JPH0438144B2 - - Google Patents

Info

Publication number
JPH0438144B2
JPH0438144B2 JP59229331A JP22933184A JPH0438144B2 JP H0438144 B2 JPH0438144 B2 JP H0438144B2 JP 59229331 A JP59229331 A JP 59229331A JP 22933184 A JP22933184 A JP 22933184A JP H0438144 B2 JPH0438144 B2 JP H0438144B2
Authority
JP
Japan
Prior art keywords
capacitor
cell
gate electrode
groove
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59229331A
Other languages
Japanese (ja)
Other versions
JPS61107768A (en
Inventor
Taiji Ema
Takashi Yabu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59229331A priority Critical patent/JPS61107768A/en
Publication of JPS61107768A publication Critical patent/JPS61107768A/en
Publication of JPH0438144B2 publication Critical patent/JPH0438144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/377DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate having a storage electrode extension located over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に係り、特に各種情報
処理装置に具備せしめられるダイナミツク型のラ
ンダム・アクセス・メモリ(D−RAM)に主と
して用いられる1トランジスタ・1キヤパシタ型
メモリセルの、キヤパシタ容量を増大せしめ且つ
セル面積を縮小するための改良構造に関す。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and in particular to a semiconductor memory device mainly used for dynamic random access memory (D-RAM) included in various information processing devices. The present invention relates to an improved structure of a transistor/single capacitor type memory cell for increasing the capacitor capacity and reducing the cell area.

上記D−RAMにおいては大規模化が急速に進
められており、これに伴つて該D−RAMを構成
する1トランジスタ・1キヤパシタ型メモリセル
も大幅に縮小されて来ている。
The scale of the D-RAM is rapidly increasing, and along with this, the one-transistor/one-capacitor type memory cell that constitutes the D-RAM has also been significantly reduced in size.

1トランジスタ・1キヤパシタ型のメモリセル
は、第3図に示すような回路構成を有しており、
情報が電荷としてキヤパシタCに蓄積される。
A 1-transistor/1-capacitor type memory cell has a circuit configuration as shown in Figure 3.
Information is stored in capacitor C as a charge.

そして読出しに際しトランジスタTを“ON”
してキヤパシタCとビツトラインBLとを接続し、
上記蓄積電荷によつて生ずるビツトラインBLの
電位変化がセンスアンプSAを介して情報として
読み出される。(WLはワードライン) 従つてメモリセルの縮小に伴いキヤパシタ容量
が減少した際には、読出しに際してのビツトライ
ンの電位変化が小さくなり、情報の読出しが困難
且つ不正確になつて情報の信頼度が低下する。
Then, when reading, transistor T is turned on.
and connect capacitor C and bit line BL,
The change in potential of the bit line BL caused by the accumulated charge is read out as information via the sense amplifier SA. (WL is a word line) Therefore, when the capacitor capacity decreases due to the reduction of memory cells, the change in potential of the bit line during reading becomes smaller, making reading information difficult and inaccurate, and reducing the reliability of information. descend.

又、キヤパシタ容量が低下し情報として蓄積さ
れる電荷量が減少すると、α線による情報の反転
も起き易くなる。
Furthermore, when the capacitance of the capacitor decreases and the amount of charge stored as information decreases, inversion of information due to α rays becomes more likely to occur.

そこでキヤパシタ容量を増大せしめる手段の開
発が強く要望されている。
Therefore, there is a strong demand for the development of a means to increase capacitor capacity.

〔従来の技術〕[Conventional technology]

第4図は、従来用いられていた通常型の1トラ
ンジスタ・1キヤパシタ・メモリセルの模式側断
面図である。
FIG. 4 is a schematic side sectional view of a conventional one-transistor/one-capacitor memory cell.

