JPH04371592A - Production of concentrated oxygen-containing gas - Google Patents

Production of concentrated oxygen-containing gas

Info

Publication number
JPH04371592A
JPH04371592A JP3171769A JP17176991A JPH04371592A JP H04371592 A JPH04371592 A JP H04371592A JP 3171769 A JP3171769 A JP 3171769A JP 17176991 A JP17176991 A JP 17176991A JP H04371592 A JPH04371592 A JP H04371592A
Authority
JP
Japan
Prior art keywords
oxygen
gas
air
containing gas
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3171769A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Isao Sawamoto
勲 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP3171769A priority Critical patent/JPH04371592A/en
Publication of JPH04371592A publication Critical patent/JPH04371592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE:To stably and continuously obtain an optional concd. oxygen-contg. gas to be used in medical treatment or for accelerating combustion. CONSTITUTION:The almost 100% oxygen gas generated in the anode chamber of a water electrolytic cell is mixed with air and diluted to a specified concn. In this case, the mist in the electrolytic oxygen is removed by a filter. An air electrode is used as the anode and/or cathode to suppress the fruitless generation of oxygen, hence the cell voltage is lowered, and the cost is further reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は  医療用及び燃焼促進
用等として使用される高濃度酸素含有ガスを、水電解に
より生成する酸素ガスを利用して製造する方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly concentrated oxygen-containing gas used for medical purposes, combustion promotion, etc., using oxygen gas produced by water electrolysis.

【0002】0002

【従来技術とその問題点】空気中の酸素は約20%であ
り、残りは殆ど窒素である。通常の燃焼装置等ではこの
酸素濃度を有する空気をそのまま使用すれば十分である
が、医療用、放電法オゾン製造用や特に高温を要する燃
焼装置では、通常より高濃度の酸素ガスを含有する酸素
含有ガスを使用することが必要になることがある。この
目的のためには、■酸素ボンベから酸素ガスを、又■液
体酸素を気化して得た酸素ガスをそれぞれ取り出して空
気と混合して空気を濃縮し(あるいは酸素ガスを希釈し
)て所定濃度の酸素含有ガスを得る、■ガス分離膜によ
り空気中の酸素濃度を上昇させる方法等が知られている
。■の酸素ボンベを使用する方法は特に医療分野で古く
から使用されているが、ボンベ内のガス量が有限である
ため完全に連続的に行うことはできず、定期的なボンベ
の交換が必要となり、又酸素濃縮空気が必要な場合には
酸素と空気を混合する操作が比較的複雑となり一定濃度
の酸素含有ガスを供給しにくいという欠点がある。又■
の液体空気を使用する方法はごく一部で行われている特
殊な方法で液体酸素の保管が極めて困難であるという問
題点がある。
[Prior art and its problems] Oxygen in air is about 20%, and the rest is mostly nitrogen. It is sufficient to use air with this oxygen concentration as it is in ordinary combustion equipment, etc., but in combustion equipment such as medical use, discharge method ozone production, and combustion equipment that requires particularly high temperatures, air containing oxygen gas with a higher concentration than usual is used. It may be necessary to use a contained gas. For this purpose, we extract oxygen gas from an oxygen cylinder and oxygen gas obtained by vaporizing liquid oxygen and mix them with air to condense the air (or dilute the oxygen gas). Methods such as obtaining a concentrated oxygen-containing gas and increasing the oxygen concentration in the air using a gas separation membrane are known. ■The method of using oxygen cylinders has been used for a long time, especially in the medical field, but because the amount of gas in the cylinder is finite, it cannot be used completely continuously, and the cylinder must be replaced periodically. Furthermore, when oxygen-enriched air is required, the operation of mixing oxygen and air is relatively complicated, making it difficult to supply oxygen-containing gas at a constant concentration. Also■
The method of using liquid air is a special method that is only used in a few places, and there is a problem in that it is extremely difficult to store liquid oxygen.

【0003】更に■のガス分離膜による方法は最近開発
された方法で、特殊な分離膜(濾過膜)を使用すること
により酸素を濃縮する方法であり、数段に分けて空気を
前記分離膜に接触させて徐々に酸素濃度を上昇させるも
ので、現在のところ空気を出発原料として酸素80%、
窒素20%又はそれ以上の高酸素濃度の酸素含有ガスを
供給することができる。そしてこの方法は圧力を掛けて
ガスを濾過する方式であるため、分離に要するエネルギ
ーがごく僅かでよいという特徴を合わせ持つため、急速
にその開発が進展している。しかしながらこの方法は、
高価なモジュール型の分離膜を多量に必要とし、モジュ
ール自体を高圧容器としなければならず、更に多段階濃
縮を行うため装置が複雑になって高価になりやすく、更
に前述の通り酸素濃度の上限があるという欠点がある。 従って大規模設備用としてはエネルギーコストとの兼ね
合いから好ましく使用できる前記装置も、医療用等の小
型設備用としては装置が高価になり過ぎ、使用しにくい
という問題点がある。
Furthermore, the method (2) using a gas separation membrane is a recently developed method in which oxygen is concentrated by using a special separation membrane (filtration membrane), and air is passed through the separation membrane in several stages. This method gradually increases the oxygen concentration by contacting with
An oxygen-containing gas with a high oxygen concentration of 20% nitrogen or more can be supplied. Since this method filters gas by applying pressure, its development is progressing rapidly because it requires very little energy for separation. However, this method
It requires a large amount of expensive modular separation membranes, the module itself has to be a high-pressure container, and since multi-stage concentration is required, the equipment tends to be complicated and expensive, and as mentioned above, there is an upper limit on oxygen concentration. There is a drawback that there is. Therefore, although the above-mentioned device is preferably used for large-scale equipment in view of energy cost, there is a problem in that the device is too expensive and difficult to use for small-scale equipment such as medical equipment.

【0004】0004

【発明の目的】本発明は、所定の濃度の酸素ガスを含有
する高濃度酸素含有ガスを、比較的簡単な操作により低
コストで製造できる方法を提供することを目的とし、該
方法は大型設備用及び小型設備用の両者に適用できる。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for producing a highly concentrated oxygen-containing gas containing a predetermined concentration of oxygen gas at a low cost using relatively simple operations. It can be applied to both commercial and small equipment.

【0005】[0005]

【問題点を解決するための手段】本発明方法は、水電解
槽の陽極室で発生する酸素ガスを空気と混合して希釈す
ることにより、所定濃度の酸素含有ガスを製造すること
を特徴とする高濃度酸素含有ガスの製造方法である。
[Means for Solving the Problems] The method of the present invention is characterized in that an oxygen-containing gas of a predetermined concentration is produced by mixing and diluting oxygen gas generated in the anode chamber of a water electrolyzer with air. This is a method for producing a highly concentrated oxygen-containing gas.

【0006】以下本発明を詳細に説明する。水を電解す
ると陽極室に酸素ガスがそして陰極室に水素ガスがそれ
ぞれ発生する。本発明方法では陽極室から前記酸素ガス
を取り出して空気と混合することにより所望の酸素濃度
を有する酸素含有ガスを得ることができる。水電解槽は
従来の電解槽をそのまま使用することができる。例えば
該電解槽の陰極としては、芯材又は電流供給用基材とし
て薄いニッケルメッシュを使用し、これにフッ素樹脂と
触媒物質であるグラファイト粉末と白金や銀粉末の混練
物を塗布し焼結した空気電極を好ましく使用することが
できる。そして該空気電極の疎水層と前記触媒含有層と
を明確に区別して形成するために、前記ニッケルメッシ
ュの片側にフッ素樹脂の多孔質薄層を形成しかつ該ニッ
ケルメッシュの反対側に上述の触媒層を形成するように
してもよい。この空気電極の他に白金電極や炭素電極等
の通常の陰極材料を陰極として使用してもよいが、空気
陰極を使用して減極することにより、槽電圧を低下させ
エネルギー消費量を減少させてより低コストで酸素ガス
を発生させることができるようになる。
The present invention will be explained in detail below. When water is electrolyzed, oxygen gas is generated in the anode chamber and hydrogen gas is generated in the cathode chamber. In the method of the present invention, an oxygen-containing gas having a desired oxygen concentration can be obtained by taking out the oxygen gas from the anode chamber and mixing it with air. A conventional electrolytic cell can be used as the water electrolytic cell. For example, for the cathode of the electrolytic cell, a thin nickel mesh is used as the core material or base material for current supply, and a mixture of fluororesin, graphite powder as a catalyst material, and platinum or silver powder is coated on this and sintered. Air electrodes can preferably be used. In order to clearly distinguish and form the hydrophobic layer and the catalyst-containing layer of the air electrode, a porous thin layer of fluororesin is formed on one side of the nickel mesh, and the above-mentioned catalyst is formed on the opposite side of the nickel mesh. A layer may be formed. In addition to this air electrode, ordinary cathode materials such as platinum electrodes and carbon electrodes may be used as the cathode, but by using an air cathode for depolarization, the cell voltage is lowered and energy consumption is reduced. This makes it possible to generate oxygen gas at a lower cost.

【0007】陽極としては白金めっきチタンやイリジウ
ム酸化物等を被覆したチタン等の不溶性金属電極等を使
用し、前記陰極及び該陽極を電解槽内にセットして水電
解を行う。陰極として空気電極を使用する場合は陰極側
からは殆ど水素ガスが発生しないため隔膜は設置しなく
てもよいが、陰極として空気電極以外の電極を使用する
場合と、陰極として空気電極を使用しかつ特に高濃度の
酸素含有ガスを得る際には陰極側からの窒素を混入させ
ないために隔膜を使用することが好ましい。該隔膜は特
に限定されないが、濾布やフッ素樹脂膜等でその電圧損
の少ないものを選択すればよい。該隔膜としてイオン交
換膜である固体電解質を使用してもよく、この場合には
前記イオン交換膜表面に電極(陽極及び陰極)触媒物質
を直接形成したり、その表面に白金や酸化イリジウムを
含む電極(陽極及び陰極)触媒物質を形成した微細なチ
タンやタンタルのメッシュを前記イオン交換膜に接触さ
せて固体電解質電極装置を構成する。
[0007] As the anode, an insoluble metal electrode such as platinum-plated titanium or titanium coated with iridium oxide or the like is used, and the cathode and anode are set in an electrolytic cell to perform water electrolysis. When using an air electrode as the cathode, there is no need to install a diaphragm because almost no hydrogen gas is generated from the cathode side, but when using an electrode other than the air electrode as the cathode, In particular, when obtaining a highly concentrated oxygen-containing gas, it is preferable to use a diaphragm to prevent nitrogen from being mixed in from the cathode side. The diaphragm is not particularly limited, but a filter cloth, a fluororesin membrane, or the like with low voltage loss may be selected. A solid electrolyte, which is an ion exchange membrane, may be used as the diaphragm. In this case, an electrode (anode and cathode) catalyst material may be directly formed on the surface of the ion exchange membrane, or a solid electrolyte containing platinum or iridium oxide may be formed on the surface of the ion exchange membrane. Electrodes (anode and cathode) A solid electrolyte electrode device is constructed by bringing a fine titanium or tantalum mesh formed with a catalyst material into contact with the ion exchange membrane.

【0008】陰極として空気電極を使用する場合、該空
気電極に供給する空気はフィルターで濾過し、かつ石灰
乳を通して二酸化炭素を除去した後、陰極室に供給する
ことが望ましい。電解液は導電性が高く自己分解しない
電解質を溶解させて調製すればよく、苛性ソーダ等のア
ルカリ性電解液、芒硝等の中性電解液及び硫酸等の酸性
電解液を使用することができる。該電解質はミストとし
て系外に出ることがあり危険が伴うことがあるため、イ
オン交換膜を固体電解質とし、脱イオン水を供給しなが
ら電解を進行させてもよい。前記固体電解質としては例
えばナフィオン(商品名)等のパーフルオロカーボンス
ルホン酸型の陽イオン交換膜を使用することができる。 該イオン交換膜は上記空気電極に直接貼着させてもよい
が、陰極反応を抑制し、かつ陽極からの移行水及び前記
空気電極に起因する微量の窒素ガス等を除去するために
、前記イオン交換膜と陰極例えば空気電極との間に開孔
を有する多孔質の導電体層を設置することもできる。 該導電体層を形成するためには、前記イオン交換膜の陰
極側表面に、溶出可能な物質を混練したイオン交換物質
を塗布し、かつ焼結を行い、その後前記溶出可能物質を
除去すればよい。前記混練物としては炭酸カルシウム粉
末等があり、この混練物中のカルシウム分は硫酸処理に
より除去することができる。
When an air electrode is used as the cathode, it is desirable that the air supplied to the air electrode be filtered and carbon dioxide removed through lime milk before being supplied to the cathode chamber. The electrolytic solution may be prepared by dissolving an electrolyte that has high conductivity and does not self-decompose, and an alkaline electrolytic solution such as caustic soda, a neutral electrolytic solution such as Glauber's salt, and an acidic electrolytic solution such as sulfuric acid can be used. Since the electrolyte may come out of the system as a mist, which may be dangerous, the ion exchange membrane may be used as a solid electrolyte and the electrolysis may proceed while supplying deionized water. As the solid electrolyte, for example, a perfluorocarbon sulfonic acid type cation exchange membrane such as Nafion (trade name) can be used. The ion exchange membrane may be attached directly to the air electrode, but in order to suppress the cathode reaction and remove migrated water from the anode and trace amounts of nitrogen gas originating from the air electrode, the ion exchange membrane may be attached directly to the air electrode. It is also possible to provide a porous conductor layer with openings between the exchange membrane and the cathode, for example the air electrode. In order to form the conductive layer, an ion exchange material in which an elutable substance is kneaded is applied to the cathode side surface of the ion exchange membrane, sintered, and then the elutable substance is removed. good. The kneaded material includes calcium carbonate powder, and the calcium content in this kneaded material can be removed by treatment with sulfuric acid.

【0009】このような水電解槽を使用して水を電解す
ると陽極側から酸素ガスが発生する。該酸素ガスは飽和
水蒸気と若干のミストを含有しているので、フィルター
でミストを除去した後、空気と混合して高濃度酸素含有
ガスを製造することが望ましく、前記フィルターとして
は圧損が少なくミスト除去もほぼ完全に行うことのでき
るフッ素樹脂ファイバーの不織布等を使用することが好
ましい。前記酸素ガスと空気との混合は通常の混合器を
使用すればよく、例えばさほど正確な濃度を必要としな
い場合にはバルブを設置しかつ空気を充満させた混合器
に前記バルブから前述の酸素ガスを吹き込んで前記濃度
にすることができる。又濃度設定を厳密に行う必要があ
る場合には、秤量した空気及び前記酸素ガスを混合器内
に導入し混合して酸素含有ガスを製造すればよい。
When water is electrolyzed using such a water electrolyzer, oxygen gas is generated from the anode side. Since the oxygen gas contains saturated water vapor and some mist, it is desirable to remove the mist with a filter and then mix it with air to produce a highly concentrated oxygen-containing gas. It is preferable to use a nonwoven fabric made of fluororesin fiber, etc., which can be almost completely removed. A normal mixer may be used to mix the oxygen gas and air; for example, if a very precise concentration is not required, a valve may be installed and the above-mentioned oxygen may be mixed from the valve into the mixer filled with air. Gas can be blown to achieve the concentration. If it is necessary to precisely set the concentration, the oxygen-containing gas may be produced by introducing weighed air and the oxygen gas into a mixer and mixing them.

