JPH01135515A - Method for separating substances having no specific gravity differences in fluid - Google Patents

Method for separating substances having no specific gravity differences in fluid

Info

Publication number
JPH01135515A
JPH01135515A JP29263887A JP29263887A JPH01135515A JP H01135515 A JPH01135515 A JP H01135515A JP 29263887 A JP29263887 A JP 29263887A JP 29263887 A JP29263887 A JP 29263887A JP H01135515 A JPH01135515 A JP H01135515A
Authority
JP
Japan
Prior art keywords
small
fluid
specific gravity
medium
small particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29263887A
Other languages
Japanese (ja)
Other versions
JPH0438442B2 (en
Inventor
Hideto Mitome
三留 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP29263887A priority Critical patent/JPH01135515A/en
Publication of JPH01135515A publication Critical patent/JPH01135515A/en
Publication of JPH0438442B2 publication Critical patent/JPH0438442B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently separate small particles from a medium having no specific gravity differences by transmitting supersonic waves into a fluid for collection of the small particles in its field in a position of the small sound pressure amplitude and for separation and extraction thereof. CONSTITUTION:A fluid with small polystyrene particles 3 suspended in a medium 2 such as salt water, etc., is placed in a cylindrical container 1 and supersonic waves are transmitted thereinto from a supersonic wave transmitter 4. The polystyrene particles 3 are collected densely in a position of the minimum sound pressure amplitude according to the distribution of the sound pressure amplitude of standing wave. The particle thus collected are separated for efficient extraction of the small particles having no specific gravity differences.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流体中に混入している実質的に比重差のない
物質を分離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating substances mixed in a fluid that have substantially no difference in specific gravity.

[従来の技術] 流体中に媒質以外の物質が混入している場合、その物質
は一般には遠心分離法によって分離することができるが
、その物質が流体と実質的に同じ密度を有している場合
には、遠心分離法を用いることができない。
[Prior Art] When a substance other than a medium is mixed in a fluid, that substance can generally be separated by centrifugation, but if the substance has substantially the same density as the fluid. In some cases, centrifugation cannot be used.

[発明が解決しようとする問題点] 本発明は、上記流体中における比重差のない物質を簡単
に分離する方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention seeks to provide a method for easily separating substances with no difference in specific gravity in the above-mentioned fluid.

[問題点を解決するための手段、作用]上記目的を達成
するため、本発明の方法は、媒質と比重差のない小粒子
が混入している流体中に超音波を照射し、その音場内に
おける小粒子に音圧振幅の小さい方向への力を作用させ
て、小粒子を音圧振幅の小さい位置に集合させ、この集
合により小粒子が高密度に含まれている部分を分離抽出
することを特徴とするものである。
[Means and operations for solving the problem] In order to achieve the above object, the method of the present invention irradiates ultrasonic waves into a fluid containing small particles with no difference in specific gravity from the medium, and A force is applied to the small particles in the direction of the small sound pressure amplitude, so that the small particles gather at a position where the sound pressure amplitude is small, and from this aggregation, a part containing a high density of small particles is separated and extracted. It is characterized by:

さらに具体的に説明すると、一般に、体積Vの小球に超
音波を照射したとき、小球に作用する超音波の放射圧に
よる力F は次式で表わされる(W、L、Nyborg
著、Ultrasound :ijs applica
tionsin medicine and biol
ogy、  F、J、Fry !(1978年)。
To explain more specifically, in general, when a small sphere with a volume V is irradiated with ultrasound, the force F due to the radiation pressure of the ultrasound acting on the small sphere is expressed by the following formula (W, L, Nyborg
Author, Ultrasound: ijs applica
tion sin medicine and biol
ogy, F, J, Fry! (1978).

