JPH0568152U - Optical signal receiver - Google Patents

Optical signal receiver

Info

Publication number
JPH0568152U
JPH0568152U JP3178291U JP3178291U JPH0568152U JP H0568152 U JPH0568152 U JP H0568152U JP 3178291 U JP3178291 U JP 3178291U JP 3178291 U JP3178291 U JP 3178291U JP H0568152 U JPH0568152 U JP H0568152U
Authority
JP
Japan
Prior art keywords
signal
optical fiber
optical
light
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3178291U
Other languages
Japanese (ja)
Other versions
JP2540166Y2 (en
Inventor
順吉 城野
秀夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP3178291U priority Critical patent/JP2540166Y2/en
Publication of JPH0568152U publication Critical patent/JPH0568152U/en
Application granted granted Critical
Publication of JP2540166Y2 publication Critical patent/JP2540166Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

(57)【要約】 【目的】 光信号を伝送中の光ファイバを切断すること
なくモニタすることができる。 【構成】変調された光信号を伝送中の光ファイバ61
を、第1の光ファイバ押え板67と、第2の押え板によ
り光ファイバを折り曲げ、その折り曲げ点66から出射
する伝送中の漏れ光63を複数の受光手段1で受光し、
ここでO/E変換された各電気信号を遅延手段2に入力
してタイミングを調整する。タイミングが調整された電
気信号は信号合成手段3に入力され、そこでそれぞれの
電気信号を合成し、信号再生手段4で変調信号に復元す
る。さらには、信号合成手段3の出力を利用して波形評
価を行う。
(57) [Abstract] [Purpose] It is possible to monitor without cutting the optical fiber that is transmitting the optical signal. [Structure] Optical fiber 61 transmitting modulated optical signal
The optical fiber is bent by the first optical fiber pressing plate 67 and the second pressing plate, and the leaked light 63 during transmission emitted from the bending point 66 is received by the plurality of light receiving means 1.
Here, each of the O / E converted electric signals is input to the delay means 2 to adjust the timing. The electric signals whose timings have been adjusted are input to the signal synthesizing means 3, where the respective electric signals are synthesized, and the signal reproducing means 4 restores the modulated signals. Furthermore, waveform evaluation is performed using the output of the signal synthesizing means 3.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、光ファイバの光信号送信端及び受信端以外の任意の位置でその光フ ァイバを切断せずに、その光ファイバを伝送する光信号を受信するための光信号 受信装置に関する。 さらに詳述すれば、光ファイバの伝送特性の測定及び破断点の位置検索には、 光パルス試験器(OTDR)が使用される。その光ファイバを介してPCM信号 を伝送する場合、光の波長分散現象によって波形の歪が発生することがある。そ の波形の歪が光ファイバのどの位置で発生しているか知りたいとの要求はあるが 、前述のOTDRではその要求をみたさない。 従って、光ファイバを介して伝送中の光信号の一部を効率よく受光し、光ファイ バの伝送状態を監視する技術に関する。 The present invention relates to an optical signal receiving device for receiving an optical signal transmitted through an optical fiber without cutting the optical fiber at any position other than an optical signal transmitting end and a receiving end of the optical fiber. More specifically, an optical pulse tester (OTDR) is used for measuring the transmission characteristics of the optical fiber and searching for the position of the break point. When a PCM signal is transmitted through the optical fiber, waveform distortion may occur due to the wavelength dispersion phenomenon of light. There is a demand to know where in the optical fiber the distortion of the waveform occurs, but the above-mentioned OTDR does not meet the demand. Therefore, the present invention relates to a technique for efficiently receiving a part of an optical signal being transmitted via an optical fiber and monitoring the transmission state of the optical fiber.