図において、1はp型シリコン基板、2は素子
間分離酸化膜、3はn+型ドレイン領域、4は第
1のキヤパシタ電極となるn+型ソース領域、5
は誘電体膜、6は一層目の多結晶シリコン層PA
よりなる第2のキヤパシタ電極、7は第1の絶縁
膜、8はゲート酸化膜、9は二層目の多結晶シリ
コン層PBよりなるゲート電極、10は第2の絶
縁膜、11はアルミニウムよりなるビツトライ
ン、を示す。
In the figure, 1 is a p-type silicon substrate, 2 is an element isolation oxide film, 3 is an n + type drain region, 4 is an n + type source region which becomes the first capacitor electrode, 5
is a dielectric film, 6 is the first polycrystalline silicon layer P A
7 is a first insulating film, 8 is a gate oxide film, 9 is a gate electrode made of a second polycrystalline silicon layer P B , 10 is a second insulating film, 11 is aluminum The bit line is shown below.

上記通常型の1トランジスタ・1キヤパシタ・
セルにおいては、同図のようにソース領域4の上
部のみがキヤパシタとして使用されるので、セル
面積が縮小された際にはその容量がそれに比例し
て大幅に減少する。
The above normal type 1 transistor, 1 capacitor,
In the cell, only the upper part of the source region 4 is used as a capacitor as shown in the figure, so when the cell area is reduced, the capacitance is significantly reduced in proportion.

そこでキヤパシタの実効面積を増す方法として
提供されたのがトレンチ・セル構造である。
Therefore, a trench cell structure has been proposed as a method of increasing the effective area of the capacitor.

第5図はトレンチ・セル構造を示す模式側断面
図で、図中15は溝(トレンチ)を表し、その他
の符号は第4図と同一対象物を示す。
FIG. 5 is a schematic side sectional view showing a trench cell structure, in which 15 represents a trench, and other symbols indicate the same objects as in FIG. 4.

このセルはセルを形成する領域に予めマスク整
合によりリソグラフイ手段により溝15を形成
し、該溝15の内面部を含むソース領域4を形成
し、その上部に誘電体膜5を介して第2のキヤパ
シタ電極6を配設した構造で、溝15の側面に相
当する分キヤパシタの実効面績が増し、キヤパシ
タ容量の増大が図れる。
In this cell, a trench 15 is formed in advance in a region where the cell is to be formed by lithography by mask alignment, a source region 4 including the inner surface of the trench 15 is formed, and a second With the structure in which the capacitor electrode 6 is arranged, the effective area of the capacitor increases by the amount corresponding to the side surface of the groove 15, and the capacitor capacity can be increased.

しかし該トレンチ・セルにおいては形成に際し
て、溝15とキヤパシタ電極6との間の位置合わ
せ誤差に対する余裕寸法d1及びキヤパシタ電極6
とゲート電極9との間の位置合わせ誤差に対する
余裕寸法d2を見る必要があるので、セルの微細化
が思うように図れないという問題があつた。
However, when forming the trench cell, there is a margin d 1 for the alignment error between the groove 15 and the capacitor electrode 6 and the capacitor electrode 6
Since it is necessary to consider the allowance dimension d 2 for the positioning error between the gate electrode 9 and the gate electrode 9, there was a problem that the cell could not be miniaturized as desired.

そこでキヤパシタ容量の増加を図る別の構造と
して、スタツド・キヤパシタ(Stacked−
Capacitor:STC)型メモリセルが提供された。
Therefore, another structure for increasing the capacitor capacity is the stacked capacitor (stacked capacitor).
Capacitor (STC) type memory cells were provided.

第6図は従来のスタツクド・キヤパシタ型セル
の構造を示す模式側断面図である。
FIG. 6 is a schematic side sectional view showing the structure of a conventional stacked capacitor type cell.

図において、12aは一層目の多結晶シリコン
層PAよりなるゲート電極、12bは同じく隣接
するメモリセルのゲート電極(ワードライン)、
13は二層目の多結晶シリコン層よりなる第1の
キヤパシタ電極、14は三層目の多結晶シリコン
層よりなる第2のキヤパシタ電極で、他の符号は
第4図と同一対象物を示す。
In the figure, 12a is a gate electrode made of the first polycrystalline silicon layer P A , 12b is also a gate electrode (word line) of an adjacent memory cell,
13 is a first capacitor electrode made of a second polycrystalline silicon layer, 14 is a second capacitor electrode made of a third polycrystalline silicon layer, and other symbols indicate the same objects as in FIG. 4. .

