JPH0437523B2 - - Google Patents

Info

Publication number
JPH0437523B2
JPH0437523B2 JP60011674A JP1167485A JPH0437523B2 JP H0437523 B2 JPH0437523 B2 JP H0437523B2 JP 60011674 A JP60011674 A JP 60011674A JP 1167485 A JP1167485 A JP 1167485A JP H0437523 B2 JPH0437523 B2 JP H0437523B2
Authority
JP
Japan
Prior art keywords
sheet
conductive
woven fabric
metal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60011674A
Other languages
Japanese (ja)
Other versions
JPS61171009A (en
Inventor
Masato Hoshino
Ryoichi Okano
Kunihiro Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUCHA KK
Original Assignee
TSUCHA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUCHA KK filed Critical TSUCHA KK
Priority to JP1167485A priority Critical patent/JPS61171009A/en
Publication of JPS61171009A publication Critical patent/JPS61171009A/en
Publication of JPH0437523B2 publication Critical patent/JPH0437523B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シートの厚み方向にのみ導電性を有
するいわゆる異方導電性シートに関するもので、
特にパターン間隔が小さくできることはもちろ
ん、織布の格子間隔及び微粉金属の選択により、
任意の相手パターン間隔に適合できる特徴をもつ
異方導電性シートに関する。異方導電性シートと
は厚み方向のみに導電性を有し、その方向と交差
する方向には電気的に絶縁されているシートを言
い、近時、電子式卓上計算機、電子式デジタル時
計、カメラ等の様に限定された空間に収納される
回路素子相互の接続用材料として有用であり、広
く用いられる状態にある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a so-called anisotropically conductive sheet having conductivity only in the thickness direction of the sheet.
In particular, not only can the pattern spacing be made small, but also by selecting the lattice spacing of the woven fabric and the fine metal powder,
The present invention relates to an anisotropic conductive sheet that can be adapted to any mating pattern spacing. Anisotropically conductive sheets are sheets that have conductivity only in the thickness direction and are electrically insulated in the direction that crosses that direction. It is useful as a material for interconnecting circuit elements housed in a limited space such as, for example, and is widely used.

(従来の技術) 従来から知られている異方導電性材料として
は、たとえば(イ)導電性粉体、あるいは導電性繊維
体を分散させた導電性ゴムと、電気絶縁性ゴムを
交互に重ね合せ一体化し、しかる後、重ね合せ方
向に対して垂直にスライスしたいわゆるエラスチ
ツクコネクタ、(ロ)導電層、及び絶縁層に塗料を用
いて(イ)と同様にスライスし、低ピツチ化を図つた
異方導電性シート、(ハ)高分子物質に調整された量
のグラフアイト、あるいは金属粒子を分散配合し
た感圧導電性シートなどがある。
(Prior art) Conventionally known anisotropically conductive materials include (a) conductive rubber in which conductive powder or conductive fibers are dispersed, and electrically insulating rubber, which are alternately layered. After that, the so-called elastic connector is sliced perpendicularly to the stacking direction, (b) the conductive layer and the insulating layer are coated with paint, and sliced in the same manner as (a) to reduce the pitch. (iii) Pressure-sensitive conductive sheets containing a controlled amount of graphite or metal particles dispersed in a polymeric substance.

(発明が解決しようとする問題点) しかしながら、(イ)では低抵抗化を図る為に各種
導電性部材を多量に充填配合した導電性ゴムは、
当然のことながら硬度が高く、ゴム弾性に劣り、
かつ、加圧にて電気回路との導通を生じさせる
為、常時圧接荷重が必要となり被接続体の強度を
上記荷重に耐えるものとみなければならない。(ロ)
の場合には低ピツチ化が可能なるも同様に常時圧
接荷重を必要とする難点がある。そして(ロ)、(ハ)で
圧接時にシートの厚み方向には導通状態になるも
のの、交差する水平方向にも絶縁性が失われ易
く、実装密度を高くするには限界があり極小近接
回路の接続には使用できない不利、欠点があつ
た。
(Problem to be solved by the invention) However, in (a), the conductive rubber that is filled with a large amount of various conductive members in order to lower the resistance,
Naturally, it has high hardness and poor rubber elasticity,
In addition, since conduction with the electric circuit is caused by pressurization, a constant pressure load is required, and the strength of the connected object must be considered to be able to withstand the above load. (B)
Although it is possible to reduce the pitch in this case, it also has the disadvantage of requiring constant pressure contact load. In (b) and (c), although conduction occurs in the thickness direction of the sheet during pressure welding, insulation is likely to be lost in the intersecting horizontal direction as well, and there is a limit to increasing the packaging density. It had disadvantages and disadvantages that it could not be used for connection.

(問題点を解決するための手段) 本発明はかかる従来の異方導電性シートにおけ
る極小近接回路の接続、いわゆる低ピツチ化を図
る場合の種々の問題点を解決してなるものであつ
て、これはシート状の絶縁性織布の空〓格子内に
球状微粉導電性金属を埋設し、該シート状の絶縁
性織布の厚み方向の両端を絶縁性樹脂にて被覆し
てなる構成としたことを特徴とする異方導電性シ
ートであり、被着体への圧接または熱圧接時に被
覆された絶縁性樹脂が融動して球状微粉導電性金
属が絶縁性樹脂から露出し、直接、被着体と接触
するため、厚み方向にのみ導電性を得、かつ、融
動した該樹脂が圧接後においても被着体と接着保
持するため、常時圧接荷重は必要としない。また
当然ながら、球状微粉導電性金属は絶縁性織布の
空〓格子内に整然と埋設されているため、該金属
間の電気絶縁性は保持されたままである。したが
つて、パターン間隔を小さくしたり、低抵抗化を
図つた場合にも従来の技術では導電性の異方化が
失われ易い難点をシート状の絶縁性織布を用いる
ことにより導電性部材を一定間隔に配置でき、該
問題点を解決することができた。さらに、単位面
積当りの球状微粉導電性金属の数が一定であるた
め、被着体における導電体との実接触面積、及び
接触抵抗が各パターンにおいて均一となる利点も
得られた。
(Means for Solving the Problems) The present invention solves various problems when attempting to connect extremely small proximity circuits, so-called low pitch, using such conventional anisotropic conductive sheets. This has a structure in which spherical fine conductive metal is embedded in an empty lattice of a sheet-like insulating fabric, and both ends of the sheet-like insulating fabric in the thickness direction are covered with an insulating resin. It is an anisotropically conductive sheet characterized by the fact that the insulating resin coated melts during pressure welding or thermocompression welding to the adherend, and the spherical fine conductive metal is exposed from the insulating resin, and the spherical fine powder conductive metal is exposed directly to the adherend. Since it comes into contact with the adherend, conductivity is obtained only in the thickness direction, and the fused resin maintains adhesion to the adherend even after pressure contact, so no constant pressing load is required. Furthermore, as a matter of course, since the spherical fine conductive metals are embedded in an orderly manner within the empty lattice of the insulating woven fabric, the electrical insulation between the metals remains maintained. Therefore, even if the pattern spacing is made smaller or the resistance is lowered, the anisotropy of the conductivity is easily lost with conventional technology. could be arranged at regular intervals, and this problem could be solved. Furthermore, since the number of spherical fine conductive metal particles per unit area is constant, there is also an advantage that the actual contact area with the conductor on the adherend and the contact resistance are uniform in each pattern.

以下、添付図面を参照して本発明を詳細に説明
すれば、第1図は本発明になる異方導電性シート
の一実施例を例示してなるものであるが、保護シ
ート4に保持された絶縁性樹脂3をシート状絶縁
性織布2に積み重ね一体化した後、該シート状絶
縁性織布2へ球状微粉導電性金属1を織布繊維上
に金属1が存在しないように絶縁性織布2の空〓
格子内に整然と埋設した。しかる後、保護シート
4′に保持された絶縁性樹脂3′を積み重ね一体化
して本発明のシートを得る。そして、第2図は正
面から、第3図は断面から見たものである。ここ
で、シート状絶縁性織布2は合成繊維であるナイ
ロン、ポリエステル等ないし天然繊維である絹等
の絶縁性繊維にて織られシート状に形成されたも
ので、織布の厚みは30〜150μm程度が望ましく、
織り数が100〜500/インチであり、この際の空〓
格子の一辺は織布の厚みに対し同等またはそれ以
上になるように織られていなければならない。こ
れは、既存のメツシユ、例えばスクリーン印刷用
メツシユ等が使用できる。微粉導電性金属1は球
状であることが必要である。つまり、例えば繊維
状金属の場合、織布シートに埋設する時、空〓格
子内のみならず織布繊維上や繊維下部の空間を通
して、格子間に付着してしまい本来の空〓格子の
絶縁性をなくしてしまうし、製造作業性を著しく
損なう。従つて、空〓格子間に存在しないように
するために、その粒径は織布の厚みに対し0.7〜
2.0倍が望ましく、20〜300μm程度の範囲が良好
な性能を発揮する。この金属は織布の空〓格子内
に各々1個埋設充填することが望ましいが、織布
の厚み以上になるように数個埋設しても性能上問
題はない。またその材質としては、金、銀、銅、
アルミ等の単一金属あるいは半田等の合金やアル
ミ等の金属に銀を表面コーテイングした導電性材
料が使用できる。次に縁性樹脂3,3′は各種合
成樹脂、合成ゴム等の接着剤あるいは点着剤であ
り、例えば、ウレタン系ゴム、アクリル系粘着
剤、あるいはポリエステル系ホツトメルト接着剤
を離型性のある保護シートに印刷法、ハケ塗り
法、ロールコート法、スプレー法等にて塗布する
ことにより容易に形成でき、厚みがおよそ5〜
50μm程度になるのが望ましい。また、第4図及
び第5図の如く保護シートにではなく、直接織布
に同様の方法にて塗布し一体化することも可能で
ある。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an example of an anisotropically conductive sheet according to the present invention. After stacking and integrating the insulating resin 3 on the sheet-like insulating woven fabric 2, the spherical fine conductive metal 1 is applied to the sheet-like insulating woven fabric 2 so that the metal 1 is not present on the woven fabric fibers. The sky of woven cloth 2
They were buried neatly within the grid. Thereafter, the insulating resin 3' held on the protective sheet 4' is stacked and integrated to obtain the sheet of the present invention. FIG. 2 is a front view, and FIG. 3 is a cross-sectional view. Here, the sheet-like insulating woven fabric 2 is formed into a sheet shape by woven from insulating fibers such as synthetic fibers such as nylon and polyester or natural fibers such as silk, and the thickness of the woven fabric is 30 to 30 mm. Approximately 150μm is desirable;
The number of weaves is 100 to 500/inch, and the sky at this time is
One side of the lattice must be woven so that the thickness is equal to or greater than the thickness of the woven fabric. For this purpose, an existing mesh such as a screen printing mesh can be used. The fine conductive metal 1 needs to be spherical. In other words, in the case of fibrous metal, for example, when it is embedded in a woven fabric sheet, it adheres not only within the empty lattice but also through the spaces above and below the woven fabric fibers and between the lattices, causing the insulation of the original empty lattice to deteriorate. This results in a loss of information and significantly impairs manufacturing workability. Therefore, in order to avoid the presence of voids in the lattice, the particle size should be between 0.7 and 0.7 to the thickness of the woven fabric.
2.0 times is desirable, and a range of about 20 to 300 μm exhibits good performance. It is desirable to embed one metal in each empty lattice of the woven fabric, but there is no problem in terms of performance even if several metals are embedded so that the thickness is greater than the thickness of the woven fabric. The materials used include gold, silver, copper,
A conductive material such as a single metal such as aluminum, an alloy such as solder, or a metal such as aluminum whose surface is coated with silver can be used. Next, the edge resins 3 and 3' are adhesives or dots made of various synthetic resins and synthetic rubbers, such as urethane rubber, acrylic adhesives, or polyester hot melt adhesives with release properties. It can be easily formed on a protective sheet by printing, brushing, roll coating, spraying, etc., and has a thickness of approximately 5 to 50 ml.
It is desirable that the thickness be about 50 μm. Furthermore, it is also possible to apply the coating directly to the woven fabric in a similar manner and integrate it, instead of applying it to the protective sheet as shown in FIGS. 4 and 5.

これを使用せんとするときは、一方の絶縁性樹
脂を保護しているシートを剥がし、被着体に位置
決めの後軽く押し当てる。次にもう一方の保護シ
ートを剥がして後、別の被着体を当て位置ずれし
ない程度に軽く押す。しかる後、導電接続部を
1.5〜4.0kgf/cm2で圧接ないしは熱圧接すれば第
6図及び第7図の如く両被着体間を微粉金属を介
して導電性を得、その他の部分で絶縁性樹脂が接
着し、安定した接触電気抵抗を得る為、常時圧接
荷重を必要としない。
When not using it, peel off the sheet protecting one insulating resin, position it on the adherend, and then press it lightly. Next, peel off the other protective sheet, then apply another adherend and press lightly to avoid shifting the position. After that, connect the conductive connections.
If pressure welding or heat pressure welding is carried out at 1.5 to 4.0 kgf/cm 2 , conductivity will be obtained between the two adherends through the fine powder metal, as shown in Figures 6 and 7, and the insulating resin will adhere to the other parts. In order to obtain stable electrical contact resistance, constant pressure contact load is not required.