【0002】[0002]

【従来の技術】[Prior Art]

(心線対照センサの場合) 光ファイバを切断せずに、光ファイバを伝播している光信号のパワーを測定す る方法として、いわゆる心線対照センサが知られている。心線対照センサに使用 されるゲルマニュームホトダイオード(以下PDという)の場合は、光ファイバ 曲げ部から漏れ出す光を受光するために、受光径φ1mm〜2mmの大きさのも のが使用されている。このようなPDの電気特性は、その受光面積に対応して容 量が大きいため応答周波数1MHz以上の高速応答ができず、PCM変調のよう に高い周波数で変調された光信号を電気信号に変換することは不可能であった。 (In the case of a fiber-contrast sensor) A so-called fiber-contrast sensor is known as a method of measuring the power of an optical signal propagating through an optical fiber without cutting the optical fiber. In the case of a germanium photodiode (hereinafter referred to as PD) used for a core wire contrast sensor, a light receiving diameter φ of 1 mm to 2 mm is used to receive light leaking from a bent portion of an optical fiber. The electrical characteristics of such PDs are large corresponding to the light-receiving area, so a high-speed response of 1MHz or more is not possible, and an optical signal modulated at a high frequency such as PCM modulation is converted into an electrical signal. It was impossible to do.

【0003】 心線対照センサの技術としては、例えば、実開昭57年40906号に開示さ れている。その技術要旨を図4を用いて説明する。 光ファイバ61の一端62から入射された光信号Aは全反射臨界角以下の角度 で光ファイバ内を伝播する。光ファイバを全反射臨界角以上に折り曲げ(66) ると、光信号Aは光ファイバの外側へ漏れ光63となって現れる。その漏れ光の 延長線上に光検出器64の受光面を置けば、漏れ光を検出することができる。The technology of the core wire contrast sensor is disclosed, for example, in Japanese Utility Model Application Laid-Open No. 40906/1982. The technical summary will be described with reference to FIG. The optical signal A incident from the one end 62 of the optical fiber 61 propagates in the optical fiber at an angle equal to or less than the critical angle for total reflection. When the optical fiber is bent (66) beyond the critical angle for total reflection, the optical signal A appears as leakage light 63 to the outside of the optical fiber. If the light receiving surface of the photodetector 64 is placed on the extension line of the leaked light, the leaked light can be detected.

【0004】 (光ファイバを用いた通信の場合) 図5は光ファイバを用いた通信システムの基本的概念を示す図である。 送信端20では、伝送すべき信号を電気→光変換器(E/O変換器)21にお いて光信号に変換し、光ファイバ21に出射する。受信端側30では、光ファイ バを伝播する光信号を光→電気変換器(O/E変換器)31で電気信号に復調す る。 光ファイバを用いた通信では高速、大容量、低損失の伝送が可能である。特に 光ファイバを略直線上に敷設すれば、光信号は光ファイバの外へ漏れることがな いので低損失即ち長距離伝送が実現できる。光信号が外へ漏れないということは 、光ファイバの途中では光信号を受光することができないということである。 即ち、光伝送系の途中に光分岐手段を設ければ、光伝送系の途中で光信号を受 光することができるが、それ以外の方法では、光ファイバを切断しなければ光信 号を受光することができない。例えば光ファイバの変形による伝送状態の変化を 監視するために、符号誤り率測定装置や光パワー測定装置等を使用する場合も同 様である。(In case of communication using optical fiber) FIG. 5 is a diagram showing a basic concept of a communication system using an optical fiber. At the transmitting end 20, a signal to be transmitted is converted into an optical signal by an electric-to-optical converter (E / O converter) 21 and emitted to the optical fiber 21. On the receiving end side 30, the optical signal propagating through the optical fiber is demodulated into an electrical signal by an optical-to-electrical converter (O / E converter) 31. Communication using optical fibers enables high-speed, large-capacity, low-loss transmission. In particular, if the optical fiber is laid on a substantially straight line, the optical signal does not leak out of the optical fiber, so that low loss, that is, long distance transmission can be realized. The fact that the optical signal does not leak out means that the optical signal cannot be received in the middle of the optical fiber. That is, if an optical branching means is provided in the middle of the optical transmission system, the optical signal can be received in the middle of the optical transmission system. However, in other methods, the optical signal is received unless the optical fiber is cut. Can not do it. For example, the same applies when a code error rate measuring device, an optical power measuring device, or the like is used to monitor the change in the transmission state due to the deformation of the optical fiber.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし心線対照センサを用いた従来の技術には次のような欠点がある。 図4に示したように漏れ光63は広がりを持っている。その漏れ光を効率よく 受光しようとすれば、光検出器64の受光面の面積を大きくしなければならない (一般には受光径が1mm〜2mm)。受光面の面積を大きくすると、光検出器 64の周波数応答速度が遅くなる欠点がある。例えば、受光面の径が1mmの受 光素子の応答周波数は1MHzが限度である。 心線対照センサのように、単に光ファイバの折り曲げ点に現われる漏れ光の平 均値を検出するような場合は、受光面の面積が大きい光検出器でも十分に初期の 目的を達成することができる。しかし、例えば、数ギガビット/秒のような高速 の信号を扱うPCM伝送のような場合、従来のような受光面の面積が大きい受光 素子では、周波数応答速度が遅いため、変調信号波形を再現できない欠点がある 。 さらに、従来の技術では、光ファイバ61の一端62に入射された光信号は、 折り曲げ点66における進行方向の延長線上に光検出器64が設けられているた め、その漏れ光63を検出することができるが、それとは逆に光ファイバの他端 65から入射された光信号Bの漏れ光63aは光検出器64で検出できないとい う欠点もある。 However, the conventional technique using the cord contrast sensor has the following drawbacks. As shown in FIG. 4, the leaked light 63 has a spread. In order to efficiently receive the leaked light, the area of the light receiving surface of the photodetector 64 must be increased (generally, the light receiving diameter is 1 mm to 2 mm). Increasing the area of the light receiving surface has a drawback that the frequency response speed of the photodetector 64 becomes slow. For example, the response frequency of a light receiving element having a light receiving surface with a diameter of 1 mm is limited to 1 MHz. When detecting the average value of the leaked light that appears at the bending point of the optical fiber, as in the case of a fiber-contrast sensor, a photodetector with a large light-receiving surface area can achieve the initial purpose sufficiently. it can. However, for example, in the case of PCM transmission that handles high-speed signals such as several gigabits per second, a conventional light receiving element with a large light receiving surface area cannot reproduce the modulated signal waveform because the frequency response speed is slow. There are drawbacks. Further, in the conventional technique, the optical signal incident on the one end 62 of the optical fiber 61 is detected by the leak light 63 because the photodetector 64 is provided on the extension line in the traveling direction at the bending point 66. However, on the contrary, there is a drawback that the leak light 63a of the optical signal B incident from the other end 65 of the optical fiber cannot be detected by the photodetector 64.

【0006】 本考案の目的は、(1)光ファイバを用いてPCM通信を行っている送信端と 受信端の間の任意の位置で、光ファイバを切断せずに高周波で変調された光信号 を受光すること、(2)光ファイバを切断せずに受光した光信号を符号誤り率測 定装置、光パワー測定装置等に入力して光ファイバの異常を監視することである 。The object of the present invention is: (1) An optical signal modulated at high frequency without cutting the optical fiber at an arbitrary position between a transmitting end and a receiving end performing PCM communication using the optical fiber. (2) The optical signal received without cutting the optical fiber is input to a code error rate measuring device, an optical power measuring device, etc. to monitor the abnormality of the optical fiber.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

上記の欠点を解決するために、本考案の光信号受信装置は光ファイバの折り曲 げ点から出射される高い周波数で変調された光信号、例えば高速の信号を扱うP CM伝送のような信号の漏れ光を効率よく受光する手段として、 光信号を伝播中の光ファイバを複数箇所で屈曲させて、該屈曲点66から出射さ れる漏れ光63の延長線上に漏れ光のビームを覆うように配置され、該漏れ光の 光信号を電気信号に変換する複数の受光手段1と、該複数の受光手段から出力さ れるそれぞれの電気信号のタイミングを調整する遅延手段2と、該遅延手段によ りタイミングが調整された複数の電気信号を合成する信号合成手段3とを備えて いる。 In order to solve the above-mentioned drawbacks, the optical signal receiving device of the present invention uses an optical signal emitted from a bending point of an optical fiber and modulated at a high frequency, for example, a signal such as PCM transmission that handles a high-speed signal. As a means for efficiently receiving the leaked light, the optical fiber that is propagating the optical signal is bent at a plurality of points so that the leaked light beam is covered on the extension line of the leaked light 63 emitted from the bending point 66. A plurality of light receiving means 1 arranged to convert the optical signal of the leaked light into an electric signal, a delay means 2 for adjusting the timing of each electric signal output from the plurality of light receiving means, and a delay means. Signal synthesizing means 3 for synthesizing a plurality of electrical signals whose timings have been adjusted.

【0008】 また、上記信号合成手段から出力される電気信号を受けて該電気信号を変調信 号に復元する信号再生手段4を付加し、その出力信号を受けて光ファイバの通信 評価装置、例えば符号誤り率測定装置、光パワー測定装置等に入力し光ファイバ の破断や変形等の異常を監視するための波形評価手段8を備えている。Further, a signal reproducing means 4 for receiving the electric signal output from the signal synthesizing means and restoring the electric signal to a modulated signal is added, and the output signal is received to evaluate an optical fiber communication evaluation device, for example, It is provided with a waveform evaluation means 8 for inputting to a code error rate measuring device, an optical power measuring device and the like and for monitoring abnormality such as breakage or deformation of the optical fiber.

【0009】[0009]

【作用】[Action]

屈曲された光ファイバの折り曲げ点から出射される高い周波数で変調された光 信号の漏れ光を検出するために周波数応答速度の速い受光面積の小さい受光素子 を用いる。又、伝送中の光通信に影響を与えることの無いように微量の漏れ光を 受光する必要がある。そのため、受光感度を良くするために受光面積の小さい受 光素子を複数用いる。受光した信号をもちいて光ファイバの破断や変形等の異常 を監視するための処理をする。 In order to detect the leaked light of the optical signal modulated at a high frequency emitted from the bending point of the bent optical fiber, a light receiving element with a fast frequency response speed and a small light receiving area is used. Also, it is necessary to receive a small amount of leaked light so as not to affect the optical communication during transmission. Therefore, in order to improve the light receiving sensitivity, a plurality of light receiving elements having a small light receiving area are used. The received signal is used to monitor for abnormalities such as breakage and deformation of the optical fiber.

【0010】[0010]

【実施例】【Example】

(第1の実施例) 図1に、本考案の第1の実施例の構成を示す。 以下の説明は光ファイバ61をPCM通信に使用した場合を例にして行う。 第1の光ファイバ押え手段67と第2の光ファイバ押え手段68とは相対して 凸凹の形状をしており、両者の間に光ファイバ61を置いて間隔を狭めると凸凹 に沿って光ファイバは屈曲され折れ曲がり点66が生じる。 光ファイバ61の光ファイバ端62に入射された光信号Aは折れ曲がり点66 から進行方向に漏れ光63が出射される。この漏れ光の量は曲がりの半径により 決定される。通常は伝送系に支障のないように微弱な漏れ光が出射される。この 漏れ光を効率よく受光するために出射ビーム幅を覆うように複数の受光手段1が 配置される。通過中の光信号がPCM通信のような高い周波数で変調されている 場合、受光手段1は周波数応答速度を速めるために受光面積の小さいホトダイオ ード(図示せず)が使用される。ここで使用されるゲルマニュームホトダイオー ドの周波数応答速度の一例をあげると、受光径φ=0.1mmの時の最高応答周 波数は約10MHz(立ち上がり時間は0.5μs)である。本実施例では3個 の受光手段1を使用しているが、受光手段の数量は漏れ光のビーム幅及び漏れ光 の強弱によって増減してもよい。 (First Embodiment) FIG. 1 shows a configuration of a first embodiment of the present invention. In the following description, the case where the optical fiber 61 is used for PCM communication is taken as an example. The first optical fiber pressing means 67 and the second optical fiber pressing means 68 are in the shape of irregularities facing each other, and when the optical fiber 61 is placed between them to narrow the gap, the optical fibers follow the irregularities. Is bent and a bending point 66 is generated. The optical signal A incident on the optical fiber end 62 of the optical fiber 61 has leaked light 63 emitted from the bending point 66 in the traveling direction. The amount of this leaked light is determined by the radius of the bend. Normally, weak leaked light is emitted so as not to hinder the transmission system. In order to efficiently receive the leaked light, a plurality of light receiving means 1 are arranged so as to cover the outgoing beam width. When the passing optical signal is modulated at a high frequency such as in PCM communication, the light receiving means 1 uses a photo diode (not shown) having a small light receiving area in order to increase the frequency response speed. As an example of the frequency response speed of the germanium photo diode used here, the maximum response frequency is about 10 MHz (rise time is 0.5 μs) when the light receiving diameter φ = 0.1 mm. Although three light receiving means 1 are used in this embodiment, the number of light receiving means may be increased or decreased depending on the beam width of the leaked light and the intensity of the leaked light.