同図のようにスタツクド・キヤパシタ型セルに
おいては、自己セルのゲート電極12aの上部、
及び隣接するセル上から素子間分離酸化膜上に延
在する別のゲート電極、即ち隣接するワードライ
ン12bの上部もキヤパシタ領域として使用され
るので、前記従来の通常型のメモリセルに比べ同
一セル面積におけるキヤパシタ容量が3倍程度に
増大できる。
As shown in the figure, in a stacked capacitor type cell, the upper part of the gate electrode 12a of the self-cell,
Another gate electrode extending from above the adjacent cell onto the device isolation oxide film, that is, the upper part of the adjacent word line 12b, is also used as a capacitor region, so compared to the conventional conventional memory cell, the same cell The capacitor capacity in terms of area can be increased about three times.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然しながら前記D−RAMにおいてはメモリセ
ルを更に高密度高集積化することが要望されてお
り、セル面積を更に縮小しても現状のスタツク
ド・キヤパシタ型セル程度のキヤパシタ容量が得
られるセル構造を提供しなければならないという
問題を生じている。
However, in the D-RAM, there is a demand for higher density and higher integration of memory cells, and we have provided a cell structure that can obtain a capacitance comparable to the current stacked capacitor type cell even if the cell area is further reduced. The problem arises that it has to be done.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、開孔部の周囲がゲート電
極と素子間分離絶縁膜とによつて画定された溝状
の不純物導入領域と、該溝状不純物導入領域の内
面に直に接し、且つ絶縁膜を介して隣接するゲー
ト電極上に延在する第1のキヤパシタ電極と、該
第1のキヤパシタ電極の表面に形成された誘電体
膜と、該誘電体膜を介して該第1のキヤパシタ電
極上を覆う第2のキヤパシタ電極とを有する本発
明によるスタツクド・キヤパシタ型の半導体記憶
装置によつて達成される。
The above problem can be solved by forming a groove-shaped impurity introduction region in which the periphery of the opening is defined by a gate electrode and an element isolation insulating film, and directly contacting the inner surface of the groove-shaped impurity introduction region, and a first capacitor electrode extending onto an adjacent gate electrode via an insulating film; a dielectric film formed on a surface of the first capacitor electrode; This is achieved by a stacked capacitor type semiconductor memory device according to the present invention having a second capacitor electrode covering the electrode.

〔作用〕[Effect]

即ち本発明においては、セル領域にゲート電極
と素子間分離領域とに自己整合せしめて溝状のソ
ース領域を設け、該溝状ソース領域の内面に沿つ
てスタツク型のキヤパシタを形成し、且つその両
端部を自己セルのゲート電極の上部及び隣接ワー
ドラインの上部に延在せしめ、これによつてキヤ
パシタの実効面積の大幅な増大を図ると同時にセ
ル領域の縮小を図るものである。
That is, in the present invention, a groove-shaped source region is provided in the cell region in self-alignment with the gate electrode and the isolation region, and a stack-type capacitor is formed along the inner surface of the groove-shaped source region. Both ends extend above the gate electrode of the self cell and above the adjacent word line, thereby greatly increasing the effective area of the capacitor and at the same time reducing the cell area.

かくてダイナミツク型メモリを更に高密度高集
積化した際の情報の信頼度が確保される。
In this way, the reliability of information is ensured when the dynamic type memory is made even more dense and highly integrated.

〔実施例〕〔Example〕

以下本発明を、第1図に示す実施例により具体
的に説明する。
The present invention will be specifically explained below with reference to an embodiment shown in FIG.