【0010】この方法は、ミストや飽和水蒸気を除くと
ほぼ100 %の純度で得られる電解酸素ガスを空気で
希釈して(あるいは空気を前記電解酸素ガスで濃縮して
)所定濃度の酸素含有ガスを製造するようにしているた
め、得られる酸素含有ガスの酸素濃度の上限がなく、1
00 %未満で約20%以上の任意の濃度の酸素含有ガ
スを得ることができる。そして電解反応により得られる
酸素量は通電量にほぼ比例するため、通電量を調節する
ことにより前記酸素発生量を容易にコントロールするこ
とができ、必要な酸素量を必要なだけ随時製造して本発
明方法により酸素含有ガスに変換することができる。つ
まり連続的に安定した酸素供給を電解処理という比較的
簡単な操作で行うことができるため、所要量の大小にか
かわらず必要な濃度の酸素含有ガスの必要量を簡単な操
作によりかつ低コストで供給することが可能になる。
[0010] In this method, electrolyzed oxygen gas, which is obtained with almost 100% purity excluding mist and saturated water vapor, is diluted with air (or air is concentrated with the electrolyzed oxygen gas) to obtain an oxygen-containing gas of a predetermined concentration. There is no upper limit to the oxygen concentration of the oxygen-containing gas obtained, and 1
Any concentration of oxygen-containing gas from less than 0.00% to about 20% or more can be obtained. Since the amount of oxygen obtained by the electrolytic reaction is approximately proportional to the amount of current applied, the amount of oxygen generated can be easily controlled by adjusting the amount of current applied, and the required amount of oxygen can be produced at any time as needed. It can be converted into an oxygen-containing gas by the method of the invention. In other words, a continuous and stable supply of oxygen can be achieved through a relatively simple operation called electrolytic treatment, so regardless of the size of the required amount, the required amount of oxygen-containing gas at the required concentration can be obtained easily and at low cost. It becomes possible to supply

【0011】[0011]

