JPH0437332A - Optical space transmitter - Google Patents

Optical space transmitter

Info

Publication number
JPH0437332A
JPH0437332A JP2144631A JP14463190A JPH0437332A JP H0437332 A JPH0437332 A JP H0437332A JP 2144631 A JP2144631 A JP 2144631A JP 14463190 A JP14463190 A JP 14463190A JP H0437332 A JPH0437332 A JP H0437332A
Authority
JP
Japan
Prior art keywords
light
half mirror
visible light
laser beam
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2144631A
Other languages
Japanese (ja)
Inventor
Yukio Nakajima
中島 幸雄
Yoshio Nomura
野村 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2144631A priority Critical patent/JPH0437332A/en
Publication of JPH0437332A publication Critical patent/JPH0437332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain optical axis adjustment simply and inexpensively by making an optical axis of a laser beam transmitted from a half mirror with that of a reflected visual light beam so as to confirm the light transmission state of the visual light beam. CONSTITUTION:A laser beam and a visual light made incident in a lens 23 are collimated and outputted to a light receiver side device B. The light beam made incident in the device B is given to a lens 25 and the laser beam is focused to a sensor of a signal receiver 27 for optical space transmission through a half mirror 26 of the next stage. On the other hand, the visual light beam in the incident light is reflected in the incident face of the half mirror 26 and focused to the sensor of a visual light display device 28. Since the visual light quantity made incident in the display device 28 is proportional to the incident luminous quantity of the laser beam for signal transmission, the light receiver side device B is moved so that the luminous quantity made incident in the display device 28 is maximized and the optical axis of the sender and that of the receiver are adjusted so as to align with each other.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空間伝送による光通信を行う光空間伝送装置に
関し、特に該光空間伝送装置に於ける送受光器の光軸調
整装置の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical space transmission device that performs optical communication by space transmission, and particularly relates to the configuration of an optical axis adjustment device of a light transmitter/receiver in the optical space transmission device. .

(従来技術) 光の周波数帯域はマイクロ波周波数のそれと比較して著
しく大きく、大容量の通信を行うことが可能であり、今
後増大する多量の伝送情報を処理するうえで光通信は不
可欠のものとなっている。
(Prior art) The frequency band of light is significantly larger than that of microwave frequencies, making it possible to carry out large-capacity communications, and optical communication will be indispensable in processing the large amount of transmitted information that will increase in the future. It becomes.

上述した光通信には空間伝搬による光空間伝送方式、光
ケーブルによる光ケーブル伝送方式及び光レンズガイド
方式等があるが、これら各種方式のうち光空間伝送方式
はそれに用いられる装置構成が簡易なため短距離用のワ
イヤレスの通信手段として近年応用開発が進められてい
る。
The above-mentioned optical communications include an optical space transmission method using spatial propagation, an optical cable transmission method using an optical cable, and an optical lens guide method. Among these various methods, the optical space transmission method has a simple equipment configuration and is therefore short-distance. Application development has been progressing in recent years as a wireless communication means for

該光空間伝送では光ビームの直進性を利用し通信を行う
ために送信光を受光器の受光面に正確に昭射せしめる必
要があり、送信側と受信側との間の光軸調整は空間伝送
方式を用いた光通信にとって欠かすことのできないもの
である。
In this optical space transmission, in order to perform communication using the straightness of the light beam, it is necessary to accurately project the transmitted light onto the light receiving surface of the receiver, and the optical axis adjustment between the transmitting side and the receiving side is done in space. It is indispensable for optical communication using transmission methods.

従来用いられていた光軸調整方法のうち、最も簡単な方
法は送光器及び受光器の上部等に規準儀を設け、該規準
儀を用い、目視により行うのが一般的であった。
Among the optical axis adjustment methods used in the past, the simplest method is to install a fiducial on the top of the light transmitter and the light receiver, and use the fiducial to perform visual inspection.

しかし、上述した如き従来の手法を持ちいた場合には光
軸調整を行うための規準儀が高価なため光空間伝送装置
の価格を低減することができないと云う問題点があった
However, when using the conventional method as described above, there is a problem in that the price of the optical space transmission apparatus cannot be reduced because the standard for adjusting the optical axis is expensive.

規準儀を用いない方法としては特開昭64−23631
に開示されたものがある。
A method that does not use a standard is JP-A-64-23631.
There are some that have been disclosed.

第2図は特開昭64−23631により開示された空間
光通信に於ける通信装置の概要を示す図であって、同図
に於いて1は送信側装置、11は受信側装置であって、
該送信側装置1は送信側送光器2、送信信号変調器3、
送光器を固定保持させるためのスタンド4、CCDカメ
ラ5、モニター6から構成し、一方、受信側装置11は
受信側受光器12、受信側復調器13、受光器を固定保
持するためのスタンド14、CCDカメラ15、モニタ
ー16及びフィルター17から構成している。
FIG. 2 is a diagram showing an outline of a communication device in spatial optical communication disclosed in Japanese Patent Application Laid-Open No. 64-23631, in which 1 is a transmitting side device and 11 is a receiving side device. ,
The transmission side device 1 includes a transmission side optical transmitter 2, a transmission signal modulator 3,
It consists of a stand 4 for fixedly holding the light transmitter, a CCD camera 5, and a monitor 6. On the other hand, the receiving side device 11 includes a receiving side light receiver 12, a receiving side demodulator 13, and a stand for holding the light receiver fixedly. 14, a CCD camera 15, a monitor 16, and a filter 17.

このように構成した装置に於いて送光器2内に設けられ
たレーザーダイオードから出射した光パルスはレンズに
より平行光となり送出され、受信側装置に於ける受光器
12にフィルタ17を介して入射すると共に、前記フィ
ルターに於いて入射した光の一部が反射し、該受光器1
2の上部に設けられたCCDカメラ15に反射光として
検出される。
In the device configured in this way, the light pulse emitted from the laser diode provided in the light transmitter 2 is converted into parallel light by the lens and is sent out, and enters the light receiver 12 in the receiving side device via the filter 17. At the same time, a part of the light incident on the filter is reflected, and the light receiver 1
The reflected light is detected by the CCD camera 15 provided on the top of the photo frame 2.

したがって、レーザーダイオードより出射されたレーザ
ー光は肉眼では見ることが不可能であるがCCDにより
検出することができるため、該CCD出力をモニタ16
にて表示することにより判別することができ光軸調整を
行うか、或は送光器2よりレーザー光を出射すると共に
受光器の入射面にて反射した反射光を前記送光器2の上
部に設けたCCDカメラ5により検出することにより出
射光の受光器入射面に於ける反射状況を把握することか
できるため光軸調整を行うことができる。
Therefore, although the laser light emitted from the laser diode cannot be seen with the naked eye, it can be detected by the CCD.
The optical axis adjustment can be performed, or the laser beam is emitted from the light transmitter 2, and the reflected light reflected from the incident surface of the light receiver is transmitted to the upper part of the light transmitter 2. By detecting this with the CCD camera 5 installed in the optical receiver, it is possible to grasp the state of reflection of the emitted light on the incident surface of the light receiver, thereby making it possible to adjust the optical axis.

しかしながら、上述した如き光軸調整機能を有する光空
間伝送装置はレーザー光を可視化せしめるためにCCD
を用いなくてはならず、或は受光器の入射面にて光線を
反射せしめる手段を用いる光空間伝送装置は出射光を送
光側に反射せしめる手段が必要であり、装置のコストが
高くなると二つ問題点が依然として存在した。
However, the optical space transmission device having the optical axis adjustment function as described above uses a CCD to visualize the laser beam.
Alternatively, an optical space transmission device that uses a means to reflect the light beam at the incident surface of the light receiver requires a means to reflect the emitted light to the light transmitting side, which increases the cost of the device. Two problems still existed.

(発明の目的) 本発明は上述した如き従来の問題点に鑑みなされたもの
であって、簡易且つ安価に構成することができ、また正
確に光軸調整を行うことを可能にした光空間伝送に於け
る光軸調整装置を提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the conventional problems as described above, and provides an optical space transmission that can be constructed simply and inexpensively, and that allows accurate optical axis adjustment. The purpose of the present invention is to provide an optical axis adjustment device for use in.