実施例 1 織り数が180/インチであり厚さが75μmのポリ
エステル系スクリーン版用メツシユ(空〓格子の
一辺が95μm)に、両面を離型シートに保護され
た厚みが15μmであるアクリル系粘着剤の片面の
離型シートを剥がし、しわがよらないように張り
合わせた。このメツシユ側を上方にした後、平均
粒径が85μmの銅製球状金属をメツシユの上に撤
き散らしながら、格子内に埋設されるようにシリ
コンゴム製ヘラにて軽くスキージする。格子内に
埋設された球状金属はメツシユに張り合わされた
粘着剤により、格子内に固定された。余分な球状
金属はブラシにて掃き取つた。その後、もう一つ
のアクリル系粘着剤の片面の離型シートを剥が
し、しわがよらないようにメツシユシートに張り
合わせ、異方導電性シートができた。
Example 1 A polyester screen plate mesh with a weave count of 180/inch and a thickness of 75 μm (one side of the empty grid is 95 μm) was coated with an acrylic adhesive with a thickness of 15 μm protected on both sides by a release sheet. The release sheet on one side of the agent was peeled off and pasted together to prevent wrinkles. After turning the mesh side upward, a squeegee is lightly used with a silicone rubber spatula to scatter copper spherical metal particles having an average particle size of 85 μm onto the mesh so that it is buried in the grid. The spherical metal embedded within the grid was fixed within the grid by adhesive applied to the mesh. Excess spherical metal was swept away with a brush. After that, the release sheet on one side of the other acrylic adhesive was peeled off, and the sheet was attached to the mesh sheet to prevent wrinkles, creating an anisotropically conductive sheet.

これを2.5mmピツチで導体幅が1.5mmにパターン
化したエポキシ銅箔板にパターンに対して接触長
が10mm長さになるように予め調整しておいた異方
導電性シートの一方の保護シートを剥がし、位置
決めをした後、軽く押し当てた。そして、もう一
方の保護シートを剥がした。次に、銅箔ポリエス
テルシートで同様に2.5mmピツチで導体幅が1.5mm
にパターン化したものをこの異方導電性シートの
上に当て、おおよその位置決めした後、軽く押し
当てた。その後、2.5kgf/cm2の圧力にて圧接し
た。この各パターンの接触電気抵抗を測定したと
ころ、(1.0±0.02)×10-2Ωと、ばらつきが小さ
く、かつ低抵抗値結果が得られた。
This was patterned on an epoxy copper foil plate with a conductor width of 1.5 mm at a pitch of 2.5 mm, and one protective sheet of the anisotropic conductive sheet was adjusted in advance so that the contact length was 10 mm with respect to the pattern. After peeling it off and positioning it, I pressed it lightly. Then, I peeled off the other protective sheet. Next, use a copper foil polyester sheet with a conductor width of 1.5 mm at a pitch of 2.5 mm.
The patterned sheet was placed on top of this anisotropic conductive sheet, roughly positioned, and then pressed lightly. Thereafter, they were pressed together at a pressure of 2.5 kgf/cm 2 . When the contact electrical resistance of each pattern was measured, it was found to be (1.0±0.02)×10 −2 Ω, with little variation and a low resistance value.

実施例 2 絶縁性樹脂に軟化温度が80℃であり、常温にて
粘着性があるポリエステル系ホツトメルトを用い
た。これを前処理として保護シートにロールコー
ト法にて95℃で溶解した該ホツトメルトを厚みが
12μmなるようにコートした後、表面に一旦保護
シートを張り合わせた。この保護シートを剥が
し、実施例1と同様にメツシユシート等に張り合
わせた異方導電性シートを作製し、90℃にて熱圧
接(2.0kgf/cm2)した。この各パターンの接触電
気抵抗を測定したところ、(0.8±0.01)×10-Ωの
抵抗値結果が得られた。
Example 2 A polyester hot melt having a softening temperature of 80° C. and being sticky at room temperature was used as the insulating resin. This is used as a pre-treatment to coat the protective sheet with the hot melt melted at 95℃ using the roll coating method.
After coating to a thickness of 12 μm, a protective sheet was temporarily attached to the surface. This protective sheet was peeled off, and an anisotropically conductive sheet was prepared by laminating it on a mesh sheet or the like in the same manner as in Example 1, followed by thermo-pressure welding (2.0 kgf/cm 2 ) at 90°C. When the contact electrical resistance of each pattern was measured, a resistance value of (0.8±0.01)×10 Ω was obtained.

