cylindrical shape
JPH07212894A (en) Ultrasonic wave source and suspended particle collector using same
RU2807290C1 (en) Device for collecting highly dispersed particles from gas stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees