JPH09181676A - Optical transmitter-receiver - Google Patents

Optical transmitter-receiver

Info

Publication number
JPH09181676A
JPH09181676A JP7350641A JP35064195A JPH09181676A JP H09181676 A JPH09181676 A JP H09181676A JP 7350641 A JP7350641 A JP 7350641A JP 35064195 A JP35064195 A JP 35064195A JP H09181676 A JPH09181676 A JP H09181676A
Authority
JP
Japan
Prior art keywords
optical
optical signal
light receiving
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7350641A
Other languages
Japanese (ja)
Inventor
Yoichi Chokai
洋一 鳥海
Kazuhiko Okamatsu
和彦 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7350641A priority Critical patent/JPH09181676A/en
Publication of JPH09181676A publication Critical patent/JPH09181676A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform miniaturization, to lower a price and to perform highly reliable optical communication by providing a monitoring part and an arithmetic part for eliminating a signal leakage interference part from optical transmission signals to optical reception signals in the transmitter-receiver of a single core two-way optical communication channel. SOLUTION: The optical signals L1 of a light emission part 12 are reflected vertically upwards at the semi-transmissive mirror 141 of an optical element 14, led to an optical fiber and transmitted, reception signals L2 are obliquely transmitted at the mirror 141 and made incident on a light reception part 231 and a part of the signals L1 is also leaked to the light reception part 231 as stray light. The monitoring part 232 receives only the stray light and the detection current and the detection current of the light reception part 231 are inputted to the arithmetic part 26 provided with current/voltage conversion circuits 261 and 262 and a differential amplifier circuit 263 and computed. The arithmetic part 26 electrically offsets the stray light by the adjustment of transimpedance and gain and eliminates the signal leakage interference part and the highly reliable optical communication is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば一心双方
向通信回線に設けられて光信号を送受信するための光送
受信装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmitter / receiver for transmitting and receiving an optical signal, which is provided in, for example, a one-fiber bidirectional communication line.

【0002】[0002]

【従来の技術】光通信により信号を送受信する方式とし
ては、光ファイバを1本用いた一心方式の双方向通信回
線方式、あるいは光ファイバを2本用いた二心方式の双
方向通信回線方式がある。図7は、一心方式の双方向通
信回線方式の一例を示す図であり、一方の光伝送機器1
と他方の光伝送機器2の間を1本の光ファイバFで接続
している。
2. Description of the Related Art As a method for transmitting and receiving a signal by optical communication, there is a one-core bidirectional communication line method using one optical fiber or a two-core bidirectional communication line method using two optical fibers. is there. FIG. 7 is a diagram showing an example of a one-core bidirectional communication line system.
And the other optical transmission device 2 are connected by one optical fiber F.

【0003】この一心方式の双方向通信回線方式では、
図8に示すように、一方の光伝送機器1は、発光素子
3、受光素子4、方向性結合器5及びレンズ等を有して
いて、筐体に対してこれら別々の部品である発光素子
3、受光素子4、方向性結合器5及びレンズ等を組立て
て構成している。同様にして他方の光伝送機器2におい
ても、発光素子3、受光素子4、方向性結合器5及びレ
ンズ等を有している。
In this one-core bidirectional communication line system,
As shown in FIG. 8, one optical transmission device 1 includes a light emitting element 3, a light receiving element 4, a directional coupler 5, a lens, and the like, and is a light emitting element that is a separate component for the housing. 3, the light receiving element 4, the directional coupler 5, the lens and the like are assembled and configured. Similarly, the other optical transmission device 2 also has a light emitting element 3, a light receiving element 4, a directional coupler 5, a lens, and the like.

【0004】[0004]

【発明が解決しようとする課題】従来の一心方式の双方
向通信回線方式では、光伝送機器は、別々の発光素子
3、受光素子4、方向性結合器5及びレンズ等で構成し
なければならず、信頼性や小型化及び低価格化に対して
大きな障害となっている。
In the conventional one-core bidirectional communication line system, the optical transmission equipment must be composed of separate light emitting element 3, light receiving element 4, directional coupler 5 and lens. This is a major obstacle to reliability, downsizing and price reduction.

【0005】この発明は上記課題を解消するためになさ
れたものであり、小型化及び低価格化が図れ、信頼性の
高い光通信を行うことができる光送受信装置を提供する
ことを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical transmitter / receiver capable of miniaturization and cost reduction and capable of highly reliable optical communication. .

【0006】[0006]

【課題を解決するための手段】上記目的は、この発明に
あっては、光信号を送受信する光送受信装置において、
第1の光信号の送信と第2の光信号の受信を同時に行う
際に、前記第1の光信号の監視信号により、前記第1の
光信号と第2の光信号の信号漏洩干渉分を除去する演算
部を備えることにより達成される。
According to the present invention, there is provided an optical transmitter / receiver for transmitting / receiving an optical signal,
When transmitting the first optical signal and receiving the second optical signal at the same time, the signal leakage interference of the first optical signal and the second optical signal is detected by the supervisory signal of the first optical signal. This is achieved by providing an arithmetic unit for removing.

