JP2540166Y2 - Optical signal receiver - Google Patents

Optical signal receiver

Info

Publication number
JP2540166Y2
JP2540166Y2 JP3178291U JP3178291U JP2540166Y2 JP 2540166 Y2 JP2540166 Y2 JP 2540166Y2 JP 3178291 U JP3178291 U JP 3178291U JP 3178291 U JP3178291 U JP 3178291U JP 2540166 Y2 JP2540166 Y2 JP 2540166Y2
Authority
JP
Japan
Prior art keywords
signal
optical fiber
light
optical
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3178291U
Other languages
Japanese (ja)
Other versions
JPH0568152U (en
Inventor
順吉 城野
秀夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP3178291U priority Critical patent/JP2540166Y2/en
Publication of JPH0568152U publication Critical patent/JPH0568152U/en
Application granted granted Critical
Publication of JP2540166Y2 publication Critical patent/JP2540166Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、光ファイバの光信号送
信端及び受信端以外の任意の位置でその光ファイバを切
断せずに、その光ファイバを伝送する光信号を受信する
ための光信号受信装置に関する。さらに詳述すれば、光
ファイバの伝送特性の測定及び破断点の位置検索には、
光パルス試験器(OTDR)が使用される。その光ファ
イバを介してPCM信号を伝送する場合、光の波長分散
現象によって波形の歪が発生することがある。その波形
の歪が光ファイバのどの位置で発生しているか知りたい
との要求はあるが、前述のOTDRではその要求をみた
さない。従って、光ファイバを介して伝送中の光信号の
一部を効率よく受光し、光ファイバの伝送状態を監視す
る技術に関する。
The present invention relates to an optical fiber for receiving an optical signal transmitted through an optical fiber without cutting the optical fiber at an arbitrary position other than an optical signal transmitting end and a receiving end. The present invention relates to a signal receiving device. More specifically, in measuring the transmission characteristics of the optical fiber and searching for the position of the break point,
An optical pulse tester (OTDR) is used. When a PCM signal is transmitted via the optical fiber, a waveform distortion may occur due to a wavelength dispersion phenomenon of light. Although there is a demand to know where in the optical fiber the waveform distortion is occurring, the above-mentioned OTDR does not meet this requirement. Therefore, the present invention relates to a technique for efficiently receiving a part of an optical signal being transmitted through an optical fiber and monitoring a transmission state of the optical fiber.

【0002】[0002]

【従来の技術】(心線対照センサの場合) 光ファイバを切断せずに、光ファイバを伝播している光
信号のパワーを測定する方法として、いわゆる心線対照
センサが知られている。心線対照センサに使用されるゲ
ルマニュームホトダイオード(以下PDという)の場合
は、光ファイバ曲げ部から漏れ出す光を受光するため
に、受光径φ1mm〜2mmの大きさのものが使用され
ている。このようなPDの電気特性は、その受光面積に
対応して容量が大きいため応答周波数1MHz以上の高
速応答ができず、PCM変調のように高い周波数で変調
された光信号を電気信号に変換することは不可能であっ
た。
2. Description of the Related Art A so-called core sensor is known as a method for measuring the power of an optical signal propagating through an optical fiber without cutting the optical fiber. In the case of a germanium photodiode (hereinafter, referred to as PD) used for a core wire contrast sensor, a photodiode having a light receiving diameter of φ1 mm to 2 mm is used to receive light leaking from a bent portion of an optical fiber. The electrical characteristics of such a PD are such that a capacitance corresponding to the light receiving area is large, so that a high-speed response at a response frequency of 1 MHz or more cannot be performed, and an optical signal modulated at a high frequency such as PCM modulation is converted into an electrical signal. That was impossible.

【0003】心線対照センサの技術としては、例えば、
実開昭57年40906号に開示されている。その技術
要旨を図4を用いて説明する。光ファイバ61の一端6
2から入射された光信号Aは全反射臨界角以下の角度で
光ファイバ内を伝播する。光ファイバを全反射臨界角以
上に折り曲げ(66)ると、光信号Aは光ファイバの外
側へ漏れ光63となって現れる。その漏れ光の延長線上
に光検出器64の受光面を置けば、漏れ光を検出するこ
とができる。
[0003] As a technology of a core contrast sensor, for example,
No. 40906/57. The technical gist will be described with reference to FIG. One end 6 of optical fiber 61
The optical signal A incident from No. 2 propagates in the optical fiber at an angle smaller than the critical angle for total reflection. When the optical fiber is bent (66) beyond the total reflection critical angle, the optical signal A appears as leaked light 63 outside the optical fiber. If the light receiving surface of the photodetector 64 is placed on an extension of the leak light, the leak light can be detected.

【0004】(光ファイバを用いた通信の場合) 図5は光ファイバを用いた通信システムの基本的概念を
示す図である。送信端20では、伝送すべき信号を電気
→光変換器(E/O変換器)21において光信号に変換
し、光ファイバ21に出射する。受信端側30では、光
ファイバを伝播する光信号を光→電気変換器(O/E変
換器)31で電気信号に復調する。光ファイバを用いた
通信では高速、大容量、低損失の伝送が可能である。特
に光ファイバを略直線上に敷設すれば、光信号は光ファ
イバの外へ漏れることがないので低損失即ち長距離伝送
が実現できる。光信号が外へ漏れないということは、光
ファイバの途中では光信号を受光することができないと
いうことである。即ち、光伝送系の途中に光分岐手段を
設ければ、光伝送系の途中で光信号を受光することがで
きるが、それ以外の方法では、光ファイバを切断しなけ
れば光信号を受光することができない。例えば光ファイ
バの変形による伝送状態の変化を監視するために、符号
誤り率測定装置や光パワー測定装置等を使用する場合も
同様である。
(Case of Communication Using Optical Fiber) FIG. 5 is a diagram showing a basic concept of a communication system using an optical fiber. At the transmitting end 20, a signal to be transmitted is converted into an optical signal by an electric-to-optical converter (E / O converter) 21 and output to an optical fiber 21. At the receiving end 30, an optical signal propagating through the optical fiber is demodulated into an electric signal by an optical-to-electrical converter (O / E converter) 31. In communication using optical fibers, high-speed, large-capacity, low-loss transmission is possible. In particular, if the optical fiber is laid on a substantially straight line, the optical signal does not leak out of the optical fiber, so that low loss, that is, long-distance transmission can be realized. The fact that the optical signal does not leak outside means that the optical signal cannot be received in the middle of the optical fiber. That is, if an optical branching means is provided in the middle of the optical transmission system, an optical signal can be received in the middle of the optical transmission system. However, in other methods, the optical signal is received unless the optical fiber is cut. Can not do. For example, the same applies when a bit error rate measuring device, an optical power measuring device, or the like is used to monitor a change in transmission state due to deformation of an optical fiber.

【0005】[0005]