F =VYWK[−V (1−y)vPr・・(1) K〔:運動エネルギーの時間平均 PE :ポテンシャルエネルギーの時間平均 :空間の
勾配(グラデイエンド)@に子γ :小球と媒質の圧縮
性の比 Y :小球の密度ρSと媒質の密度ρ0の関数ここで、
もし、小球と媒質の密度が等しければ(ρS=ρo)、
Y=0となり、(1)式右辺の第1項は0になる。
F = VYWK[-V (1-y)vPr...(1) K[: Time average of kinetic energy PE: Time average of potential energy: Gradient end of space @ Niko γ: Compression of sphere and medium Sex ratio Y: a function of the density of the sphere ρS and the density of the medium ρ0, where:
If the densities of the sphere and the medium are equal (ρS=ρo),
Y=0, and the first term on the right side of equation (1) becomes 0.

そして、一般に、γくlであるから、結局。And, in general, since γ is smaller than l, after all.

F oc −vP E となり、小球にはポテンシャル・エネルギーの勾配とは
逆向きに力が作用し、即ち、音場内において音圧振幅の
小さい方向に力が作用することになる。
F oc −vP E , and a force acts on the small sphere in a direction opposite to the gradient of potential energy, that is, a force acts in the direction of the small sound pressure amplitude within the sound field.

従って、媒質中の3次元定在波音場内に媒質と同じ密度
の小粒子が多量に混入していた場合、その小粒子は最終
的には音圧振幅最小の位置に落着〈ことになり、この小
粒子の集合部分を細管等により吸引抽出することにより
、小粒子が高密度に含まれている部分を分離することが
できる。
Therefore, if a large number of small particles with the same density as the medium are mixed into the three-dimensional standing wave sound field in the medium, the small particles will eventually settle at the position where the sound pressure amplitude is minimum. By suctioning and extracting the collected part of small particles using a thin tube or the like, it is possible to separate a part containing a high density of small particles.

この場合に、媒質中に超音波を照射することによって、
(1)式で表わされる超音波の放射圧による力が流体中
の物質に作用するため、たとえ比重差がなくとも、流体
の媒質とその中に存在する小粒子との間に、圧縮性の差
、あるいは音速の差や音響インピーダンスの差があれば
、0ではない有限の力か小粒子に加わり、それが流体の
媒質中を移動していくため、小粒子を特定の場所に動か
すことが可能になり、高密度に集合させて分離すること
ができる。
In this case, by irradiating ultrasound into the medium,
Since the force due to the ultrasonic radiation pressure expressed by equation (1) acts on the substance in the fluid, there is a compressibility between the fluid medium and the small particles present in it, even if there is no difference in specific gravity. If there is a difference, or a difference in the speed of sound or a difference in acoustic impedance, a non-zero finite force will be applied to the small particle, and as it moves through the fluid medium, it will be possible to move the small particle to a specific location. This makes it possible to aggregate and separate at high density.

また、この方法では、実施例として後述するように、例
えば円筒内の定在波音場中では、82図ないし第4図の
ような小粒子の凝集が見られ、超音波の周波数を変える
と共鳴状態の変化に対応して凝集形悪が変化する6その
ため、容器形状や超音波の周波数を適切に選択すること
により、凝集をさらに特定の位置に集中させ、−層小粒
子の抽出分離を容易にすることができる。
In addition, with this method, as will be described later as an example, for example, in a standing wave sound field inside a cylinder, agglomeration of small particles as shown in Figures 82 to 4 is observed, and when the frequency of the ultrasound is changed, resonance occurs. The shape of the agglomeration changes in response to changes in the state6. Therefore, by appropriately selecting the container shape and the frequency of the ultrasonic waves, the aggregation can be further concentrated in a specific position, making it easier to extract and separate small particles. It can be done.

なお、この分離方法は、媒質中に定在波音場を形成する
場合に限られるものではなく、進行波音場においても、
ボテンシャルエネルギ−は音圧振幅)に空間的な勾配を
もたせることによって実施することがoT能である。
Note that this separation method is not limited to the case where a standing wave sound field is formed in the medium, but also in the case of a traveling wave sound field.
The OT function can be implemented by creating a spatial gradient in the potential energy (sound pressure amplitude).