【実施例】次に本発明方法による酸素含有ガス製造の実
施例を記載するが、該実施例は本発明を限定するもので
はない。 実施例1 イオン交換膜として縦10cm、横10cm、厚さ0.
18mmでイオン交換容量が0.9 ミリ当量/gのナ
フィオン(商品名)117 を使用して、該イオン交換
膜の一方面を白金めっきし酸化イリジウム及び酸化ルテ
ニウム含有触媒をホットプレスで接着して陽極とした。 又陰極給電エレメントを兼ねるニッケルメッシュの一方
面にフッ素樹脂を又他方面に粒子径1〜5μmのグラフ
ァイト粉末と粒子径2〜10μmの白金粉末の混練物を
塗布し焼結した空気電極を陰極として前記イオン交換膜
の他方面に接触させて固体電解質電極装置を構成し、該
固体電解質により電解槽を区画して容積がそれぞれ10
0 cm3 及び200 cm3 である陽極室及び陰
極室に区画した。前記陽極物質にメッシュ状チタン微細
繊維焼結体である陽極給電エレメントを接続した。この
電解槽に陽極室側から脱イオン水を供給しながら100
Aの電流を通電したところ、陽極室から酸素ガス95重
量%、水蒸気4重量%及びミストの混合ガスが30g/
時の割合で得られた。この混合ガスをそのまま繊維径0
.1 〜1μmのフッ素樹脂ファイバーの不織布から成
るフィルターを通過させたところ、該混合ガス(酸素含
有ガス)の組成は酸素ガス98重量%、水蒸気2重量%
及びミスト0重量%に変化した。該フィルターを通した
この酸素含有ガスを空気を充満させた容量200 リッ
トルの容器に吹き込んだところ(前記混合ガスの発生割
合と同じ30g/時)、充満させた空気が前記酸素含有
ガスと置換されて濃度50重量%の酸素含有ガスが得ら
れた。
EXAMPLES Next, examples of producing oxygen-containing gas by the method of the present invention will be described, but these examples are not intended to limit the present invention. Example 1 An ion exchange membrane with length 10 cm, width 10 cm, and thickness 0.
Using Nafion (trade name) 117 with a diameter of 18 mm and an ion exchange capacity of 0.9 meq/g, one side of the ion exchange membrane was plated with platinum, and a catalyst containing iridium oxide and ruthenium oxide was bonded by hot pressing. It was used as an anode. In addition, an air electrode was used as a cathode by coating a fluororesin on one side of a nickel mesh that also served as a cathode power supply element, and coating a mixture of graphite powder with a particle size of 1 to 5 μm and platinum powder with a particle size of 2 to 10 μm on the other side and sintering it. A solid electrolyte electrode device is configured in contact with the other surface of the ion exchange membrane, and electrolytic cells are partitioned by the solid electrolyte, each having a volume of 10
It was divided into an anode chamber and a cathode chamber of 0 cm3 and 200 cm3. An anode power supply element, which was a meshed titanium fine fiber sintered body, was connected to the anode material. While supplying deionized water to this electrolytic cell from the anode chamber side,
When current A was applied, a mixed gas of 95% by weight of oxygen gas, 4% by weight of water vapor, and mist was released from the anode chamber at 30g/
Obtained at the rate of time. This mixed gas is used as it is, with a fiber diameter of 0.
.. When the mixed gas (oxygen-containing gas) was passed through a filter made of a nonwoven fabric of fluororesin fibers of 1 to 1 μm, the composition was 98% by weight of oxygen gas and 2% by weight of water vapor.
And the mist changed to 0% by weight. When this oxygen-containing gas that had passed through the filter was blown into a container with a capacity of 200 liters filled with air (30 g/hour, the same as the generation rate of the mixed gas), the filled air was replaced with the oxygen-containing gas. An oxygen-containing gas having a concentration of 50% by weight was obtained.

【0012】実施例2 実施例1の装置を使用して、電流値を50Aに変更した
こと以外は実施例1と同一条件で水電解を行ったところ
、陽極室から酸素ガス95重量%、水蒸気4重量%及び
ミスト1重量%の混合ガスが15g/時の割合で得られ
た。この混合ガスをそのまま実施例1と同じフィルター
を通過させたところ、該混合ガス(酸素含有ガス)の組
成は酸素ガス98重量%、水蒸気2重量%及びミスト0
重量%に変化した。該フィルターを通したこの酸素含有
ガスを実施例1と同じ容器に吹き込んだところ(前記混
合ガスの発生割合と同じ15g/時)、充満させた空気
が前記酸素含有ガスと置換されて濃度35重量%の酸素
含有ガスが得られた。
Example 2 Water electrolysis was carried out using the apparatus of Example 1 under the same conditions as Example 1 except that the current value was changed to 50A. A mixed gas of 4% by weight and 1% by weight of mist was obtained at a rate of 15 g/h. When this mixed gas was directly passed through the same filter as in Example 1, the composition of the mixed gas (oxygen-containing gas) was 98% by weight of oxygen gas, 2% by weight of water vapor, and 0 mist.
% by weight. When this oxygen-containing gas that had passed through the filter was blown into the same container as in Example 1 (at the same rate of generation of the mixed gas, 15 g/hour), the filled air was replaced with the oxygen-containing gas, resulting in a concentration of 35 wt. % oxygen-containing gas was obtained.