【考案が解決しようとする課題】しかし心線対照センサ
を用いた従来の技術には次のような欠点がある。図4に
示したように漏れ光63は広がりを持っている。その漏
れ光を効率よく受光しようとすれば、光検出器64の受
光面の面積を大きくしなければならない(一般には受光
径が1mm〜2mm)。受光面の面積を大きくすると、
光検出器64の周波数応答速度が遅くなる欠点がある。
例えば、受光面の径が1mmの受光素子の応答周波数は
1MHzが限度である。心線対照センサのように、単に
光ファイバの折り曲げ点に現われる漏れ光の平均値を検
出するような場合は、受光面の面積が大きい光検出器で
も十分に初期の目的を達成することができる。しかし、
例えば、数ギガビット/秒のような高速の信号を扱うP
CM伝送のような場合、従来のような受光面の面積が大
きい受光素子では、周波数応答速度が遅いため、変調信
号波形を再現できない欠点がある。さらに、従来の技術
では、光ファイバ61の一端62に入射された光信号
は、折り曲げ点66における進行方向の延長線上に光検
出器64が設けられているため、その漏れ光63を検出
することができるが、それとは逆に光ファイバの他端6
5から入射された光信号Bの漏れ光63aは光検出器6
4で検出できないという欠点もある。
However, the prior art using a core contrast sensor has the following disadvantages. As shown in FIG. 4, the leak light 63 has a spread. In order to efficiently receive the leaked light, the area of the light receiving surface of the photodetector 64 must be increased (generally, the light receiving diameter is 1 mm to 2 mm). When the area of the light receiving surface is increased,
There is a disadvantage that the frequency response speed of the photodetector 64 is reduced.
For example, the response frequency of a light receiving element having a light receiving surface with a diameter of 1 mm is limited to 1 MHz. In the case of simply detecting the average value of leaked light appearing at the bending point of the optical fiber as in the case of a fiber optic sensor, even a photodetector having a large light receiving surface can sufficiently achieve the initial purpose. . But,
For example, P handling a high-speed signal such as several gigabits / second
In the case of CM transmission, a conventional light receiving element having a large light receiving surface area has a drawback that the modulated signal waveform cannot be reproduced because the frequency response speed is low. Further, according to the conventional technique, the optical signal incident on one end 62 of the optical fiber 61 has a photodetector 64 provided on an extension of the bending point 66 in the traveling direction. The other end of the optical fiber 6
The leakage light 63a of the optical signal B incident from the
4 cannot be detected.

【0006】本考案の目的は、(1)光ファイバを用い
てPCM通信を行っている送信端と受信端の間の任意の
位置で、光ファイバを切断せずに高周波で変調された光
信号を受光すること、(2)光ファイバを切断せずに受
光した光信号を符号誤り率測定装置、光パワー測定装置
等に入力して光ファイバの異常を監視することである。
An object of the present invention is as follows: (1) An optical signal modulated at a high frequency without cutting an optical fiber at an arbitrary position between a transmitting end and a receiving end performing PCM communication using an optical fiber. And (2) inputting an optical signal received without cutting the optical fiber to a bit error rate measuring device, an optical power measuring device, or the like, and monitoring the optical fiber for abnormalities.

【0007】[0007]

【課題を解決するための手段】上記の欠点を解決するた
めに、本考案の光信号受信装置は光ファイバの折り曲げ
点から出射される高い周波数で変調された光信号、例え
ば高速の信号を扱うPCM伝送のような信号の漏れ光を
効率よく受光する手段として、光信号を伝播中の光ファ
イバを複数箇所で屈曲させて、該屈曲点66から出射さ
れる漏れ光63の延長線上に漏れ光のビームを覆うよう
に配置され、該漏れ光の光信号を電気信号に変換する複
数の受光手段1と、該複数の受光手段から出力されるそ
れぞれの電気信号のタイミングを調整する遅延手段2
と、該遅延手段によりタイミングが調整された複数の電
気信号を合成する信号合成手段3とを備えている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned drawbacks, the optical signal receiving apparatus of the present invention handles a high-frequency modulated optical signal emitted from a bending point of an optical fiber, for example, a high-speed signal. As a means for efficiently receiving leaked light of a signal such as PCM transmission, an optical fiber transmitting an optical signal is bent at a plurality of locations, and leaked light is formed on an extension of the leaked light 63 emitted from the bending point 66. A plurality of light receiving means 1 arranged so as to cover the beam of light and converting the optical signal of the leaked light into an electric signal, and a delay means 2 for adjusting the timing of each electric signal output from the plurality of light receiving means.
And signal synthesizing means 3 for synthesizing a plurality of electric signals whose timings have been adjusted by the delay means.