第1図は本発明のスタツクドキヤパシタ型メモ
リセルの一実施例を示す模式平面図a及びA−A
矢視模式断面図bで、第2図a乃至fはその製造
方法を示す工程断面図である。
FIG. 1 is a schematic plan view a and A-A showing an embodiment of a stacked capacitor type memory cell of the present invention.
Fig. 2 is a schematic sectional view b in the direction of arrows, and Figs. 2a to 2f are process sectional views showing the manufacturing method thereof.

本発明のスタツクドキヤパシタ型メモリセルは
例えば第1図のような構造を有する。
The stacked capacitor type memory cell of the present invention has a structure as shown in FIG. 1, for example.

同図において、21はp型シリコン基板、22
は素子間分離酸化膜、23はゲート酸化膜、24
aは一層目の多結晶シリコン層PAよりなるゲー
ト電極、24bは同じく一層目の多結晶シリコン
層PAよりなる隣接トランジスタのゲート電極
(ワードライン)、25は二酸化シリコン(SiO2
等よりなる第1の絶縁膜、26はゲート電極24
a及び素子間分離酸化膜22にセルフアラインで
形成された深さ例えば2μm程度の溝、27は二
層目の多結晶シリコン層PBよりなる第1のキヤ
パシタ電極、28は深さ2000Å程度のn+型ソー
ス領域、29は厚さ100Å程度のSiO2膜等よりな
る誘電体膜、30は三層目の多結晶シリコン層
PCよりなる第2のキヤパシタ電極、31は第2
のキヤパシタ電極に形成される窓、32はn+
ドレイン領域、33は燐珪酸ガラス(PSG)等
よりなる第2の絶縁膜、34はドレイン・コンタ
クト窓、35はアルミニウム等よりなるビツトラ
インを示す。
In the figure, 21 is a p-type silicon substrate, 22
23 is an element isolation oxide film, 23 is a gate oxide film, and 24 is an isolation oxide film.
a is a gate electrode made of the first polycrystalline silicon layer PA , 24b is a gate electrode (word line) of an adjacent transistor also made of the first polycrystalline silicon layer PA, and 25 is silicon dioxide (SiO 2 ).
26 is a gate electrode 24;
27 is a first capacitor electrode made of the second polycrystalline silicon layer P B , and 28 is a groove with a depth of about 2000 Å, which is formed by self-alignment in a and the element isolation oxide film 22. n + type source region, 29 is a dielectric film made of SiO 2 film etc. with a thickness of about 100 Å, 30 is the third layer of polycrystalline silicon layer
A second capacitor electrode made of P C , 31 is a second capacitor electrode.
32 is an n + type drain region, 33 is a second insulating film made of phosphosilicate glass (PSG), 34 is a drain contact window, and 35 is a bit line made of aluminum, etc. .

上記構造は第2図a乃至fに示す製造方法によ
つて形成される。
The above structure is formed by the manufacturing method shown in FIGS. 2a to 2f.

即ち第2図aに示すように、 通常通り例えばp型シリコン基板21上に素子
間分離酸化膜22を形成した後、表出シリコン面
に熱酸化により厚さ300Å程度のゲート酸化膜2
3を形成し、次いで該基板上に厚さ4000Å程度の
一層目の多結晶シリコン層PAを気相成長し、ガ
ス拡散法等により燐を高濃度に導入して該一層目
の多結晶シリコン層PAに導電性を付与する。
That is, as shown in FIG. 2a, after forming an element isolation oxide film 22 on, for example, a p-type silicon substrate 21 as usual, a gate oxide film 2 with a thickness of about 300 Å is formed on the exposed silicon surface by thermal oxidation.
3 is formed, and then a first polycrystalline silicon layer P A with a thickness of approximately 4000 Å is grown in a vapor phase on the substrate, and phosphorus is introduced at a high concentration by a gas diffusion method to form the first polycrystalline silicon layer P A. Gives conductivity to layer P A.