【0013】実施例3 電解により発生した混合ガスをフィルターを通さずにそ
のまま実施例1の容器に実施例1と同じ速度で吹き込ん
だところ、得られた酸素含有ガスの組成は酸素ガス33
重量%、水蒸気1.5 重量%及びミスト0.5 重量
%であった。 実施例4 固体電解質の一方面に陰極として実施例1の空気電極の
代わりに白金粉末を陰極物質としてイオン交換膜に付着
させて前記固体電解質を構成したこと以外は実施例1と
同様にして酸素含有ガスの製造を行ったところ、得られ
たガスの組成は酸素ガス97重量%及び水蒸気3重量%
であった。電解時の槽電圧は実施例1の1.6 Vから
2.4 Vに上昇した。
Example 3 When the mixed gas generated by electrolysis was directly blown into the container of Example 1 at the same speed as in Example 1 without passing through a filter, the composition of the oxygen-containing gas obtained was 33.
% by weight, 1.5% by weight of water vapor and 0.5% by weight of mist. Example 4 The solid electrolyte was constructed in the same manner as in Example 1 except that the solid electrolyte was constructed by attaching platinum powder as a cathode material to an ion exchange membrane instead of the air electrode of Example 1 as a cathode. When the containing gas was produced, the composition of the obtained gas was 97% by weight of oxygen gas and 3% by weight of water vapor.
Met. The cell voltage during electrolysis increased from 1.6 V in Example 1 to 2.4 V.

【0014】[0014]

【発明の効果】本発明は、水電解槽の陽極室で発生する
酸素ガスを空気と混合して希釈することにより、所定濃
度の酸素含有ガスを製造することを特徴とする高濃度酸
素含有ガスの製造方法である。本発明方法によると、ほ
ぼ100 %の純度(又は濃度)で得られる電解酸素ガ
スを空気で希釈して酸素含有ガスを製造するため、両者
の混合割合をコントロールすることにより20%以上1
00 %未満の任意の濃度の酸素含有ガスを得ることが
できる。そして水電解により発生する酸素ガス量は通電
量に比例ししかも連続的に生成するため、安定した酸素
供給を、従って安定した酸素含有ガス生成を確保するこ
とができる。
Effects of the Invention The present invention provides a highly concentrated oxygen-containing gas characterized by producing an oxygen-containing gas of a predetermined concentration by mixing and diluting oxygen gas generated in the anode chamber of a water electrolyzer with air. This is a manufacturing method. According to the method of the present invention, the electrolyzed oxygen gas obtained with almost 100% purity (or concentration) is diluted with air to produce an oxygen-containing gas.
Any concentration of oxygen-containing gas below 0.00% can be obtained. Since the amount of oxygen gas generated by water electrolysis is proportional to the amount of current applied and is generated continuously, it is possible to ensure a stable supply of oxygen and, therefore, stable generation of oxygen-containing gas.