【0008】また、上記信号合成手段から出力される電
気信号を受けて該電気信号を変調信号に復元する信号再
生手段4を付加し、その出力信号を受けて光ファイバの
通信評価装置、例えば符号誤り率測定装置、光パワー測
定装置等に入力し光ファイバの破断や変形等の異常を監
視するための波形評価手段8を備えている。
Also, a signal reproducing means 4 for receiving the electric signal output from the signal synthesizing means and restoring the electric signal into a modulated signal is added, and receiving the output signal, a communication evaluation device for an optical fiber, for example, a code A waveform evaluation means 8 is provided for inputting to an error rate measuring device, an optical power measuring device, or the like, and monitoring abnormalities such as breakage or deformation of the optical fiber.

【0009】[0009]

【作用】屈曲された光ファイバの折り曲げ点から出射さ
れる高い周波数で変調された光信号の漏れ光を検出する
ために周波数応答速度の速い受光面積の小さい受光素子
を用いる。又、伝送中の光通信に影響を与えることの無
いように微量の漏れ光を受光する必要がある。そのた
め、受光感度を良くするために受光面積の小さい受光素
子を複数用いる。受光した信号をもちいて光ファイバの
破断や変形等の異常を監視するための処理をする。
A light receiving element having a small light receiving area with a high frequency response speed is used to detect leaked light of an optical signal modulated at a high frequency emitted from a bending point of a bent optical fiber. Also, it is necessary to receive a small amount of leaked light so as not to affect optical communication during transmission. Therefore, in order to improve the light receiving sensitivity, a plurality of light receiving elements having a small light receiving area are used. Using the received signal, a process for monitoring an abnormality such as breakage or deformation of the optical fiber is performed.

【0010】[0010]

【実施例】(第1の実施例) 図1に、本考案の第1の実施例の構成を示す。以下の説
明は光ファイバ61をPCM通信に使用した場合を例に
して行う。第1の光ファイバ押え手段67と第2の光フ
ァイバ押え手段68とは相対して凸凹の形状をしてお
り、両者の間に光ファイバ61を置いて間隔を狭めると
凸凹に沿って光ファイバは屈曲され折れ曲がり点66が
生じる。光ファイバ61の光ファイバ端62に入射され
た光信号Aは折れ曲がり点66から進行方向に漏れ光6
3が出射される。この漏れ光の量は曲がりの半径により
決定される。通常は伝送系に支障のないように微弱な漏
れ光が出射される。この漏れ光を効率よく受光するため
に出射ビーム幅を覆うように複数の受光手段1が配置さ
れる。通過中の光信号がPCM通信のような高い周波数
で変調されている場合、受光手段1は周波数応答速度を
速めるために受光面積の小さいホトダイオード(図示せ
ず)が使用される。ここで使用されるゲルマニュームホ
トダイオードの周波数応答速度の一例をあげると、受光
径φ=0.1mmの時の最高応答周波数は約10MHz
(立ち上がり時間は0.5μs)である。本実施例では
3個の受光手段1を使用しているが、受光手段の数量は
漏れ光のビーム幅及び漏れ光の強弱によって増減しても
よい。
FIG. 1 shows the configuration of a first embodiment of the present invention. The following description is made by taking the case where the optical fiber 61 is used for PCM communication as an example. The first optical fiber pressing means 67 and the second optical fiber pressing means 68 have an uneven shape opposite to each other, and when the optical fiber 61 is placed between them and the interval is reduced, the optical fiber along the unevenness is reduced. Is bent to form a bending point 66. The optical signal A incident on the optical fiber end 62 of the optical fiber 61 leaks light 6 from the bending point 66 in the traveling direction.
3 is emitted. The amount of this light leakage is determined by the radius of the bend. Normally, weak leakage light is emitted so as not to hinder the transmission system. In order to efficiently receive the leaked light, a plurality of light receiving units 1 are arranged so as to cover the output beam width. In the case where the passing optical signal is modulated at a high frequency as in PCM communication, a photodiode (not shown) having a small light receiving area is used as the light receiving means 1 in order to increase the frequency response speed. As an example of the frequency response speed of the germanium photodiode used here, the maximum response frequency when the light receiving diameter φ is 0.1 mm is about 10 MHz.
(The rise time is 0.5 μs). In this embodiment, three light receiving units 1 are used, but the number of light receiving units may be increased or decreased according to the beam width of the leaked light and the intensity of the leaked light.

【0011】受光手段1により検出された信号は遅延手
段2に入力される。各遅延手段2に入力される信号のタ
イミングはそれぞれの受光手段1に組み込まれたホトダ
イオードの検出位置により同一のパルス信号であっても
ばらつきが生じる。そのために遅延手段2は光ファイバ
の漏れ点から各ホトダイオード間の遅延時間を同一にそ
ろえて出力するためのものである。
The signal detected by the light receiving means 1 is input to the delay means 2. The timing of the signal input to each delay unit 2 varies depending on the detection position of the photodiode incorporated in each light receiving unit 1 even if the pulse signal is the same. For this purpose, the delay means 2 outputs the delay time between the photodiodes from the leak point of the optical fiber with the same delay time.

【0012】信号合成手段3は入力された信号を加算す
るためののものである。それぞれの遅延手段2から出力
されたタイミングのそろった信号は信号合成手段3に入
力され、加算される。この信号合成手段3の出力は次段
の信号再生手段4に入力される。信号再生手段4は信号
合成手段3より出力されたパルス信号を増幅及び波形整
形して変調信号に復元するためのものである。復元され
た信号を次段の光ファイバ通信波形評価手段、例えば符
号誤り率測定装置へ入力して伝送特性を測定して光ファ
イバの変形を監視したり、光電力測定装置へ入力しして
光電力の変動を測定して光ファイバの伝送損失の増加や
断線を監視できる。
The signal synthesizing means 3 is for adding the input signals. The signals with the same timing output from the respective delay means 2 are input to the signal synthesis means 3 and added. The output of the signal synthesizing means 3 is input to the signal reproducing means 4 at the next stage. The signal reproducing means 4 is for amplifying and shaping the pulse signal output from the signal synthesizing means 3 and restoring it to a modulated signal. The restored signal is input to the next-stage optical fiber communication waveform evaluation means, for example, a bit error rate measuring device, and the transmission characteristics are measured to monitor the deformation of the optical fiber. By measuring power fluctuations, it is possible to monitor an increase in optical fiber transmission loss and disconnection.

【0013】(第2の実施例) 第2図に、光ファイバの双方向から信号A,Bが入射さ
れた場合の本考案の第2の実施例の構成を示す。第2図
においては、ファイバ61の折り曲がり点66の漏れ光
は、一端62に入射された光信号Aは第1実施例と同様
に、受光手段1により検出される。他端65に入射され
た信号Bはその進行方向の延長上に設けられた受光手段
1aにより検出される。検出されたそれぞれの信号は第
1実施例と同様に遅延手段2、2a、信号合成手段3、
3a、信号再生手段4、4aにより信号処理される。以
後評価手段による処理は前記第1実施例と同様である。
(Second Embodiment) FIG. 2 shows the configuration of a second embodiment of the present invention when signals A and B are incident from both directions of an optical fiber. In FIG. 2, the light leaked from the bending point 66 of the fiber 61 is detected by the light receiving means 1 in the same manner as in the first embodiment. The signal B incident on the other end 65 is detected by the light receiving means 1a provided on the extension of the traveling direction. Each of the detected signals is, as in the first embodiment, a delay means 2, 2a, a signal combining means 3,
3a, the signal is processed by the signal reproducing means 4, 4a. Thereafter, the processing by the evaluation means is the same as in the first embodiment.