次いで第2図bに示すように、 通常のリソグラフイ技術により上記一層目の多
結晶シリコン層PAをパターンニングして該PA
りなるゲート電極24a及び24bを形成し、表
出ゲート酸化膜23を除去した後、熱酸化により
ゲート電極24a,24bの表面に例えば3000Å
程度酸化シリコン絶縁膜25aを形成する。この
際不純物濃度の低い単結晶シリコン面即ちp型シ
リコン基板21の表面に形成される酸化シリコン
絶縁膜25bの厚さは上記PA上のものの1/5程
度、即ち600Å程度である。
Next, as shown in FIG. 2b, the first polycrystalline silicon layer P A is patterned using a normal lithography technique to form gate electrodes 24a and 24b made of P A , and the exposed gate oxide film is After removing 23, the surface of the gate electrodes 24a and 24b is coated with a thickness of, for example, 3000 Å by thermal oxidation.
A silicon oxide insulating film 25a is then formed. At this time, the thickness of the silicon oxide insulating film 25b formed on the single crystal silicon surface with low impurity concentration, that is, the surface of the p-type silicon substrate 21, is about 1/5 of that on the above P A , that is, about 600 Å.

次いで第2図cに示すように、 該基板上にドレイン形成領域41上を覆うレジ
スト・マスク42を形成し、先ず三弗化メタン
(CHF3)によるリアクテイブ・イオンエツチン
グによりソース形成領域43上の600Å程度の厚
さの酸化シリコン絶縁膜膜25bを除去する。こ
の際表出するゲート電極上の酸化シリコン絶縁膜
25aは2400Å程度の厚さになつて残留する。
Next, as shown in FIG. 2c, a resist mask 42 is formed on the substrate to cover the drain formation region 41, and first the source formation region 43 is etched by reactive ion etching using methane trifluoride (CHF 3 ). The silicon oxide insulating film 25b having a thickness of about 600 Å is removed. At this time, the exposed silicon oxide insulating film 25a on the gate electrode remains with a thickness of about 2400 Å.

次いでゲート電極24a上の酸化シリコン絶縁
膜25a及び素子間分離酸化膜22をマスクに
し、例えば四塩化炭素(CCl4)+酸素(O2)等よ
りなるエツチング・ガスを用いるリアクテイブ・
イオンエツチングによつて表出しているP型シリ
コン基板21面を選択的にエツチングし、該ソー
ス形成領域43にゲート電極24a及び素子間分
離酸化膜22に自己整合した深さ2μm程度の略
垂直な側面を有する溝26を形成する。
Next, using the silicon oxide insulating film 25a on the gate electrode 24a and the element isolation oxide film 22 as masks, a reactive etching process is performed using an etching gas consisting of, for example, carbon tetrachloride (CCl 4 ) + oxygen (O 2 ).
The surface of the P-type silicon substrate 21 exposed by ion etching is selectively etched, and a substantially vertical trench with a depth of about 2 μm is formed in the source formation region 43 in self-alignment with the gate electrode 24a and the element isolation oxide film 22. A groove 26 having side surfaces is formed.

次いで第2図dに示すように、 該基板上に厚さ3000Å程度の二層目の多結晶シ
リコン層PBを気相成長し、例えば砒素(As+)を
高濃度にイオン注入し、1000℃程度に所定の時間
加熱して該二層目の多結晶シリコン層PBに導電
性を付与する。
Next, as shown in FIG. 2d, a second polycrystalline silicon layer P B with a thickness of about 3000 Å is grown on the substrate in a vapor phase, and arsenic (As + ), for example, is ion-implanted at a high concentration, and then The second polycrystalline silicon layer P B is made conductive by heating at about 100° C. for a predetermined period of time.

この際前記溝26の表面部に砒素を固相−固相
拡散せしめて、該溝26の表面部に深さ2000Å程
度のn+型ソース領域28を形成する。
At this time, arsenic is diffused into the surface of the groove 26 in a solid phase to form an n + type source region 28 having a depth of about 2000 Å on the surface of the groove 26.