(発明の概要) こめ目的を達成するために本発明に係る光軸調整装置は
光ビームを利用した空間伝送装置において、少なくとも
送光側装置には通信信号を送出するためのレーザー光源
と、可視光を送出するための可視光光源と、前記レーザ
ー光源より出射したレーザー光を透過せしめ且つ前記可
視光光源より出射した可視光を反射せしめるハーフミラ
−とを備えると共に、受光側装置に於いては前記送光側
より出射されたレーザー光線を透過し、可視光線を反射
せしめるハーフミラ−と、該ハーフミラを透過し、たレ
ーザー光線を受光する受光器及び該ハーフミラ−にて反
射した可視光を検出するための可視光検出器を備えるこ
とにより送光側装置のハーフミラ−を出射するレーザー
光線と、該ハーフミラーを反射する可視光線の光軸を一
致せしめ、該可視光線の送光状態を確認することにより
通信信号伝送の媒体であるレーザー光の光軸を調整した
ことを特徴とする。
(Summary of the Invention) In order to achieve the above object, an optical axis adjusting device according to the present invention is a space transmission device using a light beam, and at least a light transmitting side device includes a laser light source for transmitting a communication signal and a visible light source. The light-receiving device includes a visible light source for transmitting light, and a half mirror that transmits the laser light emitted from the laser light source and reflects the visible light emitted from the visible light source. A half mirror that transmits the laser beam emitted from the light transmitting side and reflects visible light, a light receiver that transmits the half mirror and receives the laser beam, and a visible mirror that detects the visible light reflected by the half mirror. By providing a photodetector, the optical axes of the laser beam emitted from the half mirror of the light transmitting side device and the visible light reflected from the half mirror are aligned, and the communication signal transmission is performed by checking the transmission state of the visible light. It is characterized by adjusting the optical axis of the laser beam, which is the medium of the laser beam.

(実施例) 以下、図面に示した実施例に基づいて本発明の詳細な説
明する。
(Example) Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

第1図は本発明に係る光空間伝送装置の概略構成を示す
図である。
FIG. 1 is a diagram showing a schematic configuration of an optical space transmission device according to the present invention.

同図に於いてAは送光側装置、Bは受光側装置であって
、送光側装置は光軸調整用の可視光光源20、レーザー
光源21、ハーフミラ−22及びレンズ23からなり、
−力受光側装置はレンズ25、ハーフミラ−26、光空
間伝送信号用受光器27及び可視光表示器28から構成
している。
In the figure, A is a light transmitting side device, B is a light receiving side device, and the light transmitting side device consists of a visible light source 20 for optical axis adjustment, a laser light source 21, a half mirror 22, and a lens 23.
- The power receiving side device is composed of a lens 25, a half mirror 26, a light receiver 27 for optical spatial transmission signals, and a visible light display 28.

一般に光空間伝送装置の光源としては伝送特性の問題等
により800nm〜1300nm程度の波長のものが使
用されており、また前記可視光光源20としてその波長
が660nmの赤色光を使用すると、前記ハーフミラ−
22及び26は800nm以上の波長を有す光線を透過
せしめると共に660nmの波長を有す光線を反射せし
める特性を有すものを使用する。
Generally, as a light source for an optical space transmission device, a light source with a wavelength of about 800 nm to 1300 nm is used due to problems with transmission characteristics, and if red light with a wavelength of 660 nm is used as the visible light source 20, the half mirror
22 and 26 are used which have a characteristic of transmitting light rays having a wavelength of 800 nm or more and reflecting light rays having a wavelength of 660 nm.

このように構成した光空間伝送装置に於いて光軸調整を
行う場合には送光側装置に於いてレーザー光源21およ
び可視光光源20を共に作動せしめ、該レーザー光源2
1より出力したレーザー光は次段のハーフミラ−22を
透過しレンズ23に入射する。
When adjusting the optical axis in the optical space transmission device configured in this way, both the laser light source 21 and the visible light source 20 are activated in the light transmitting side device, and the laser light source 21 is activated.
The laser beam outputted from the mirror 1 passes through the next half mirror 22 and enters the lens 23.

一方、前記可視光光源20より出射した赤色光は次段の
ハーフミラ−22の入射面に於いて反射シ前記し−ザー
光と同一光軸にてレンズ23に入射する。
On the other hand, the red light emitted from the visible light source 20 is reflected at the incident surface of the next stage half mirror 22 and enters the lens 23 along the same optical axis as the laser light.

該レンズに入射したレーザー光および可視光は平行光線
に変換され受光側装置に出力される。
Laser light and visible light incident on the lens are converted into parallel light beams and output to the light receiving side device.