【0011】 受光手段1により検出された信号は遅延手段2に入力される。各遅延手段2に 入力される信号のタイミングはそれぞれの受光手段1に組み込まれたホトダイオ ードの検出位置により同一のパルス信号であってもばらつきが生じる。そのため に遅延手段2は光ファイバの漏れ点から各ホトダイオード間の遅延時間を同一に そろえて出力するためのものである。The signal detected by the light receiving means 1 is input to the delay means 2. The timing of the signal input to each delay means 2 varies depending on the detection position of the photo diode incorporated in each light receiving means 1 even if it is the same pulse signal. Therefore, the delay means 2 is for outputting the same delay time between the photodiodes from the leak point of the optical fiber.

【0012】 信号合成手段3は入力された信号を加算するためののものである。それぞれの 遅延手段2から出力されたタイミングのそろった信号は信号合成手段3に入力さ れ、加算される。この信号合成手段3の出力は次段の信号再生手段4に入力され る。信号再生手段4は信号合成手段3より出力されたパルス信号を増幅及び波形 整形して変調信号に復元するためのものである。 復元された信号を次段の光ファイバ通信波形評価手段、例えば符号誤り率測定 装置へ入力して伝送特性を測定して光ファイバの変形を監視したり、光電力測定 装置へ入力しして光電力の変動を測定して光ファイバの伝送損失の増加や断線を 監視できる。The signal synthesizing means 3 is for adding the input signals. The signals with the same timing output from the respective delay means 2 are input to the signal synthesizing means 3 and added. The output of the signal synthesizing means 3 is input to the signal reproducing means 4 in the next stage. The signal reproducing means 4 is for amplifying and waveform-shaping the pulse signal output from the signal synthesizing means 3 to restore it to a modulated signal. The restored signal is input to the optical fiber communication waveform evaluation means at the next stage, for example, a code error rate measuring device to measure the transmission characteristics to monitor the deformation of the optical fiber, or to the optical power measuring device to input the optical signal. It is possible to monitor the increase in transmission loss and disconnection of optical fiber by measuring the fluctuation of power.

【0013】 (第2の実施例) 第2図に、光ファイバの双方向から信号A,Bが入射された場合の本考案の第 2の実施例の構成を示す。 第2図においては、ファイバ61の折り曲がり点66の漏れ光は、一端62に 入射された光信号Aは第1実施例と同様に、受光手段1により検出される。他端 65に入射された信号Bはその進行方向の延長上に設けられた受光手段1aによ り検出される。検出されたそれぞれの信号は第1実施例と同様に遅延手段2、2 a、信号合成手段3、3a、信号再生手段4、4aにより信号処理される。以後 評価手段による処理は前記第1実施例と同様である。(Second Embodiment) FIG. 2 shows the configuration of the second embodiment of the present invention when signals A and B are incident from both directions of an optical fiber. In FIG. 2, the leaked light at the bending point 66 of the fiber 61 is detected by the light receiving means 1 in the optical signal A incident on the one end 62 as in the first embodiment. The signal B incident on the other end 65 is detected by the light receiving means 1a provided on the extension of the traveling direction thereof. Each of the detected signals is processed by the delay means 2, 2a, the signal synthesizing means 3, 3a and the signal reproducing means 4, 4a as in the first embodiment. The subsequent processing by the evaluation means is the same as in the first embodiment.