次いで第2図eに示すように、 通常のリソグラフイ技術により上記二層目の多
結晶シリコン層PBをパターンニングし、自己セ
ルのゲート電極24a及び隣接ワードライン24
b上に延在する第1のキヤパシタ電極27を形成
し、次いで熱酸化により該第1のキヤパシタ電極
27の表面に厚さ例えば100Å程度の二酸化シリ
コン誘電体膜29を形成し、次いで該基板上に厚
さ3000Å程度の三層目の多結晶シリコン層PC
気相成長すし、次いで該三層目の多結晶シリコン
層PCにガス拡散等の方法により燐を高濃度に導
入し導電性を付与して第2のキヤパシタ電極30
となす。
Next, as shown in FIG. 2e, the second polycrystalline silicon layer P B is patterned using a normal lithography technique to form the gate electrode 24a of the self cell and the adjacent word line 24.
A first capacitor electrode 27 extending on the substrate is formed, and then a silicon dioxide dielectric film 29 with a thickness of, for example, about 100 Å is formed on the surface of the first capacitor electrode 27 by thermal oxidation, and then a silicon dioxide dielectric film 29 is formed on the substrate. Then, a third polycrystalline silicon layer PC with a thickness of approximately 3000 Å is grown in a vapor phase, and then phosphorus is introduced at a high concentration into the third polycrystalline silicon layer PC by a method such as gas diffusion to make it conductive. The second capacitor electrode 30
Nasu.

次いで第2図fに示すように、 通常のリソグラフイ技術により該第2のキヤパ
シタ電極30にドレイン形成領域41の上部をそ
の近傍領域を含めて表出する開孔31を形成し、
該キヤパシタ電極30及び前記開孔31内に表出
するゲート電極24aをマスクにして砒素
(As+)を高濃度にイオン注入し、所定の熱処理
を行つてn+型ドレイン領域32を形成する。
Next, as shown in FIG. 2f, an opening 31 is formed in the second capacitor electrode 30 by a normal lithography technique to expose the upper part of the drain formation region 41 including its neighboring region;
Arsenic (As + ) is ion-implanted at a high concentration using the capacitor electrode 30 and the gate electrode 24a exposed in the opening 31 as a mask, and a predetermined heat treatment is performed to form an n + type drain region 32.

そして以後通常とおり燐珪酸ガラス絶縁膜の形
成、配線コンタクト窓の形成、配線形成等を行つ
て、前記第1図に示すようなスタツク構造の1ト
ランジスタ・1キヤパシタ型メモリセルを完成せ
しめる。
Thereafter, formation of a phosphosilicate glass insulating film, formation of wiring contact windows, formation of wiring, etc. are carried out as usual to complete a one-transistor, one-capacitor type memory cell having a stacked structure as shown in FIG.

上記実施例の説明のように本発明の構造におい
ては、上部にキヤパシタが構成されるソース領域
の溝がゲート電極と素子間分離絶縁膜とに自己整
合で形成されるので、該溝とゲート電極の間に位
置合わせ余裕を取る必要がない。
As described in the above embodiment, in the structure of the present invention, the groove of the source region on which the capacitor is formed is formed in self-alignment with the gate electrode and the element isolation insulating film. There is no need to provide alignment margin between the two.

またゲート電極とキヤパシタ電極との距離はゲ
ート電極上に形成する絶縁膜の厚さによつて規定
されるので、マスク整合の場合のように位置合わ
せ余裕を見る必要がなく大幅に短縮できる。
Further, since the distance between the gate electrode and the capacitor electrode is determined by the thickness of the insulating film formed on the gate electrode, there is no need to consider alignment margins as in the case of mask alignment, and the distance can be significantly shortened.

一方本発明の構造においては、実施例に示すよ
うに溝によつてキヤパシタの実効面積を増し、且
つ更に自己セルのゲート電極の上部及び隣接ワー
ドラインの上部をキヤパシタ領域として使用する
のでセル当たりのキヤパシタ容量が大幅に増大
し、従来の通常セルの5〜6倍程度の大きなキヤ
パシタ容量が得られる。
On the other hand, in the structure of the present invention, as shown in the embodiment, the effective area of the capacitor is increased by the groove, and furthermore, the upper part of the gate electrode of the self cell and the upper part of the adjacent word line are used as the capacitor region, so that the effective area of the capacitor is increased. The capacitor capacity is significantly increased, and a capacitor capacity about 5 to 6 times larger than that of a conventional normal cell can be obtained.