【0014】(第3の実施例) 本実施例も前記実施例と同様にPCM通信に使用された
場合を示す。第3図に示すように光ファイバ61を折り
曲げて漏れ光66を生じさせるために板状の第1の光フ
ァイバ押え手段5、第2の光ファイバ押え手段6及び複
数の光ファイバ折り曲げ手段7で構成されている。第1
と第2の光ファイバ押え手段、例えば平状の板の間に光
ファイバ61を置き、この光ファイバに対して折り曲げ
手段7、例えば円筒状の棒を第1と第2の光ファイバ押
え手段側に交互に配置して第1と第2の光ファイバ押え
手段の間隔を狭める。この時、折り曲げ手段7の数量、
外径及び間隔は伝送系に影響を与えない程度の漏れ光に
なるよう選択すればよい。
(Third Embodiment) This embodiment also shows a case where it is used for PCM communication as in the above embodiment. As shown in FIG. 3, the first optical fiber pressing means 5, the second optical fiber pressing means 6, and the plurality of optical fiber bending means 7 are used to bend the optical fiber 61 to generate leakage light 66. It is configured. First
The optical fiber 61 is placed between the optical fiber 61 and a second optical fiber pressing means, for example, a flat plate, and the bending means 7, for example, a cylindrical rod is alternately placed on the first and second optical fiber pressing means sides with respect to this optical fiber. And the distance between the first and second optical fiber holding means is reduced. At this time, the number of folding means 7
The outer diameter and the interval may be selected so that light leakage does not affect the transmission system.

【0015】各折り曲がり点66から出射する漏れ光6
3を検出する方法はそれぞれの折り曲がり点に対応して
第1実施例と同様な受光手段1を設ける。複数の受光手
段1による同一信号のそれぞれの遅延は検出位置により
異なるため前記実施例と同様に遅延手段2を備えて後段
の信号処理に対処している。 遅延手段2以後の信号処
理は前記実施例と同様である。本実施例は各漏れ光63
のビーム幅が狭ければ受光手段(ホトダイオード)は一
個でもよく、ビーム幅に応じて適時増減できる。また、
前記第2実施例のように双方向の漏れ光の出射線上に受
光手段2a以降を設けてもよい。
Leaked light 6 emitted from each bending point 66
In the method of detecting 3, the same light receiving means 1 as in the first embodiment is provided corresponding to each bending point. Since the respective delays of the same signal by the plurality of light receiving means 1 differ depending on the detection position, the delay means 2 is provided as in the above-described embodiment to deal with the subsequent signal processing. The signal processing after the delay means 2 is the same as in the above embodiment. In this embodiment, each light 63
If the beam width is small, the number of light receiving means (photodiodes) may be one, and the number can be increased or decreased as needed according to the beam width. Also,
As in the second embodiment, the light receiving means 2a and subsequent parts may be provided on the emission line of the bidirectional leaked light.

【0016】[0016]

【考案の効果】以上説明したように、高い周波数で変調
されたい光信号を伝送中の光ファイバを屈曲させて漏れ
光を検出するために、周波数応答速度の速い受光面積の
小さな受光素子を複数設けて対処したので次の効果があ
る。 (1)PCM通信等伝送中の高速光信号を光ファイバを
切断せずに受信できる。 (2)受信効率を上げることができるため送受信間の信
号伝送に影響を与えることなく、光ファイバ内の光信号
が受信できる。 (3)漏れ光の出射線上に受光手段を設けたので光信号
の伝送方向に関係なく光ファイバ内の光信号が受信でき
る。 (4)上記効果に加え、上記の受信信号を用いて光ファ
イバ内の光の伝送状態を監視することができる。
As described above, in order to detect the leaked light by bending the optical fiber transmitting the optical signal to be modulated at a high frequency, a plurality of light receiving elements having a small light receiving area having a high frequency response speed are used. The following effects are obtained by providing and coping with them. (1) A high-speed optical signal during transmission such as PCM communication can be received without cutting the optical fiber. (2) Since the reception efficiency can be increased, an optical signal in an optical fiber can be received without affecting signal transmission between transmission and reception. (3) Since the light receiving means is provided on the outgoing line of the leak light, the optical signal in the optical fiber can be received regardless of the transmission direction of the optical signal. (4) In addition to the above effects, the transmission state of light in the optical fiber can be monitored using the above received signal.