【0014】 (第3の実施例) 本実施例も前記実施例と同様にPCM通信に使用された場合を示す。 第3図に示すように光ファイバ61を折り曲げて漏れ光66を生じさせるため に板状の第1の光ファイバ押え手段5、第2の光ファイバ押え手段6及び複数の 光ファイバ折り曲げ手段7で構成されている。 第1と第2の光ファイバ押え手段、例えば平状の板の間に光ファイバ61を置 き、この光ファイバに対して折り曲げ手段7、例えば円筒状の棒を第1と第2の 光ファイバ押え手段側に交互に配置して第1と第2の光ファイバ押え手段の間隔 を狭める。この時、折り曲げ手段7の数量、外径及び間隔は伝送系に影響を与え ない程度の漏れ光になるよう選択すればよい。Third Embodiment This embodiment also shows a case where it is used for PCM communication similarly to the above embodiment. As shown in FIG. 3, in order to bend the optical fiber 61 to generate the leaked light 66, a plate-shaped first optical fiber holding means 5, a second optical fiber holding means 6 and a plurality of optical fiber bending means 7 are used. It is configured. An optical fiber 61 is placed between first and second optical fiber holding means, for example, a flat plate, and bending means 7, for example, a cylindrical rod is attached to the optical fiber, and first and second optical fiber holding means are provided. The first and second optical fiber pressing means are arranged alternately on the side to reduce the distance between them. At this time, the number, the outer diameter, and the interval of the bending means 7 may be selected so that the leaked light does not affect the transmission system.

【0015】 各折り曲がり点66から出射する漏れ光63を検出する方法はそれぞれの折り 曲がり点に対応して第1実施例と同様な受光手段1を設ける。複数の受光手段1 による同一信号のそれぞれの遅延は検出位置により異なるため前記実施例と同様 に遅延手段2を備えて後段の信号処理に対処している。 遅延手段2以後の信号 処理は前記実施例と同様である。 本実施例は各漏れ光63のビーム幅が狭ければ受光手段(ホトダイオード)は一 個でもよく、ビーム幅に応じて適時増減できる。 また、前記第2実施例のように双方向の漏れ光の出射線上に受光手段2a以降を 設けてもよい。In the method of detecting the leaked light 63 emitted from each bending point 66, the light receiving means 1 similar to that of the first embodiment is provided corresponding to each bending point. Since the respective delays of the same signal by the plurality of light receiving means 1 differ depending on the detection position, the delay means 2 is provided to cope with the signal processing in the subsequent stage as in the above embodiment. The signal processing after the delay means 2 is the same as that in the above embodiment. In this embodiment, if the beam width of each leaked light 63 is narrow, the number of light receiving means (photodiode) may be one, and the number can be increased / decreased according to the beam width. Further, as in the second embodiment, the light receiving means 2a or later may be provided on the emission line of the bidirectional leakage light.

【0016】[0016]

【考案の効果】[Effect of the device]

以上説明したように、高い周波数で変調されたい光信号を伝送中の光ファイバ を屈曲させて漏れ光を検出するために、周波数応答速度の速い受光面積の小さな 受光素子を複数設けて対処したので次の効果がある。 (1)PCM通信等伝送中の高速光信号を光ファイバを切断せずに受信できる。 (2)受信効率を上げることができるため送受信間の信号伝送に影響を与えるこ となく、光ファイバ内の光信号が受信できる。 (3)漏れ光の出射線上に受光手段を設けたので光信号の伝送方向に関係なく光 ファイバ内の光信号が受信できる。 (4)上記効果に加え、上記の受信信号を用いて光ファイバ内の光の伝送状態を 監視することができる。 As explained above, in order to detect leaked light by bending the optical fiber that is transmitting the optical signal to be modulated at a high frequency, we have dealt with this problem by providing multiple light-receiving elements with a fast light-receiving area and a fast frequency response speed. It has the following effects. (1) A high-speed optical signal during transmission such as PCM communication can be received without cutting the optical fiber. (2) Since the reception efficiency can be improved, the optical signal in the optical fiber can be received without affecting the signal transmission between the transmitter and the receiver. (3) Since the light receiving means is provided on the emission line of the leaked light, the optical signal in the optical fiber can be received regardless of the transmission direction of the optical signal. (4) In addition to the above effects, it is possible to monitor the light transmission state in the optical fiber by using the received signal.