該受光側装置Bに入力した光線はレンズ25に入射し、
該入射光のうちレーザー光は次段のハーフミラ−26を
透過し光空間伝送用信号受光器27のセンサ部分に集束
する。
The light beam input to the light-receiving device B enters the lens 25,
Of the incident light, the laser light passes through the next stage half mirror 26 and is focused on the sensor portion of the signal receiver 27 for optical spatial transmission.

一方、前記入射光のうち可視光光線はハーフミラ26の
入射面にて反射することにより可視光表示器28のセン
サ部分に集束する。
On the other hand, the visible light rays of the incident light are reflected by the incident surface of the half mirror 26 and are focused on the sensor portion of the visible light indicator 28 .

したがって、可視光表示器28に入射する可視光量が即
ち信号伝送用のレーザー光の入射光量に比例するため、
該可視光表示器に入射する光線量が最大となるように受
光側装置を移動せしめ、送受信側相互の光軸が一致する
よう調整を行う。
Therefore, since the amount of visible light incident on the visible light indicator 28 is proportional to the amount of incident laser light for signal transmission,
The light-receiving device is moved so that the amount of light incident on the visible light display is maximized, and adjustments are made so that the optical axes of the transmitting and receiving devices coincide.

即ち、光軸調整用光線と信号伝送用レーザー光線とが同
一光軸にて供給されるため、従来用いられていた規準器
を使用した光軸調整と比較して直接的に光軸の状態を把
握することができる和声、を有すと共にレーザー光の反
射光をCCDにて検出し調整を行うものと比較してレー
ザー光を可視化し表示するためのCCD等の代わりに安
価な可視光光源及びハーフミラ−のみを備えればよく、
低価格にて装置を供給することが可能となる。
In other words, since the beam for optical axis adjustment and the laser beam for signal transmission are supplied from the same optical axis, the state of the optical axis can be grasped directly compared to the conventional optical axis adjustment using a standard. In addition to having a harmonic that can be used to visualize and display laser light, it is possible to detect and adjust the reflected light of laser light with a CCD. All you need is a half mirror,
It becomes possible to supply the device at a low price.

尚、本発明の実施例に於いては送光側より出射した可視
光を受光側にてハーフミラ−を用いて反射分離せしめ、
該可視光の受光状態を検出することによりレーザー光線
の光軸調整を行うものを用いて説明したが、短距離間の
空間伝送装置に用いる場合には受光側に設けたハーフミ
ラ−1可視光検出表示手段は特に必要では無く、送光側
からの可視光による光ビーム中に受光側装置の受光レン
ズを一致せしめることにより光軸合わせを行うことも可
能である。
In the embodiment of the present invention, visible light emitted from the light transmitting side is reflected and separated using a half mirror on the light receiving side.
The explanation has been made using a device that adjusts the optical axis of the laser beam by detecting the state of reception of the visible light, but when used in a short distance space transmission device, a half mirror 1 visible light detection display provided on the light receiving side is used. No particular means is required, and optical axis alignment can be achieved by aligning the light-receiving lens of the light-receiving device with the visible light beam from the light-transmitting side.