【0017】[0017]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光信号受信装置の第一実施例を示
すブロック構成図
FIG. 1 is a block diagram showing a first embodiment of an optical signal receiving apparatus according to the present invention.

【図2】本発明による光信号受信装置の第二実施例を示
すブロック構成図
FIG. 2 is a block diagram showing a second embodiment of the optical signal receiving apparatus according to the present invention;

【図3】本発明による光信号受信装置の第三実施例を示
すブロック構成図
FIG. 3 is a block diagram showing a third embodiment of the optical signal receiving apparatus according to the present invention;

【図4】従来の光信号受信回路FIG. 4 is a conventional optical signal receiving circuit.

【図5】光ファイバを用いた通信システムの構成図FIG. 5 is a configuration diagram of a communication system using an optical fiber.

【符号の説明】[Explanation of symbols]

1、1a 受光手段 2、2a 遅延手段 3、3a 信号合成手段 4、4a 信号再生手段 5 第三実施例の第1の光ファイバ押え手段 6 第三実施例の第2の光ファイバ押え手段 7 第三実施例の光ファイバ折り曲げ手段 8 波形評価手段 20 PCM通信の送信側 21 E/O変換器 30 PCM通信の受信側 31 O/E変換器 61 光ファイバ 62 光ファイバの入力端 63 漏れ光 64 従来例の受光手段 65 光ファイバの他方の入力端 66 折り曲がり点 67 第1の光ファイバ押え板 68 第2の光ファイバ押え板 1, 1a light receiving means 2, 2a delay means 3, 3a signal synthesizing means 4, 4a signal reproducing means 5 first optical fiber pressing means 6 of the third embodiment 6 second optical fiber pressing means 7 of the third embodiment 7 Optical fiber bending means of three embodiments 8 Waveform evaluation means 20 PCM communication transmitting side 21 E / O converter 30 PCM communication receiving side 31 O / E converter 61 Optical fiber 62 Optical fiber input end 63 Leakage light 64 Conventional Example light receiving means 65 The other input end of optical fiber 66 Bending point 67 First optical fiber pressing plate 68 Second optical fiber pressing plate

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】光信号を伝送中の光ファイバの屈曲点(6
6)から出射される漏れ光(63)の延長線上に配置さ
れ、該漏れ光の光信号を電気信号に変換する複数の受光
手段(1)と、該複数の受光手段から出力されるそれぞ
れの電気信号のタイミングを調整する遅延手段(2)
と、該遅延手段によりタイミングが調整された複数の電
気信号を合成する信号合成手段(3)とを備えた光信号
受信装置
1. An inflection point (6) of an optical fiber transmitting an optical signal.
A plurality of light receiving means (1) arranged on an extension of the leaked light (63) emitted from 6) for converting an optical signal of the leaked light into an electrical signal, and respective light output means output from the plurality of light receiving means. Delay means for adjusting the timing of electric signals (2)
An optical signal receiving apparatus comprising: a plurality of electric signals whose timings are adjusted by the delay unit;
【請求項2】 光信号を伝送中の光ファイバの屈曲点(6
6)から出射される漏れ光(63)の延長線上に配置さ
れ、該漏れ光の光信号を電気信号に変換する複数の受光
手段(1)と、該複数の受光手段から出力されるそれぞ
れの電気信号のタイミングを調整する複数の遅延手段
(2)と、該遅延手段によりタイミングが調整された複
数の電気信号を合成する信号合成手段(3)と、該信号
合成手段から出力される電気信号を受けて該電気信号を
元の信号に復元するための信号再生手段(4)と、該信
号再生手段(4)から出力された信号に基づいて光ファ
イバの伝送状態を常時監視するため波形評価手段(8)
とを備え、信号を復元すると共に光ファイバ内の光の伝
送状態を監視可能にしたことを特徴とした光信号受信装
置。
2. An inflection point (6) of an optical fiber transmitting an optical signal.
A plurality of light receiving means (1) arranged on an extension of the leaked light (63) emitted from 6) for converting an optical signal of the leaked light into an electrical signal, and respective light output means output from the plurality of light receiving means. A plurality of delay means for adjusting the timing of the electric signal; a signal synthesizing means for synthesizing the plurality of electric signals whose timing is adjusted by the delay means; and an electric signal output from the signal synthesizing means. Signal recovery means (4) for restoring the electric signal to the original signal upon receiving the signal, and waveform evaluation for constantly monitoring the transmission state of the optical fiber based on the signal output from the signal reproduction means (4). Means (8)
An optical signal receiving apparatus for restoring a signal and monitoring a transmission state of light in an optical fiber.
JP3178291U 1991-04-09 1991-04-09 Optical signal receiver Expired - Lifetime JP2540166Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178291U JP2540166Y2 (en) 1991-04-09 1991-04-09 Optical signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3178291U JP2540166Y2 (en) 1991-04-09 1991-04-09 Optical signal receiver