【0017】[0017]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光信号受信装置の第一実施例を示
すブロック構成図
FIG. 1 is a block diagram showing a first embodiment of an optical signal receiving device according to the present invention.

【図2】本発明による光信号受信装置の第二実施例を示
すブロック構成図
FIG. 2 is a block diagram showing a second embodiment of the optical signal receiving device according to the present invention.

【図3】本発明による光信号受信装置の第三実施例を示
すブロック構成図
FIG. 3 is a block diagram showing a third embodiment of the optical signal receiving device according to the present invention.

【図4】従来の光信号受信回路FIG. 4 Conventional optical signal receiving circuit

【図5】光ファイバを用いた通信システムの構成図FIG. 5 is a configuration diagram of a communication system using an optical fiber.

【符号の説明】[Explanation of symbols]

1、1a 受光手段 2、2a 遅延手段 3、3a 信号合成手段 4、4a 信号再生手段 5 第三実施例の第1の光ファイバ押え手段 6 第三実施例の第2の光ファイバ押え手段 7 第三実施例の光ファイバ折り曲げ手段 8 波形評価手段 20 PCM通信の送信側 21 E/O変換器 30 PCM通信の受信側 31 O/E変換器 61 光ファイバ 62 光ファイバの入力端 63 漏れ光 64 従来例の受光手段 65 光ファイバの他方の入力端 66 折り曲がり点 67 第1の光ファイバ押え板 68 第2の光ファイバ押え板 1, 1a Light receiving means 2, 2a Delay means 3, 3a Signal combining means 4, 4a Signal reproducing means 5 First optical fiber holding means 6 of the third embodiment 6 Second optical fiber holding means 7 of the third embodiment 7th Optical fiber bending means of three examples 8 Waveform evaluation means 20 PCM communication transmission side 21 E / O converter 30 PCM communication reception side 31 O / E converter 61 Optical fiber 62 Optical fiber input end 63 Leaked light 64 Conventional Example light receiving means 65 The other input end of the optical fiber 66 Bending point 67 First optical fiber pressing plate 68 Second optical fiber pressing plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8426−5K H04B 9/00 U ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 8426-5K H04B 9/00 U

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】光信号を伝送中の光ファイバの屈曲点(6
6)から出射される漏れ光(63)の延長線上に配置さ
れ、該漏れ光の光信号を電気信号に変換する複数の受光
手段(1)と、該複数の受光手段から出力されるそれぞ
れの電気信号のタイミングを調整する遅延手段(2)
と、該遅延手段によりタイミングが調整された複数の電
気信号を合成する信号合成手段(3)とを備えた光信号
受信装置
1. A bending point (6) of an optical fiber during transmission of an optical signal.
6) a plurality of light receiving means (1) arranged on the extension line of the leaked light (63) and converting the optical signal of the leaked light into an electric signal; Delay means for adjusting the timing of electric signals (2)
And an optical signal receiving device including a signal synthesizing unit (3) for synthesizing a plurality of electric signals whose timings are adjusted by the delay unit.
【請求項2】 光信号を伝送中の光ファイバの屈曲点(6
6)から出射される漏れ光(63)の延長線上に配置さ
れ、該漏れ光の光信号を電気信号に変換する複数の受光
手段(1)と、該複数の受光手段から出力されるそれぞ
れの電気信号のタイミングを調整する複数の遅延手段
(2)と、該遅延手段によりタイミングが調整された複
数の電気信号を合成する信号合成手段(3)と、該信号
合成手段から出力される電気信号を受けて該電気信号を
元の信号に復元するための信号再生手段(4)と、該信
号再生手段(4)から出力された信号に基づいて光ファ
イバの伝送状態を常時監視するため波形評価手段(8)
とを備え、信号を復元すると共に光ファイバ内の光の伝
送状態を監視可能にしたことを特徴とした光信号受信装
置。
2. A bending point (6) of an optical fiber during transmission of an optical signal.
6) a plurality of light receiving means (1) arranged on the extension line of the leaked light (63) and converting the optical signal of the leaked light into an electric signal; A plurality of delaying means (2) for adjusting the timing of the electric signal, a signal synthesizing means (3) for synthesizing the plurality of electric signals whose timings are adjusted by the delaying means, and an electric signal output from the signal synthesizing means Signal recovery means (4) for receiving the electric signal and restoring it to the original signal, and waveform evaluation for constantly monitoring the transmission state of the optical fiber based on the signal output from the signal reproduction means (4) Means (8)
And an optical signal receiving device characterized by being capable of restoring a signal and monitoring a light transmission state in an optical fiber.
JP3178291U 1991-04-09 1991-04-09 Optical signal receiver Expired - Lifetime JP2540166Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178291U JP2540166Y2 (en) 1991-04-09 1991-04-09 Optical signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3178291U JP2540166Y2 (en) 1991-04-09 1991-04-09 Optical signal receiver