[実施例] 第1図は、本発明の分離方法の実施に用いた装置の構成
を示すもので、直径が10c層の透明アクリル樹脂製の
円筒容器l内に媒質2としての塩水を約50cmの深さ
に注入し、この媒質2中に直径が0、5m履程度の多数
のポリスチレン粒子3を浮離させた.奴賀2は、塩分の
濃度によってポリスチレン粒子3と密度を一致させた.
円筒容器lの下面には超音波送波器4を取付けている。
[Example] Figure 1 shows the configuration of an apparatus used to carry out the separation method of the present invention, in which about 50 cm of salt water as the medium 2 is placed in a cylindrical container l made of transparent acrylic resin and having a diameter of 10 cm. A large number of polystyrene particles 3 having a diameter of about 0.5 m were suspended in the medium 2. The density of Nuga 2 was matched to that of polystyrene particles 3 by changing the salt concentration.
An ultrasonic transmitter 4 is attached to the lower surface of the cylindrical container l.

このような装置を用い.上記超音波送波器4から送波し
て、水面との間に定在波を形成し、3次元定在波音場内
におけるポリスチレン粒子3の分離を試みた。
using a device like this. An attempt was made to separate the polystyrene particles 3 in a three-dimensional standing wave sound field by transmitting waves from the ultrasonic transmitter 4 to form a standing wave with the water surface.

円筒内部は平面波ではなく複雑な圧力分布となるが,定
在波の音圧振幅の分布に対応して、ポリスチレン粒子3
が音圧振幅最小の位置に落着くため、円筒内の3次元的
な圧力場において一部にポリスチレン粒子3を高密度に
集合させることができた.なお、小形のセンサを用いて
圧力分布を測ることにより、圧力の小さい部分に粒子が
集まっていることが確かめられた。
The pressure inside the cylinder is not a plane wave but a complex pressure distribution, but the polystyrene particle 3
settles at the position where the sound pressure amplitude is minimum, making it possible to gather polystyrene particles 3 at a high density in a part of the three-dimensional pressure field inside the cylinder. By measuring the pressure distribution using a small sensor, it was confirmed that particles were concentrated in areas with low pressure.

第2図ないし第4図は、上記超音波送波器4から30.
35kHz、31.19kHz及び31.79kHzの
超音波を送波した場合の粒子の凝集状態を示している。
2 to 4 show the ultrasonic transmitters 4 to 30.
It shows the agglomeration state of particles when ultrasonic waves of 35 kHz, 31.19 kHz, and 31.79 kHz are transmitted.

〔発明の効果コ このような本発明の分離法によれば、流体中における比
重差のない物質を簡単かつ容易に分離抽出することがで
きる。
[Effects of the Invention] According to the separation method of the present invention, substances with no difference in specific gravity in a fluid can be simply and easily separated and extracted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施に用いた装置の構成図、第
2図はないし第4図は上記装置による小粒子の凝集状態
を示す説明図である。 1 ・・円筒容器、  2・拳媒質、 3ψ中ポリスチレン粒子、 4・・超音波送波器。 第1図
FIG. 1 is a block diagram of an apparatus used to carry out the method of the present invention, and FIGS. 2 to 4 are explanatory diagrams showing the state of aggregation of small particles by the above-mentioned apparatus. 1. Cylindrical container, 2. Fist medium, 3ψ medium polystyrene particles, 4. Ultrasonic wave transmitter. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、媒質と比重差のない小粒子が混入している流体中に
超音波を照射し、その音場内における小粒子に音圧振幅
の小さい方向への力を作用させて、小粒子を音圧振幅の
小さい位置に集合させ、この集合により小粒子が高密度
に含まれている部分を分離抽出することを特徴とする流
体中における比重差のない物質の分離法。
1. Ultrasonic waves are irradiated into a fluid containing small particles with no difference in specific gravity from the medium, and a force is applied to the small particles in the sound field in the direction of the small sound pressure amplitude, causing the small particles to increase the sound pressure. A method for separating substances with no difference in specific gravity in a fluid, which is characterized by aggregating substances in a position where the amplitude is small, and separating and extracting a part containing a high density of small particles due to this aggregation.
JP29263887A 1987-11-19 1987-11-19 Method for separating substances having no specific gravity differences in fluid Granted JPH01135515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29263887A JPH01135515A (en) 1987-11-19 1987-11-19 Method for separating substances having no specific gravity differences in fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29263887A JPH01135515A (en) 1987-11-19 1987-11-19 Method for separating substances having no specific gravity differences in fluid