【0007】上記構成によれば、監視部により光信号を
監視しながら演算部により光信号の信号漏洩干渉分を除
去するようにしているので、光通信の信頼性を高めるこ
とができる。
According to the above arrangement, the monitoring section monitors the optical signal and the arithmetic section removes the signal leakage interference of the optical signal, so that the reliability of the optical communication can be improved.

【0008】[0008]

【発明の実施の形態】以下、この発明の好適な実施の形
態を添付図面に基づいて詳細に説明する。なお、以下に
述べる実施の形態は、この発明の好適な具体例であるか
ら、技術的に好ましい種々の限定が付されているが、こ
の発明の範囲は、以下の説明において特にこの発明を限
定する旨の記載がない限り、これらの形態に限られるも
のではない。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Although the embodiments described below are preferred specific examples of the present invention, various technically preferable limitations are given. However, the scope of the present invention is not limited to the following description. It is not limited to these forms unless otherwise stated.

【0009】先ず、この発明の光送受信装置の実施形態
を説明する前に、その前提となる技術について図5及び
図6を用いて説明する。図5は、この発明の光送受信装
置の実施形態の前提技術となる光送受信装置の実施形態
を示す斜視図であり、図6は、その側面図及び平面図で
ある。この光送受信装置10は、基板11、発光部1
2、受光部13、光学素子14、半導体素子15、演算
部16及び結合レンズ17、そして好ましくは発光部1
2から送信される光信号のモニター用受光部を有してお
り、一心双方向光通信回線に設けられて、第1の光信号
を送信し、第2の光信号を受信する。
First, before describing the embodiment of the optical transmitter / receiver of the present invention, the technology on which it is based will be described with reference to FIGS. 5 and 6. FIG. 5 is a perspective view showing an embodiment of an optical transmitter / receiver, which is a base technology of the embodiment of the optical transmitter / receiver of the present invention, and FIG. 6 is a side view and a plan view thereof. The optical transceiver 10 includes a substrate 11 and a light emitting unit 1.
2, the light receiving unit 13, the optical element 14, the semiconductor element 15, the arithmetic unit 16 and the coupling lens 17, and preferably the light emitting unit 1.
It has a light receiving part for monitoring the optical signal transmitted from the optical fiber 2 and is provided in the one-core bidirectional optical communication line to transmit the first optical signal and receive the second optical signal.

【0010】基板11は、例えばシリコン(Si)半導
体またはガリウム砒素(GaAs)半導体で成り、基板
11の上面11aには、受光部13、光学素子14、半
導体素子15及び演算部16が設けられている。また、
半導体素子15の上面15aには、発光部12及びモニ
ター用受光部が設けられている。
The substrate 11 is made of, for example, a silicon (Si) semiconductor or a gallium arsenide (GaAs) semiconductor, and an upper surface 11a of the substrate 11 is provided with a light receiving section 13, an optical element 14, a semiconductor element 15 and a computing section 16. There is. Also,
The light emitting unit 12 and the monitor light receiving unit are provided on the upper surface 15 a of the semiconductor element 15.

【0011】光学素子14は、例えばプリズム(マイク
ロプリズムもしくは台形プリズム)またはビームスプリ
ッタが用いられ、この光学素子14の一方の側には、斜
面状の半透過ミラー141が形成されている。この半透
過ミラー141の傾斜角度は、例えば好ましくは基板1
1の平面に対して45°に形成されている。そして、こ
の半透過ミラー141の垂直上方には、結合レンズ17
が配置されている。
As the optical element 14, for example, a prism (micro prism or trapezoidal prism) or a beam splitter is used. On one side of the optical element 14, an inclined semi-transmissive mirror 141 is formed. The inclination angle of the semi-transmissive mirror 141 is preferably, for example, the substrate 1
It is formed at 45 ° with respect to the plane of 1. Then, the coupling lens 17 is provided above the semi-transmissive mirror 141.
Is arranged.

【0012】発光部12は、例えばレーザダイオードが
用いられ、第1の光信号L1を送信する送信部分が、光
学素子14の半透過ミラー141と向い合うように配置
されている。そして、モニター用受光部が、上記送信部
分の後側から出射されるモニター用のレーザ光を受光で
きるように設けられている。
The light emitting section 12 is, for example, a laser diode, and is arranged so that the transmitting section for transmitting the first optical signal L1 faces the semi-transmissive mirror 141 of the optical element 14. Then, the monitor light receiving portion is provided so as to be able to receive the laser light for monitoring emitted from the rear side of the transmitting portion.

【0013】受光部13は、例えばフォトダイオードが
用いられ、光学素子14の下部に設けられている。演算
部16は、電流/電圧変換回路161を備え、受光部1
3での受光による検出電流を電圧に変換するために受光
部13に接続されている。
The light receiving portion 13 is, for example, a photodiode and is provided below the optical element 14. The calculation unit 16 includes a current / voltage conversion circuit 161, and the light receiving unit 1
It is connected to the light receiving unit 13 in order to convert the detection current due to the light reception at 3 into a voltage.