【0015】そして電解反応により得られる酸素ガスの
コストは酸素ボンベに充填されている酸素ガス等の他の
酸素ガスよりコストが安く、従って電解処理という比較
的簡単な操作により、必要な濃度の酸素含有ガスの必要
量を低コストで供給することが可能になる。そして電解
により発生する酸素ガス中に含まれるミストをフィルタ
ーで除去することにより、得られる酸素含有ガス中のミ
ストを減少させて純度を更に向上させることも可能であ
る。又電解槽の陽極及び陰極の少なくとも一方に空気電
極を使用すると、槽電圧を低下させることができ、より
以上の低コスト化を達成することができる。
The cost of oxygen gas obtained by electrolytic reaction is lower than that of other oxygen gases such as oxygen gas filled in oxygen cylinders, and therefore oxygen at the required concentration can be obtained through a relatively simple operation called electrolytic treatment. It becomes possible to supply the required amount of contained gas at low cost. By removing the mist contained in the oxygen gas generated by electrolysis with a filter, it is also possible to reduce the amount of mist in the resulting oxygen-containing gas and further improve the purity. Furthermore, if an air electrode is used as at least one of the anode and cathode of the electrolytic cell, the cell voltage can be lowered, and further cost reductions can be achieved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  水電解槽の陽極室で発生する酸素ガス
を空気と混合して希釈することにより、所定濃度の酸素
含有ガスを製造することを特徴とする高濃度酸素含有ガ
スの製造方法。
1. A method for producing a highly concentrated oxygen-containing gas, which comprises producing an oxygen-containing gas at a predetermined concentration by mixing and diluting oxygen gas generated in an anode chamber of a water electrolyzer with air.
【請求項2】  陽極室で発生する酸素ガス中のミスト
をフィルターにより除去した後、該酸素ガスを空気と混
合するようにした請求項1に記載の方法。
2. The method according to claim 1, wherein after the mist in the oxygen gas generated in the anode chamber is removed by a filter, the oxygen gas is mixed with air.
【請求項3】  水電解槽としてイオン交換膜の両面に
電極を有する固体電解質電極装置を用いる請求項1に記
載の方法。
3. The method according to claim 1, wherein a solid electrolyte electrode device having electrodes on both sides of an ion exchange membrane is used as the water electrolyzer.
【請求項4】  空気電極を陽極及び/又は陰極として
使用する請求項1に記載の方法。
4. The method according to claim 1, wherein an air electrode is used as anode and/or cathode.
JP3171769A 1991-06-17 1991-06-17 Production of concentrated oxygen-containing gas Pending JPH04371592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171769A JPH04371592A (en) 1991-06-17 1991-06-17 Production of concentrated oxygen-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171769A JPH04371592A (en) 1991-06-17 1991-06-17 Production of concentrated oxygen-containing gas

Publications (1)

Publication Number Publication Date
JPH04371592A true JPH04371592A (en) 1992-12-24

Family

ID=15929339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171769A Pending JPH04371592A (en) 1991-06-17 1991-06-17 Production of concentrated oxygen-containing gas

Country Status (1)

Country Link
JP (1) JPH04371592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504015B2 (en) 2001-03-12 2009-03-17 Karl-Heinz Hecker Method and device for producing oxygen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504015B2 (en) 2001-03-12 2009-03-17 Karl-Heinz Hecker Method and device for producing oxygen

Similar Documents

Publication Publication Date Title
US4416747A (en) Process for the synthetic production of ozone by electrolysis and use thereof
US4455203A (en) Process for the electrolytic production of hydrogen peroxide
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JPH11124698A (en) Electrolytic cell using gas diffusion electrode
US4414092A (en) Sandwich-type electrode
US5607562A (en) Electrolytic ozone generator
JP3274880B2 (en) Electrolytic ozone generator
Lu et al. Sulfur dioxide depolarized electrolysis for hydrogen production: development status
JPH07126880A (en) Method for electrolyzing brine and electrolytic cell
JPH08302492A (en) Electrolytic cell using gas diffusion electrode
Kolyagin et al. Electrochemical reduction of oxygen to hydrogen peroxide in a gas-diffusion electrode based on mesoporous carbon
CA1315236C (en) Ozone-generating electrolytic cell provided with a solid electrolyte for treating water
DE69838632T2 (en) Method of electrolysis of a saline solution
JP3596997B2 (en) Electrode feeder, method for producing the same, and electrolytic cell for producing hydrogen peroxide
JPH04371592A (en) Production of concentrated oxygen-containing gas
JPH08246178A (en) Electrochemical recovering method of salts and device therefor
JPS6036302A (en) Separation of hydrogen from gaseous mixture containing hydrogen
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
JP3395416B2 (en) Method for producing hydrogen peroxide
JPH11172484A (en) Gas diffusion electrode structural body and its production
CN109055966A (en) A kind of chemical combined method for preparing chlorine dioxide of electrochemistry-
US3577329A (en) Process for the production of high purity hydrogen
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JPH06200389A (en) Production of hydrogen peroxide