Publications (2)

Publication Number Publication Date
JPH0568152U JPH0568152U (en) 1993-09-10
JP2540166Y2 true JP2540166Y2 (en) 1997-07-02

Family

ID=12340630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178291U Expired - Lifetime JP2540166Y2 (en) 1991-04-09 1991-04-09 Optical signal receiver

Country Status (1)

Country Link
JP (1) JP2540166Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275536A (en) * 2007-05-02 2008-11-13 Fujikura Ltd Optical fiber bending head and optical fiber identification device
JP5221072B2 (en) * 2007-08-06 2013-06-26 日本電信電話株式会社 Cord control system and cord control method
WO2023166656A1 (en) * 2022-03-03 2023-09-07 日本電信電話株式会社 Device and method for analyzing leakage light

Also Published As

Publication number Publication date
JPH0568152U (en) 1993-09-10

Similar Documents

Publication Publication Date Title
JP3759845B2 (en) Method and system for monitoring optical transmission lines
US7167237B2 (en) Test system for optical line which carries out fault search for optical line from user optical terminal side
US20040146305A1 (en) OTDR arrangement for detecting faults in an optical transmission system employing two pairs of unidirectional optical fibers
US6526199B1 (en) Arrayed waveguide grating wavelength division multiplexer provided with alignment waveguides and apparatus for aligning the same
CN105806379A (en) Weak reflection fiber Bragg grating-Fabry-Perot cavity sensor demodulation system
EP1265062B1 (en) Chromatic-dispersion measuring apparatus and method for optical fibres
JP2540166Y2 (en) Optical signal receiver
CN207036297U (en) A kind of optical fiber grating temperature-measuring system
WO2015083993A1 (en) Optical time domain reflectometer using polymer wavelength tunable laser
CN114526809A (en) Ultra-long distance distributed optical fiber vibration sensing detection method and device
JP4160939B2 (en) Optical line fault search method
CN108337046B (en) FTTx terminal line tester
JPS63212907A (en) Method and device for contrasting optical fiber core wire
WO2019169525A1 (en) Optical performance monitoring apparatus and method
CN219834147U (en) Optical module integrating OTDR function
CA2379900C (en) Method and devices for time domain demultiplexing of serial fiber bragg grating sensor arrays
KR100319737B1 (en) Signal power monitoring apparatus and method for wavelength division multipleed signals using the reverse path of arrayed waveguide grating
CN218724246U (en) Distributed Brillouin optical time domain reflectometer based on large dynamic strain of single-mode optical fiber
CN218271048U (en) Vibration sensing and acoustic emission monitoring system of distributed optical fiber
CN214096342U (en) Vibration signal automatic checkout device based on OFDR
JP3031521B2 (en) Optical output measuring device for multi-core optical fiber
JP3244093B2 (en) Test method and apparatus for branch type optical line
JP2000329653A (en) Apparatus for measuring wavelength dispersion
JPH0650841A (en) Method and equipment for detecting breaking of optical fiber line
JP3854074B2 (en) Ultra-high speed processing method and apparatus for time series optical signals