【0014】次に、上述した光送受信装置の作用につい
て説明する。先ず、発光部12からの第1の光信号L1
が、光学素子14の半透過ミラー141で垂直上方に屈
折反射されて結合レンズ17により絞られ、一心双方向
光通信回線を構成する光ファイバの入射端面に導かれ
る。このとき、発光部12の第1の光信号L1の送信状
態は、モニター用受光部によりモニターされ、発光部1
2の駆動回路18が制御される。そして、第1の光信号
L1は、光ファイバを透過して図5及び図6に示す構成
と同一構成の遠隔の光送受信装置に導かれる。
Next, the operation of the above-mentioned optical transceiver will be described. First, the first optical signal L1 from the light emitting unit 12
Is refracted and reflected vertically upward by the semi-transmissive mirror 141 of the optical element 14, is focused by the coupling lens 17, and is guided to the incident end face of the optical fiber forming the one-core bidirectional optical communication line. At this time, the transmission state of the first optical signal L1 of the light emitting unit 12 is monitored by the monitoring light receiving unit,
The second drive circuit 18 is controlled. Then, the first optical signal L1 passes through the optical fiber and is guided to a remote optical transmitter / receiver having the same configuration as that shown in FIGS.

【0015】これに対して、遠隔の光送受信装置から光
ファイバを透過してきた第2の光信号L2は、結合レン
ズ17を介して光学素子14の半透過ミラー141で斜
方に屈折透過され、光学素子14の下部にある受光部1
3に入射される。尚、このときに第2の光信号L2の一
部が半透過ミラー141で反射されて発光部12側に入
射することになるが、この第2の光信号L2は、この光
送受信装置10とは別の遠隔の光送受信装置からのレー
ザ光であるために、発光部12に対してはインコーヒレ
ントであり、この発光部12の第1の光信号L1とは干
渉が無く、第1の光信号L1の送信に影響を与えない。
そして、受光部13からの受光による検出電流が、演算
部16の電流/電圧変換回路161に入力され、電圧に
変換されて出力される。
On the other hand, the second optical signal L2 transmitted from the remote optical transmitter / receiver through the optical fiber is refracted and transmitted obliquely by the semi-transmissive mirror 141 of the optical element 14 via the coupling lens 17. Light receiving section 1 under the optical element 14
3 is incident. At this time, part of the second optical signal L2 is reflected by the semi-transmissive mirror 141 and is incident on the light emitting unit 12 side. Is laser light from another remote optical transmitter / receiver, and therefore is incoherent with respect to the light emitting unit 12, and does not interfere with the first optical signal L1 of the light emitting unit 12, and thus the first light signal L1 It does not affect the transmission of the optical signal L1.
Then, the detected current by the light reception from the light receiving unit 13 is input to the current / voltage conversion circuit 161 of the calculation unit 16, converted into a voltage, and output.

【0016】このように、光学素子14の半透過ミラー
141は光の偏光成分に従い、第1の光信号L1を反射
させ、第2の光信号L2を透過させている。即ち、第1
の光信号L1と第2の光信号L2の間には偏光成分差が
存在し、それにより反射・透過が区別される。しかし、
実際の偏光成分差は微小な場合が殆どであるため、反射
・透過の区別が完全になされない場合がある。このよう
な場合、第1の光信号L1の一部は、半透過ミラー14
1を透過して受光部13及びその周辺に漏洩する。ま
た、第2の光信号L2の一部は、半透過ミラー141で
反射して光ファイバ及びその周辺に漏洩する。これらの
内、受光部13及びその周辺に漏洩する第1の光信号L
1の一部(以下、迷光という)が問題となる。即ち、受
光部13からの検出電流は、図6(B)の受光部13の
拡大図に示すように、第2の光信号L2の受光量Sに迷
光の受光量Nが干渉したものとなるので、検出精度が低
下するという問題がある。
As described above, the semi-transmissive mirror 141 of the optical element 14 reflects the first optical signal L1 and transmits the second optical signal L2 according to the polarization component of the light. That is, the first
There is a polarization component difference between the optical signal L1 and the second optical signal L2, which distinguishes reflection / transmission. But,
In most cases, the actual difference in the polarization components is very small, and thus the distinction between reflection and transmission may not be made completely. In such a case, a part of the first optical signal L1 is partially transmitted by the semi-transmissive mirror 14
1 is transmitted and leaks to the light receiving part 13 and its periphery. Further, a part of the second optical signal L2 is reflected by the semi-transmissive mirror 141 and leaks to the optical fiber and its periphery. Of these, the first optical signal L leaking to the light receiving unit 13 and its surroundings.
Part of 1 (hereinafter referred to as stray light) becomes a problem. That is, as shown in the enlarged view of the light receiving unit 13 in FIG. 6B, the detected current from the light receiving unit 13 is the amount of received light S of the second optical signal L2 interfered by the received amount N of stray light. Therefore, there is a problem that the detection accuracy decreases.