Publications (2)

Publication Number Publication Date
JPH0568152U true JPH0568152U (en) 1993-09-10
JP2540166Y2 JP2540166Y2 (en) 1997-07-02

Family

ID=12340630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178291U Expired - Lifetime JP2540166Y2 (en) 1991-04-09 1991-04-09 Optical signal receiver

Country Status (1)

Country Link
JP (1) JP2540166Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275536A (en) * 2007-05-02 2008-11-13 Fujikura Ltd Optical fiber bending head and optical fiber identification device
JP2009036738A (en) * 2007-08-06 2009-02-19 Nippon Telegr & Teleph Corp <Ntt> Core wire contrasting system and technique
WO2023166656A1 (en) * 2022-03-03 2023-09-07 日本電信電話株式会社 Device and method for analyzing leakage light

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275536A (en) * 2007-05-02 2008-11-13 Fujikura Ltd Optical fiber bending head and optical fiber identification device
JP2009036738A (en) * 2007-08-06 2009-02-19 Nippon Telegr & Teleph Corp <Ntt> Core wire contrasting system and technique
WO2023166656A1 (en) * 2022-03-03 2023-09-07 日本電信電話株式会社 Device and method for analyzing leakage light

Also Published As

Publication number Publication date
JP2540166Y2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
US7167237B2 (en) Test system for optical line which carries out fault search for optical line from user optical terminal side
GB2261506A (en) Testing optical fibres used in communications
US6842586B2 (en) OTDR arrangement for detecting faults in an optical transmission system employing two pairs of unidirectional optical fibers
CN109073359A (en) Fibre optical sensor and fiber optic sensor system
GB2273623A (en) Supervisory system for an optical transmission system
CN102315882A (en) Has the telecommunication transmission system that the optics auxiliary digital signal is handled dispersion compensation
CN113358206A (en) Distributed optical fiber vibration sensing system and multipoint positioning method thereof
GB2351360A (en) AWG WDM with alignment waveguides and aligning apparatus
CN107196731B (en) A kind of optical fiber multiplexing system for POTDR distributing optical fiber sensings
EP1202480A2 (en) Bidirectional optical fiber communication system, communications apparatus and optical transceiver
JPH0568152U (en) Optical signal receiver
CN110160627A (en) The optical fiber sound sensor system of Michelson interference and phase sensitive optical time domain reflection
CN114526809A (en) Ultra-long distance distributed optical fiber vibration sensing detection method and device
JP4160939B2 (en) Optical line fault search method
CN108337046B (en) FTTx terminal line tester
CN209689740U (en) A kind of distribution type fiber-optic vibration measuring system
JP2593555B2 (en) Transmission line position detector
JPH05172693A (en) Monitor devise of star bus type optical fiber line network
JPS63212907A (en) Method and device for contrasting optical fiber core wire
JPH0650841A (en) Method and equipment for detecting breaking of optical fiber line
JPH05157637A (en) Optical fiber type physical quantity measuring instrument
JP2000329653A (en) Apparatus for measuring wavelength dispersion
JPH0820315B2 (en) Optical fiber distributed temperature sensor
CN116707655A (en) Self-coherent optical signal receiving system
CN1197219A (en) Fiber Optic &#39;T&#39; coupler single path transceiver