なお本発明の構造は反対導電型のメモリセルに
も適用される。
Note that the structure of the present invention is also applicable to memory cells of opposite conductivity types.

キヤパシタ電極はモリブデン・シリサイド
(MoSi2)等の高融点金属珪化物で形成してもよ
い。
The capacitor electrode may be formed of a high melting point metal silicide such as molybdenum silicide (MoSi 2 ).

又誘電体膜には窒化シリコン(Si3N4)等も用
いられる。
Furthermore, silicon nitride (Si 3 N 4 ) or the like is also used for the dielectric film.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明のスタツクド・キヤパ
シタ型メモリセルにおいては、セル面積を従来よ
り縮小することが可能であり、且つセル面積を縮
小した際にも大きなキヤパシタ容量を確保するこ
とが出来る。
As described above, in the stacked capacitor type memory cell of the present invention, the cell area can be reduced compared to the conventional cell area, and even when the cell area is reduced, a large capacitor capacity can be secured.

従つて本発明によれば、情報の信頼度を低下せ
しめずにD−RAM等の半導体記憶装置を更に高
密度高集積化することが可能になる。
Therefore, according to the present invention, it is possible to further increase the density and integration of semiconductor memory devices such as D-RAM without reducing the reliability of information.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のスタツクドキヤパシタ型メモ
リセルの一実施例を示す模式平面図a及びA−A
矢視模式断面図b、第2図a乃至fはその製造方
法を示す工程断面図、第3図は1トランジスタ・
1キヤパシタ型のメモリセルの等価回路図、第4
図は従来の通常型の1トランジスタ・1キヤパシ
タ型メモリセルの模式側断面図、第5図はトレン
チ・セルの模式側断面図、第6図は従来のスタツ
クド・キヤパシタ型セルの模式側断面図である。 図において、21はp型シリコン基板、22は
フイールド酸化膜、23はゲート酸化膜、24a
及び24bはゲート電極、25は第1の絶縁膜、
26は溝、27は第1のキヤパシタ電極、28は
n+型ソース領域、29は誘電体膜、30は第2
のキヤパシタ電極、31は窓、32はn+型ドレ
イン領域、33は第2の絶縁膜、34はドレイ
ン・コンタクト窓、35はビツトライン、PA
一層目の多結晶シリコン層、PBは二層目の多結
晶シリコン層、PCは三層目の多結晶シリコン層、
を示す。
FIG. 1 is a schematic plan view a and A-A showing an embodiment of a stacked capacitor type memory cell of the present invention.
A schematic cross-sectional view b in the direction of arrows, FIGS. 2 a to f are process cross-sectional views showing the manufacturing method, and FIG.
Equivalent circuit diagram of 1-capacitor type memory cell, 4th
The figure is a schematic side sectional view of a conventional conventional one-transistor/one-capacitor type memory cell, FIG. 5 is a schematic side sectional view of a trench cell, and FIG. 6 is a schematic side sectional view of a conventional stacked capacitor type cell. It is. In the figure, 21 is a p-type silicon substrate, 22 is a field oxide film, 23 is a gate oxide film, and 24a
and 24b is a gate electrode, 25 is a first insulating film,
26 is a groove, 27 is a first capacitor electrode, and 28 is a groove.
n + type source region, 29 a dielectric film, 30 a second
31 is a window, 32 is an n + type drain region, 33 is a second insulating film, 34 is a drain contact window, 35 is a bit line, P A is the first polycrystalline silicon layer, P B is the second layer The third polycrystalline silicon layer, P C is the third polycrystalline silicon layer,
shows.