【0017】そこで、上記問題を解消する光送受信装置
として、以下のものが開発された。図1は、この発明の
光送受信装置の第1の実施形態を示す斜視図であり、図
2は、その側面図及び平面図である。この光送受信装置
20は、図5に示す光送受信装置とほぼ同一構成である
が、異なる点は、受光部231と並列に例えばフォトダ
イオードで成る監視受光部232が設けられている点
と、演算部26が受光部231からの検出信号と監視受
光部232からの監視信号を演算するようになっている
点である。
Therefore, the following has been developed as an optical transmitter-receiver for solving the above problems. 1 is a perspective view showing a first embodiment of an optical transmitter / receiver of the present invention, and FIG. 2 is a side view and a plan view thereof. The optical transmitter / receiver 20 has almost the same configuration as the optical transmitter / receiver shown in FIG. 5, except that a monitoring light receiving portion 232 formed of, for example, a photodiode is provided in parallel with the light receiving portion 231. The point is that the unit 26 calculates the detection signal from the light receiving unit 231 and the monitoring signal from the monitoring light receiving unit 232.

【0018】この受光部231は、図2(B)の受光部
231及び監視受光部232の拡大図に示すように、第
2の光信号L2及び迷光を受光するように配置され、監
視受光部232は、図2(B)の受光部231及び監視
受光部232の拡大図に示すように、迷光のみを受光す
るように配置されている。演算部26は、受光部231
での受光による検出電流及び監視受光部232での受光
による監視検出電流を電圧にそれぞれ変換する電流/電
圧変換回路261、262及び電流/電圧変換回路26
1、262からの各電圧の差を求めて増幅する差動増幅
回路263を備えている。尚、電流/電圧変換回路26
1、262を省略して受光部231での受光による検出
電流及び監視受光部232での受光による監視検出電流
を差動増幅回路263で直接演算するようにしても良
い。
As shown in the enlarged view of the light receiving section 231 and the monitoring light receiving section 232 in FIG. 2B, the light receiving section 231 is arranged so as to receive the second optical signal L2 and stray light, and the monitoring light receiving section 231 is provided. 232 is arranged so as to receive only stray light, as shown in the enlarged view of the light receiving unit 231 and the monitoring light receiving unit 232 in FIG. The calculation unit 26 includes a light receiving unit 231.
The current / voltage conversion circuits 261, 262 and the current / voltage conversion circuit 26 for converting the detected current due to the received light at the monitor and the monitored detected current due to the received light at the monitor light receiving unit 232 into voltage, respectively.
The differential amplifier circuit 263 is provided for obtaining the difference between the respective voltages from Nos. 1 and 262 and amplifying it. The current / voltage conversion circuit 26
The differential amplifier circuit 263 may directly calculate the detection currents due to the light reception at the light receiving unit 231 and the monitoring detection currents due to the light reception at the monitoring light receiving unit 232.

【0019】このような構成において、受光部231と
監視受光部232と演算部26の処理を説明する。受光
部231が受ける第2の光信号L2の受光量をS、迷光
の受光量をN1とし、監視受光部232が受ける迷光の
受光量をN2とする。すると、N1:N2は一定とみな
せるので、N2/N1=Kと置く。
The processing of the light receiving section 231, the monitoring light receiving section 232, and the computing section 26 in such a configuration will be described. The light receiving amount of the second optical signal L2 received by the light receiving unit 231 is S, the light receiving amount of stray light is N1, and the light receiving amount of stray light received by the monitoring light receiving unit 232 is N2. Then, N1: N2 can be regarded as constant, so N2 / N1 = K is set.

【0020】ここで、受光部231の光・電流変換効率
をA1、監視受光部232の光・電流変換効率をA2、
電流/電圧変換回路261、262のトランスインピー
ダンスを受光部231の出力に対しZ1、監視受光部2
32の出力に対しZ2、差動増幅回路263の利得を受
光部231の出力に対し+G1、監視受光部232の出
力に対し−G2とすると、差動増幅回路263の出力O
Pは数1で表される。
Here, the light / current conversion efficiency of the light receiving section 231 is A1, the light / current conversion efficiency of the monitoring light receiving section 232 is A2,
The transimpedance of the current / voltage conversion circuits 261 and 262 is Z1 with respect to the output of the light receiving unit 231, and the monitoring light receiving unit 2
When the output of the differential amplifier circuit 263 is Z2, the gain of the differential amplifier circuit 263 is + G1 with respect to the output of the light receiving unit 231, and the gain of the monitor light receiving unit 232 is −G2, the output O of the differential amplifier circuit 263 is O.
P is represented by Formula 1.