(発明の効果) 以上説明した通り、本発明の異方導電性シート
は絶縁性織布シートの格子内に、織布シートの厚
みに対し同等またはそれ以上になるように球状微
粉金属を、分散、埋設して圧接等によりこの微粉
金属を介して被着体との導通を得ることを特徴と
するものであり、この異方導電性シートによれ
ば、 (1) 絶縁性織布シートの格子内に球状微粉金属が
均一に埋設している為、微粉金属間が一定距離
に存在しており、相互に接触することがなく、
該シートの導電異方性が確保でき、従来不安定
であつた低ピツチの接続が可能となつた。
(Effects of the Invention) As explained above, the anisotropic conductive sheet of the present invention has spherical fine metal powder dispersed within the lattice of the insulating woven fabric sheet so that the thickness is equal to or greater than the thickness of the woven fabric sheet. The anisotropically conductive sheet is characterized in that it is buried and electrically connected to the adherend through the fine powder metal by pressure welding or the like. Because the spherical fine metal powder is buried uniformly inside, the fine metal particles exist at a certain distance and do not come into contact with each other.
The conductive anisotropy of the sheet can be ensured, and low pitch connections, which were previously unstable, have become possible.

(2) 球状微粉金属が均一に埋設されている為、導
電性部材が不均一な分散タイプのシートと異な
り、各パターンの接着面積当たりの接触電気抵
抗を一定に保持することができた。
(2) Because the spherical fine powder metal is embedded uniformly, the electrical contact resistance per bonding area of each pattern can be maintained constant, unlike sheets of the dispersion type in which the conductive material is unevenly distributed.

(3) 導電性部材として球状の金属を用いる為、製
造時において繊維状金属と比べ空〓格子内への
均一な埋設が容易であり、かつ格子間の絶縁性
が確保でき導電異方性への信頼性が高い。
(3) Since spherical metal is used as the conductive member, it is easier to embed it uniformly in the empty lattice during manufacturing compared to fibrous metal, and the insulation between the lattices can be ensured, resulting in conductive anisotropy. High reliability.

(4) 球状微粉金属は絶縁性織布シートの厚みに対
し、同等またはそれ以上になるように空〓格子
内に埋設する為、低荷重の圧接にてたやすく金
属が露出し、被着体との接触面積が大きくな
り、接触抵抗値が極めて小さくなつた。
(4) Since the spherical fine powder metal is buried in the empty grid so that the thickness is equal to or greater than the thickness of the insulating woven fabric sheet, the metal is easily exposed by pressure welding with a low load, and the adherend is The contact area with the material became larger, and the contact resistance value became extremely small.

(5) 絶縁性樹脂は圧接等により、微粉金属と被着
体が接触する部分以外に融動し、被着体と接着
する為、実装処理後は常時圧接荷重を必要とせ
ず、かつ導通抵抗が安定し、信頼性の高い導通
状態を維持できた。
(5) Because the insulating resin melts and adheres to the adherend in areas other than those where the fine powder metal and the adherend come into contact with each other through pressure welding, etc., there is no need for constant pressure contact load after the mounting process, and there is no conduction resistance. was able to maintain a stable and highly reliable conduction state.

(6) 個々の球状微粉金属を介した導通の為、実装
時の厳密な位置決めを必要とせず実装作業性を
高めることができた。
(6) Because conduction occurs through individual spherical fine powder metals, there is no need for precise positioning during mounting, making it possible to improve mounting work efficiency.

など顕著な作用効果を奏するものである。It has remarkable effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明なる一実施例の異方導電性シー
トの部分斜視断面図、第2図は第1図の要部正面
図、第3図は第1図の要部断面図、第4図は織布
シートに直接絶縁性樹脂を一体化した時の異方導
電性シートの部分斜視断面図、第5図は第4図の
要部断面図、第6図および第7図は本発明の異方
導電性シートと被着体間に圧接した状態の要部断
面図である。 1……球状微粉金属、2……絶縁性織布シー
ト、3,3′……絶縁性樹脂、4,4′……保護シ
ート、5……配線基板、6……導体。
FIG. 1 is a partial perspective sectional view of an anisotropic conductive sheet according to an embodiment of the present invention, FIG. 2 is a front view of the main part of FIG. 1, FIG. 3 is a sectional view of the main part of FIG. The figure is a partial perspective sectional view of an anisotropically conductive sheet when an insulating resin is directly integrated with a woven fabric sheet, FIG. 5 is a sectional view of the main part of FIG. 4, and FIGS. 6 and 7 are according to the invention. FIG. 2 is a cross-sectional view of a main part of the anisotropically conductive sheet in a state where the anisotropic conductive sheet and the adherend are in pressure contact with each other. DESCRIPTION OF SYMBOLS 1... Spherical fine powder metal, 2... Insulating woven fabric sheet, 3, 3'... Insulating resin, 4, 4'... Protective sheet, 5... Wiring board, 6... Conductor.