Publications (2)

Publication Number Publication Date
JPH01135515A true JPH01135515A (en) 1989-05-29
JPH0438442B2 JPH0438442B2 (en) 1992-06-24

Family

ID=17784377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29263887A Granted JPH01135515A (en) 1987-11-19 1987-11-19 Method for separating substances having no specific gravity differences in fluid

Country Status (1)

Country Link
JP (1) JPH01135515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342599A (en) * 2004-06-02 2005-12-15 Honda Electronic Co Ltd Separator and liquid fractionation equipment using the same
JP2005342598A (en) * 2004-06-02 2005-12-15 Honda Electronic Co Ltd Separator and liquid fractionation equipment using the same
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US11287363B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342599A (en) * 2004-06-02 2005-12-15 Honda Electronic Co Ltd Separator and liquid fractionation equipment using the same
JP2005342598A (en) * 2004-06-02 2005-12-15 Honda Electronic Co Ltd Separator and liquid fractionation equipment using the same
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US11287363B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US11287362B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer

Also Published As

Publication number Publication date
JPH0438442B2 (en) 1992-06-24

Similar Documents

Publication Publication Date Title
JPH0440647B2 (en)
Destgeer et al. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves
Goddard et al. Ultrasonic particle concentration in a line-driven cylindrical tube
JP6235051B2 (en) Ultrasonic and acoustophoretic techniques for water-oil separation for use in producing water
Pangu et al. Acoustically aided separation of oil droplets from aqueous emulsions
KR101442486B1 (en) Apparatus and method for separating impurities from fluid using ultrasound
AU641495B2 (en) Particle manipulation in an ultrasonic field
Bremond et al. Interaction of cavitation bubbles on a wall
Ament Sound propagation in gross mixtures
Garcia-Sabaté et al. Experimental study on inter-particle acoustic forces
US20130277317A1 (en) Acoustophoretic enhanced system for use in tanks
JPH02503528A (en) Method for separating inclusions from liquids and apparatus for carrying out this method
EP0764265A1 (en) Acoustic detection of particles
JPS63501140A (en) Device for acoustically removing particles from magnetic separation matrices
Mizushima et al. Interaction between acoustic cavitation bubbles and dispersed particles in a kHz-order-ultrasound-irradiated water
ATE154131T1 (en) DEVICE FOR DETERMINING THE SIZE AND CHARGE OF COLLOID PARTICLES
Ensminger et al. Acoustic and electroacoustic methods of dewatering and drying
Andrade et al. Contactless acoustic manipulation and sorting of particles by dynamic acoustic fields
JPH01135515A (en) Method for separating substances having no specific gravity differences in fluid
KR20210002790A (en) Apparatus and the method for condensing and eliminating fine particle
Doinikov et al. Interaction force between a bubble and a solid particle in a sound field
US11698364B2 (en) Real-time cell-surface marker detection
Matula et al. Ultrasound-based cell sorting with microbubbles: A feasibility study
Greenlay Fabrication and integration of CMUT sensors
Pohl MECHANICALLY INDUCED STIMULATION OF ELECTROMAGNETIC RADIATION—A NEW ELECTROKINETIC PHENOMENON

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term