【数1】 ここで、A1・Z1・G1=K・A2・Z2・G2であ
るならば、数1の第2項は省略できるので、数1は数2
で表される。この省略した第2項が迷光である。
[Equation 1] Here, if A1 · Z1 · G1 = K · A2 · Z2 · G2, the second term of Formula 1 can be omitted.
It is represented by The omitted second term is stray light.

【数2】 [Equation 2]

【0021】このように、電流/電圧変換回路261、
262のトランスインピーダンス及び差動増幅回路26
3の利得調整により、迷光を電気的に相殺することがで
きる。ここで、監視受光部232の監視検出電流を駆動
回路18に帰還させれば、発光部12に自動出力調整を
かけることができる。
In this way, the current / voltage conversion circuit 261,
262 transimpedance and differential amplifier circuit 26
By adjusting the gain of 3, stray light can be electrically canceled. Here, if the monitor detection current of the monitor light receiving section 232 is fed back to the drive circuit 18, the light emitting section 12 can be subjected to automatic output adjustment.

【0022】以上により、迷光が受光部12と監視受光
部232に2:1で送られる場合は、N2/N1=K=
1/2となるので、2・A1・Z1・G1=A2・Z2
・G2となる。特に、A1=A2、Z1=Z2ならば2
・G1=G2となる。また、迷光が受光部12と監視受
光部232に1:2で送られる場合は、N2/N1=K
=2となるので、A1・Z1・G1=2・A2・Z2・
G2となる。特に、A1=A2、Z1=Z2ならばG1
=2・G2となる。
As described above, when stray light is sent to the light receiving unit 12 and the monitoring light receiving unit 232 at a ratio of 2: 1, N2 / N1 = K =
It becomes 1/2, so 2 · A1 · Z1 · G1 = A2 · Z2
・ G2. In particular, if A1 = A2 and Z1 = Z2, then 2
・ G1 = G2. When stray light is sent to the light receiving unit 12 and the monitoring light receiving unit 232 at a ratio of 1: 2, N2 / N1 = K
= 2, so A1 · Z1 · G1 = 2 · A2 · Z2 ·
It becomes G2. In particular, if A1 = A2 and Z1 = Z2, then G1
= 2 · G2.

【0023】尚、上述したこの発明の光送受信装置の第
1の実施形態では、監視受光部232を基板11上に設
けたが、特にこれに限定されるものではない。図3
(A)及び(B)は、この発明の光送受信装置の第2の
実施形態を示す斜視図及び側面図である。この光送受信
装置30は、図1に示す光送受信装置20とほぼ同一構
成であるが、異なる点は、光学素子14と並列に例えば
プリズムまたはビームスプリッタで成る第2の光学素子
34が基板11上に設けられている点と、この第2の光
学素子34の半透過ミラー341の垂直上方に例えばフ
ォトダイオードで成る監視受光部33が設けられている
点である。この第2の光学素子34は、発光部12から
の第1の光信号L1の一部を半透過ミラー341で垂直
上方に反射し、監視受光部33に導くようになってい
る。
In the first embodiment of the optical transmitter / receiver of the present invention described above, the monitor light receiving section 232 is provided on the substrate 11, but the present invention is not limited to this. FIG.
(A) And (B) is a perspective view and a side view showing a 2nd embodiment of an optical transceiver of this invention. The optical transmitter / receiver 30 has substantially the same configuration as the optical transmitter / receiver 20 shown in FIG. 1 except that the second optical element 34, which is, for example, a prism or a beam splitter, is arranged in parallel with the optical element 14 on the substrate 11. And a monitoring light receiving section 33 formed of a photodiode, for example, is provided vertically above the semi-transmissive mirror 341 of the second optical element 34. The second optical element 34 reflects part of the first optical signal L1 from the light emitting section 12 vertically upward by the semi-transmissive mirror 341 and guides it to the monitoring light receiving section 33.

【0024】また、この発明の光送受信装置の第1の実
施形態では、監視受光部232にフォトダイオード等の
受光素子を用いたが、特にこれに限定されるものではな
い。図4は、この発明の光送受信装置の第3の実施形態
を示す平面図である。この光送受信装置40は、図1に
示す光送受信装置20とほぼ同一構成であるが、異なる
点は、演算部36が、駆動回路18に接続された分配回
路361と、この分配回路361に接続され、さらに電
流/電圧変換回路262に接続された監視増幅回路36
2を備えている点である。この分配回路361は、発光
部12により光変調される前の第1の光信号L1につい
て、その一部を駆動回路18と監視増幅回路362に分
配するようになっている。
In the first embodiment of the optical transmitter / receiver of the present invention, a light receiving element such as a photodiode is used as the monitor light receiving section 232, but the invention is not limited to this. FIG. 4 is a plan view showing a third embodiment of the optical transmitter / receiver according to the present invention. The optical transmitter / receiver 40 has almost the same configuration as the optical transmitter / receiver 20 shown in FIG. Monitoring amplifier circuit 36 connected to the current / voltage conversion circuit 262.
2 is provided. The distribution circuit 361 is configured to distribute a part of the first optical signal L1 before being optically modulated by the light emitting section 12 to the drive circuit 18 and the monitoring amplification circuit 362.