Claims (1)

【特許請求の範囲】[Claims] 1 開孔部の周囲がゲート電極と素子間分離絶縁
膜とによつて画定された溝状の不純物導入領域
と、該溝状不純物導入領域の内面に直に接し、且
つ絶縁膜を介して隣接するゲート電極上に延在す
る第1のキヤパシタ電極と、該第1のキヤパシタ
電極の表面に形成された誘電体膜と、該誘電体膜
を介して該第1のキヤパシタ電極上を覆う第2の
キヤパシタ電極とを有してなることを特徴とする
半導体記憶装置。
1. A groove-shaped impurity introduction region in which the periphery of the opening is defined by a gate electrode and an element isolation insulating film, and a groove-shaped impurity introduction region that is in direct contact with the inner surface of the groove-shaped impurity introduction region and adjacent through an insulating film. a first capacitor electrode extending over the gate electrode, a dielectric film formed on the surface of the first capacitor electrode, and a second capacitor electrode covering the first capacitor electrode via the dielectric film. 1. A semiconductor memory device comprising: a capacitor electrode;
JP59229331A 1984-10-31 1984-10-31 Semiconductor memory device Granted JPS61107768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229331A JPS61107768A (en) 1984-10-31 1984-10-31 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229331A JPS61107768A (en) 1984-10-31 1984-10-31 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS61107768A JPS61107768A (en) 1986-05-26
JPH0438144B2 true JPH0438144B2 (en) 1992-06-23

Family

ID=16890473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229331A Granted JPS61107768A (en) 1984-10-31 1984-10-31 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS61107768A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120070A (en) * 1985-11-20 1987-06-01 Toshiba Corp Semiconductor memory
JP2707538B2 (en) * 1986-05-09 1998-01-28 セイコーエプソン株式会社 Method for manufacturing semiconductor device
JPH0691214B2 (en) * 1986-11-15 1994-11-14 三菱電機株式会社 Dynamic semiconductor memory device
JPH01287956A (en) * 1987-07-10 1989-11-20 Toshiba Corp Semiconductor memory and manufacture thereof
JP2838412B2 (en) * 1988-06-10 1998-12-16 三菱電機株式会社 Capacitor for semiconductor memory device and method of manufacturing the same
JP2794750B2 (en) * 1989-03-07 1998-09-10 日本電気株式会社 Semiconductor memory cell and manufacturing method thereof

Also Published As

Publication number Publication date
JPS61107768A (en) 1986-05-26

Similar Documents

Publication Publication Date Title
US5128273A (en) Method of making a dynamic random access memory cell with stacked capacitor
US4672410A (en) Semiconductor memory device with trench surrounding each memory cell
KR100242352B1 (en) Method of fabricating a self-aligned contact hole for a semiconductor device
JP2787646B2 (en) Method for manufacturing semiconductor device
JPH0365905B2 (en)
JPS60214558A (en) Semiconductor integrated circuit device and manufacture thereof
US5106774A (en) Method of making trench type dynamic random access memory device
JPH0648719B2 (en) Semiconductor memory device
JPS6155258B2 (en)
JPH0438144B2 (en)
JPS6156445A (en) Semiconductor device
JPS59191374A (en) Semiconductor integrated circuit device
JP2519216B2 (en) Semiconductor memory device
JPS5856267B2 (en) Manufacturing method of semiconductor integrated circuit
JPS60224260A (en) Semiconductor memory device
JPH05110019A (en) Semiconductor memory storage
JPH0529571A (en) Semiconductor storage device and manufacture thereof
JPS6340362A (en) Semiconductor storage device
JP2564972B2 (en) Semiconductor memory device and manufacturing method thereof
JPH0982904A (en) Dynamic type storage device and its manufacture
JPH0423467A (en) Manufacture of semiconductor memory
JPS61199657A (en) Semiconductor memory
JPH01149452A (en) Semiconductor storage device and manufacture thereof
JPH01189949A (en) Manufacture of semiconductor memory device
JPH06125052A (en) Manufacture of semiconductor memory

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term