Claims (1)

【特許請求の範囲】[Claims] 1 シート状の絶縁性織布の空〓格子内に球状微
粉導電性金属を埋設し、該シート状の絶縁性織布
の厚み方向の両端を絶縁性樹脂にて被覆してなる
構成としたことを特徴とする異方導電性シート。
1. A structure in which spherical fine conductive metal is embedded in an empty lattice of a sheet-shaped insulating woven fabric, and both ends of the sheet-shaped insulating woven fabric in the thickness direction are covered with an insulating resin. Anisotropic conductive sheet featuring:
JP1167485A 1985-01-24 1985-01-24 Anisotropic conductive sheet Granted JPS61171009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167485A JPS61171009A (en) 1985-01-24 1985-01-24 Anisotropic conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167485A JPS61171009A (en) 1985-01-24 1985-01-24 Anisotropic conductive sheet

Publications (2)

Publication Number Publication Date
JPS61171009A JPS61171009A (en) 1986-08-01
JPH0437523B2 true JPH0437523B2 (en) 1992-06-19

Family

ID=11784534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167485A Granted JPS61171009A (en) 1985-01-24 1985-01-24 Anisotropic conductive sheet

Country Status (1)

Country Link
JP (1) JPS61171009A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842940A (en) * 2003-09-01 2006-10-04 Jsr株式会社 Anisotropic conductive sheet, its manufacturing method, and inspection device for circuit board
JP4735378B2 (en) * 2006-04-04 2011-07-27 日本電気株式会社 Electronic component mounting structure and manufacturing method thereof
JP2013541853A (en) * 2010-11-05 2013-11-14 ソル インヴィクタス エネジー Use of a uniform layer of insulating material in back contact solar cells.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126794A (en) * 1976-04-19 1977-10-24 Toray Industries Anisotropic conductive elastomer sheet having conductive property only in the direction of thickness and method of manufacture thereof
JPS5949109A (en) * 1982-09-14 1984-03-21 ジェイエスアール株式会社 Pressure sensitive conductive sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126794A (en) * 1976-04-19 1977-10-24 Toray Industries Anisotropic conductive elastomer sheet having conductive property only in the direction of thickness and method of manufacture thereof
JPS5949109A (en) * 1982-09-14 1984-03-21 ジェイエスアール株式会社 Pressure sensitive conductive sheet

Also Published As

Publication number Publication date
JPS61171009A (en) 1986-08-01

Similar Documents

Publication Publication Date Title
US5240761A (en) Electrically conductive adhesive tape
CA1317002C (en) Electrically conductive pressure-sensitive adhesive tape
KR100639083B1 (en) Anisotropic conductive adhesive film
GB2215661A (en) Hot-melt adhesive interconnector and method for the preparation thereof
JPS6340216A (en) Conductive tape
JPS61231066A (en) Anisotropically conductive hot-melt adhesive
JPH0437523B2 (en)
CN209947452U (en) Conductive adhesive film and circuit board
KR950004369B1 (en) Heat-melt adhesive interconnector
JPH06333965A (en) Anisotropic conductive adhesive sheet
JPH0429444Y2 (en)
JP2011077125A (en) Wiring board, manufacturing method of wiring board, connection structure of wiring board, and connection method of wiring board
JPS60140896A (en) Circuit board
JP3129218B2 (en) Fine pitch connector members
JP4427374B2 (en) Printed wiring board and manufacturing method thereof
EP0215953A1 (en) Film connector and method of manufacturing same
JPH0351245B2 (en)
JPH0524633B2 (en)
JPH0112339Y2 (en)
CN110783017A (en) Conductive adhesive film, circuit board and preparation method of conductive adhesive film
JPH041476B2 (en)
KR930006826Y1 (en) Electrically conductive adhesive sheet
JP2014222577A (en) Flat cable
JPH0339890Y2 (en)
JPH03133193A (en) Electronic parts mounting board having warp preventing member