【0025】ところで、この発明の光送受信装置は上記
実施の形態では一心双方向通信回線に適用したが、これ
に限定されるものではなく、例えば光ディスクを用いる
光ディスク装置に適用すれば、ハイブリッドな光集積回
路として高信頼性が得られる。また、中継増幅器や分波
器にも適用できる。
By the way, although the optical transmitter-receiver of the present invention is applied to the one-core bidirectional communication line in the above-mentioned embodiment, it is not limited to this. For example, if it is applied to an optical disc device using an optical disc, a hybrid optical transmission device is used. High reliability can be obtained as an integrated circuit. It can also be applied to a relay amplifier and a duplexer.

【0026】[0026]

【発明の効果】以上説明したようにこの発明によれば、
小型化および低価格化が図れ、高い信頼性を持って光通
信を行うことができる。
As described above, according to the present invention,
The size and cost can be reduced, and optical communication can be performed with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光送受信装置の第1の実施形態を示
す斜視図。
FIG. 1 is a perspective view showing a first embodiment of an optical transceiver according to the present invention.

【図2】図1に示す光送受信装置の側面図及び平面図。2A and 2B are a side view and a plan view of the optical transceiver shown in FIG.

【図3】この発明の光送受信装置の第2の実施形態を示
す斜視図。
FIG. 3 is a perspective view showing a second embodiment of the optical transceiver according to the present invention.

【図4】この発明の光送受信装置の第3の実施形態を示
す斜視図。
FIG. 4 is a perspective view showing a third embodiment of the optical transceiver according to the present invention.

【図5】この発明の光送受信装置の実施形態の前提とな
る光送受信装置の実施形態を示す斜視図。
FIG. 5 is a perspective view showing an embodiment of an optical transmitter / receiver, which is a premise of the embodiment of the optical transmitter / receiver of the present invention.

【図6】図5に示す光送受信装置の側面図及び平面図。6A and 6B are a side view and a plan view of the optical transceiver shown in FIG.

【図7】従来の一心方式の双方向通信回線方式を示す
図。
FIG. 7 is a diagram showing a conventional one-core bidirectional communication line system.

【図8】従来の一心双方向通信回線の構成を示す図。FIG. 8 is a diagram showing a configuration of a conventional one-core bidirectional communication line.

【符号の説明】[Explanation of symbols]

10、20、30、40 光送受信装
置 11 基板 12 発光部 13、231 受光部 14、34 光学素子 15 半導体素子 16、26、36 演算部 17 結合レンズ 18 駆動回路 232、33 監視受光部 261、262 電流/電圧
変換回路 263 差動増幅回
路 361 分配回路 362 監視増幅回
路 L1 第1の光信
号 L2 第2の光信
10, 20, 30, 40 Optical transmitter / receiver 11 Substrate 12 Light emitting part 13, 231 Light receiving part 14, 34 Optical element 15 Semiconductor element 16, 26, 36 Computing part 17 Coupling lens 18 Driving circuit 232, 33 Monitoring light receiving part 261, 262 Current / voltage conversion circuit 263 Differential amplification circuit 361 Distribution circuit 362 Monitoring amplification circuit L1 First optical signal L2 Second optical signal

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月5日[Submission date] March 5, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】この発明は、例えば一双方
向通信回線に設けられて光信号を送受信するための光送
受信装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmitter / receiver for transmitting and receiving an optical signal, which is provided in, for example, a one- core bidirectional communication line.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】光通信により信号を送受信する方式とし
ては、光ファイバを1本用いた一方式の双方向通信回
線方式、あるいは光ファイバを2本用いた二方式の双
方向通信回線方式がある。図7は、一方式の双方向通
信回線方式の一例を示す図であり、一方の光伝送機器1
と他方の光伝送機器2の間を1本の光ファイバFで接続
している。
2. Description of the Related Art As methods of transmitting and receiving signals via optical communication, two-way communication line system of one single fiber system using an optical fiber or a bidirectional communication line system of the two two-core method using an optical fiber, There is. FIG. 7 is a diagram showing an example of a one- core bidirectional communication line system, and one optical transmission device 1
And the other optical transmission device 2 are connected by one optical fiber F.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】この一方式の双方向通信回線方式では、
図8に示すように、一方の光伝送機器1は、発光素子
3、受光素子4、方向性結合器5及びレンズ等を有して
いて、筐体に対してこれら別々の部品である発光素子
3、受光素子4、方向性結合器5及びレンズ等を組立て
て構成している。同様にして他方の光伝送機器2におい
ても、発光素子3、受光素子4、方向性結合器5及びレ
ンズ等を有している。
In this one- core bidirectional communication line system,
As shown in FIG. 8, one optical transmission device 1 includes a light emitting element 3, a light receiving element 4, a directional coupler 5, a lens, and the like, and is a light emitting element that is a separate component for the housing. 3, the light receiving element 4, the directional coupler 5, the lens and the like are assembled and configured. Similarly, the other optical transmission device 2 also has a light emitting element 3, a light receiving element 4, a directional coupler 5, a lens, and the like.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】[0004]