(発明の効果) 本発明は上述した如く構成し且つ機能するものであるか
ら、安価な装置を付加することにより光空間伝送信号の
媒体であるレーザー光光軸を直接的に監視し調整するこ
とができるのみならず、光軸調整の際には受光側装置の
みを移動せしめ簡易に行うことができるため、例えば送
光側装置設置場所に人が接近することが困難な場合等に
於いても光軸調整を容易に行う上で著しい効果を発揮す
る。
(Effects of the Invention) Since the present invention is configured and functions as described above, by adding an inexpensive device, it is possible to directly monitor and adjust the optical axis of the laser beam, which is the medium of the optical space transmission signal. In addition, when adjusting the optical axis, it is possible to easily move only the light-receiving device, so it can be used even in cases where it is difficult for people to approach the location where the light-transmitting device is installed. It exhibits a remarkable effect in easily adjusting the optical axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光空間伝送装置の概略構成を示す
図、第2図は従来に光空間伝送装置の構成を示す図であ
る。 A・・・送光側装置、B・・・受光側装置20・・・可
視光光源、21・・・レーザー光源22.26・・・ハ
ーフミラ 23.25・・・レンズ、 27・・・光空間伝送信号用受光器、 28・・・可視光表示器 特許出願人 東洋通信機株式会社
FIG. 1 is a diagram showing a schematic configuration of a spatial optical transmission device according to the present invention, and FIG. 2 is a diagram showing a configuration of a conventional spatial optical transmission device. A... Light transmitting side device, B... Light receiving side device 20... Visible light source, 21... Laser light source 22.26... Half mirror 23.25... Lens, 27... Light Receiver for spatial transmission signals, 28...Visible light display patent applicant Toyo Tsushinki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 光ビームを利用した空間伝送装置において、少なくとも
送光側装置には通信信号を送出するためのレーザー光源
と、可視光を送出するための可視光光源と、前記レーザ
ー光源より出射したレーザー光を透過せしめ且つ前記可
視光光源より出射した可視光を反射せしめるハーフミラ
ーとを備えると共に、受光側装置に於いては前記送光側
より出射されたレーザー光線を透過し、可視光線を反射
せしめるハーフミラーと、該ハーフミラーを透過したレ
ーザー光線を受光する受光器及び該ハーフミラーにて反
射した可視光を検出するための可視光検出器を備えるこ
とにより送光側装置のハーフミラーを出射するレーザー
光線と、該ハーフミラーを反射する可視光線の光軸を一
致せしめ、該可視光線の送光状態を確認することにより
通信信号伝送の媒体であるレーザー光の光軸を調整した
ことを特徴とする光空間伝送装置。
In a space transmission device using a light beam, at least the light transmitting side device includes a laser light source for transmitting a communication signal, a visible light source for transmitting visible light, and a device that transmits the laser light emitted from the laser light source. and a half mirror that reflects the visible light emitted from the visible light source, and in the light receiving side device, a half mirror that transmits the laser beam emitted from the light transmitting side and reflects the visible light; The laser beam emitted from the half mirror of the light transmitting device is equipped with a light receiver for receiving the laser beam transmitted through the half mirror and a visible light detector for detecting the visible light reflected by the half mirror. An optical space transmission device characterized in that the optical axis of a laser beam, which is a communication signal transmission medium, is adjusted by aligning the optical axes of visible light reflected by a mirror and checking the transmission state of the visible light.
JP2144631A 1990-06-01 1990-06-01 Optical space transmitter Pending JPH0437332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2144631A JPH0437332A (en) 1990-06-01 1990-06-01 Optical space transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2144631A JPH0437332A (en) 1990-06-01 1990-06-01 Optical space transmitter

Publications (1)

Publication Number Publication Date
JPH0437332A true JPH0437332A (en) 1992-02-07

Family

ID=15366542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2144631A Pending JPH0437332A (en) 1990-06-01 1990-06-01 Optical space transmitter

Country Status (1)

Country Link
JP (1) JPH0437332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141727A (en) * 2006-11-06 2008-06-19 Matsushita Electric Ind Co Ltd Optical wireless transmission system for performing optical space transmission, and optical transmitter used therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141727A (en) * 2006-11-06 2008-06-19 Matsushita Electric Ind Co Ltd Optical wireless transmission system for performing optical space transmission, and optical transmitter used therein

Similar Documents

Publication Publication Date Title
JP2871702B2 (en) Integrated fiber optical transceiver
US5594580A (en) Optical space communication apparatus
JP3112198B2 (en) Gradient index lens and optical receiver
EP0911996B1 (en) Optical space communication apparatus
JP2001326608A (en) Optical space communication unit
US20140217270A1 (en) Light-receiving module
CN201004103Y (en) Single fiber multi-direction photoelectric module
JPH0437332A (en) Optical space transmitter
JP3206993B2 (en) Bidirectional optical space transmission equipment
US4422181A (en) Bi-directional fibre-optic coupler
JP2001292105A (en) Optical space transmission device
JPS62110339A (en) Optical transmission and reception equipment
KR20180116548A (en) Monostatic bidrectional focusing and collecting optics system
CN217878006U (en) Laser power detection device
JP2540166Y2 (en) Optical signal receiver
JPS6297438A (en) Optical transmission and reception equipment
JP2836298B2 (en) Gas detector
JPS60194632A (en) Space optical communication device
WO2021051900A1 (en) Optical module
CN210327578U (en) Different-wavelength single-fiber bidirectional optical module capable of integrating OTDR function
JP2687435B2 (en) Optical space transmission equipment
US20020057871A1 (en) Method for aligning optical components
JPH08163034A (en) Optical communication device
JPH09181676A (en) Optical transmitter-receiver
JPH07264135A (en) Direct optical communication system