【発明が解決しようとする課題】従来の一方式の双方
向通信回線方式では、光伝送機器は、別々の発光素子
3、受光素子4、方向性結合器5及びレンズ等で構成し
なければならず、信頼性や小型化及び低価格化に対して
大きな障害となっている。
In the conventional one- core bidirectional communication line system, the optical transmission equipment must be composed of separate light emitting element 3, light receiving element 4, directional coupler 5 and lens. However, it is a major obstacle to reliability, downsizing, and price reduction.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】上記目的は、この発明に
あっては、一芯双方向光通信回線に設けられて、光信号
を送受信する光送受信装置において、第1の光信号の送
信と第2の光信号の受信を同時に行う際に、前記第1の
光信号の監視信号により、前記第1の光信号から第2の
光信号の信号漏洩干渉分を除去する演算部を備えるこ
とにより達成される。
According to the present invention, there is provided an optical transmitter-receiver for transmitting and receiving an optical signal, which is provided in a one-core bidirectional optical communication line. A reception unit that removes a signal leakage interference component from the first optical signal to the second optical signal by the monitoring signal of the first optical signal when simultaneously receiving the second optical signal . Achieved by

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】先ず、この発明の光送受信装置の実施形態
を説明する前に、その前提となる技術について図5及び
図6を用いて説明する。図5は、この発明の光送受信装
置の実施形態の前提技術となる光送受信装置の実施形態
を示す斜視図であり、図6は、その側面図及び平面図で
ある。この光送受信装置10は、基板11、発光部1
2、受光部13、光学素子14、半導体素子15、演算
部16及び結合レンズ17、そして好ましくは発光部1
2から送信される光信号のモニター用受光部を有してお
り、一双方向光通信回線に設けられて、第1の光信号
を送信し、第2の光信号を受信する。
First, before describing the embodiment of the optical transmitter / receiver of the present invention, the technology on which it is based will be described with reference to FIGS. 5 and 6. FIG. 5 is a perspective view showing an embodiment of an optical transmitter / receiver, which is a base technology of the embodiment of the optical transmitter / receiver of the present invention, and FIG. 6 is a side view and a plan view thereof. The optical transceiver 10 includes a substrate 11 and a light emitting unit 1.
2, the light receiving unit 13, the optical element 14, the semiconductor element 15, the arithmetic unit 16 and the coupling lens 17, and preferably the light emitting unit 1.
It has a light receiving part for monitoring the optical signal transmitted from the optical fiber 2 and is provided in the one- core bidirectional optical communication line to transmit the first optical signal and receive the second optical signal.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】次に、上述した光送受信装置の作用につい
て説明する。先ず、発光部12からの第1の光信号L1
が、光学素子14の半透過ミラー141で垂直上方に屈
折反射されて結合レンズ17により絞られ、一双方向
光通信回線を構成する光ファイバの入射端面に導かれ
る。このとき、発光部12の第1の光信号L1の送信状
態は、モニター用受光部によりモニターされ、発光部1
2の駆動回路18が制御される。そして、第1の光信号
L1は、光ファイバを透過して図5及び図6に示す構成
と同一構成の遠隔の光送受信装置に導かれる。
Next, the operation of the above-mentioned optical transceiver will be described. First, the first optical signal L1 from the light emitting unit 12
Is refracted and reflected vertically upward by the semi-transmissive mirror 141 of the optical element 14, is focused by the coupling lens 17, and is guided to the incident end face of the optical fiber forming the one- core bidirectional optical communication line. At this time, the transmission state of the first optical signal L1 of the light emitting unit 12 is monitored by the monitoring light receiving unit,
The second drive circuit 18 is controlled. Then, the first optical signal L1 passes through the optical fiber and is guided to a remote optical transmitter / receiver having the same configuration as that shown in FIGS.

【手続補正9】[Procedure amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図7】従来の一方式の双方向通信回線方式を示す
図。
FIG. 7 is a diagram showing a conventional one- core bidirectional communication line system.

【手続補正10】[Procedure amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図8[Correction target item name] Fig. 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図8】従来の一双方向通信回線の構成を示す図。FIG. 8 is a diagram showing a configuration of a conventional one- core bidirectional communication line.

【手続補正12】[Procedure amendment 12]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図7】 FIG. 7

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 33/00 H01L 31/02 C H01S 3/18 H04B 9/00 G H04B 10/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H01L 33/00 H01L 31/02 C H01S 3/18 H04B 9/00 G H04B 10/24

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光信号を送受信する光送受信装置におい
て、 第1の光信号の送信と第2の光信号の受信を同時に行う
際に、前記第1の光信号の監視信号により、前記第1の
光信号と第2の光信号の信号漏洩干渉分を除去する演算
部を備えたことを特徴とする光送受信装置。
1. An optical transmission / reception device for transmitting / receiving an optical signal, wherein the first optical signal is monitored by the first optical signal when the first optical signal is transmitted and the second optical signal is received at the same time. An optical transmission / reception device comprising: an arithmetic unit that removes a signal leakage interference component of the optical signal and the second optical signal.
【請求項2】 光信号を送受信する光送受信装置におい
て、 基板と、 前記基板に設けられて、第1の光信号を送信するための
発光部と、 前記基板に設けられて、第2の光信号を受信するための
受光部と、 前記基板に設けられて、前記発光部からの前記第1の光
信号を前記通信回線に与え、かつ前記通信回線からの前
記第2の光信号を前記受光部に導く光学素子と、 前記第1の光信号を監視するための監視部と、 前記基板に設けられて、前記監視部からの監視信号と前
記受光部からの検出信号を演算し、前記第1の光信号と
第2の光信号の信号漏洩干渉分を除去する演算部とを備
えたことを特徴とする光送受信装置。
2. An optical transmitter / receiver for transmitting and receiving an optical signal, a substrate, a light emitting unit provided on the substrate for transmitting a first optical signal, and a second light provided on the substrate. A light receiving portion for receiving a signal; and a light receiving portion provided on the substrate for giving the first optical signal from the light emitting portion to the communication line and receiving the second optical signal from the communication line. An optical element that guides the first optical signal, a monitoring unit for monitoring the first optical signal, and a substrate provided on the substrate to calculate a monitoring signal from the monitoring unit and a detection signal from the light receiving unit. An optical transmission / reception device comprising: a calculation unit that removes a signal leakage interference component of the first optical signal and the second optical signal.
【請求項3】 前記監視部は、前記基板に設けられてい
る請求項2に記載の光送受信装置。
3. The optical transceiver according to claim 2, wherein the monitor is provided on the substrate.
【請求項4】 前記監視部は、前記演算部に設けられて
いる請求項2に記載の光送受信装置。
4. The optical transceiver according to claim 2, wherein the monitoring section is provided in the arithmetic section.
JP7350641A 1995-12-22 1995-12-22 Optical transmitter-receiver Pending JPH09181676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7350641A JPH09181676A (en) 1995-12-22 1995-12-22 Optical transmitter-receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7350641A JPH09181676A (en) 1995-12-22 1995-12-22 Optical transmitter-receiver

Publications (1)

Publication Number Publication Date
JPH09181676A true JPH09181676A (en) 1997-07-11

Family

ID=18411861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7350641A Pending JPH09181676A (en) 1995-12-22 1995-12-22 Optical transmitter-receiver

Country Status (1)

Country Link
JP (1) JPH09181676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731881B2 (en) 1999-12-01 2004-05-04 Nec Corporation Device for transmitting and receiving optical signals
US7218860B2 (en) 2000-09-07 2007-05-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical transceiver module with ambient light circuitry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731881B2 (en) 1999-12-01 2004-05-04 Nec Corporation Device for transmitting and receiving optical signals
US7218860B2 (en) 2000-09-07 2007-05-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical transceiver module with ambient light circuitry
DE10143731B4 (en) * 2000-09-07 2007-06-14 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Optical transceiver module

Similar Documents

Publication Publication Date Title
US10151894B2 (en) Method and system for optical power monitoring of a light source assembly coupled to a silicon photonically-enabled integrated circuit
US4301543A (en) Fiber optic transceiver and full duplex point-to-point data link
US6188495B1 (en) Optical transmission-reception apparatus
US20190199436A1 (en) Method And System For Connectionless Integrated Optical Receiver and Transmitter Test
US5400419A (en) Bidirectional optical transmission and reception module
JP2000171671A (en) Optical communication module and its mounting method
US6480647B1 (en) Waveguide-type wavelength multiplexing optical transmitter/receiver module
US9383528B2 (en) Light-receiving module
US6952514B2 (en) Coupling structure for optical waveguide and optical device and optical alignment method by using the same
US7277173B1 (en) Active optical alignment using MEMS mirrors
GB2123236A (en) Arrangement for locating faults in an optical transmission system
GB2332318A (en) Low power output monitoring tap
US7136552B2 (en) TO-packaged optic-fiber receiving interface and method
US6282006B1 (en) Optical communications apparatus and method
JPH09181676A (en) Optical transmitter-receiver
JP2000137151A (en) Module for two-way optical communications
JPH09181675A (en) Optical transmitter-receiver
JP3206993B2 (en) Bidirectional optical space transmission equipment
US20020191917A1 (en) Transceiver device for transmitting and receiving optical signals
JPS63124633A (en) Wide band optical communication system especially for subscriber domain
JPH08166527A (en) Optical conversion device
JPS6122311A (en) Ld analog optical transmitter
JPH1039181A (en) Light transmitter/receiver
US5066148A (en) Bi-directional optical transmission system for RF electrical energy
US20090060529A1 (en) Optical bench fiber optic transmitter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116