JPH04371569A - Vacuum vapor deposition method and device - Google Patents

Vacuum vapor deposition method and device

Info

Publication number
JPH04371569A
JPH04371569A JP14463491A JP14463491A JPH04371569A JP H04371569 A JPH04371569 A JP H04371569A JP 14463491 A JP14463491 A JP 14463491A JP 14463491 A JP14463491 A JP 14463491A JP H04371569 A JPH04371569 A JP H04371569A
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
film
inert gas
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14463491A
Other languages
Japanese (ja)
Inventor
Iwao Ogura
小倉 ▲いわお▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14463491A priority Critical patent/JPH04371569A/en
Publication of JPH04371569A publication Critical patent/JPH04371569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To deposit a raw material for vapor deposition by evaporation on a substrate with good utilization efficiency by maintaining a high-temp. inert gaseous atmosphere in a vapor deposition chamber at the time of vapor depositing the film of a metal, semimetals, dielectrics or the like on the substrate. CONSTITUTION:The inside of a vessel contg. the substrate and an Ag vapor deposition source is evacuated to a high vacuum of 10<-4> to 10<-2> Pa by a vacuum pump and thereafter an inert gas, such as Ar, is heated to >=373K by a heater and is supplied into the vessel at the time of depositing the Ag film by evaporation on the surface of the single crystal substrate consisting of, for example, NaCl. After the pressure in the vessel is regulated to 0.1 to 10Pa, the Ag evaporating source is heated to evaporate to form the vapor deposited Ag film on the substrate. The Ag as the raw material for vapor deposition is deposited by evaporation on the NaCl substrate with the high vapor deposition efficiency.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、基板上に金属、半導体
、誘電体等の膜を効率的に形成するための蒸着方法及び
蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor deposition method and apparatus for efficiently forming metal, semiconductor, dielectric, or other films on a substrate.

【0002】0002

【従来の技術】従来、真空蒸着装置内に蒸発源と基板を
対向配置して、高真空下で基板上に蒸着膜を形成する方
法は知られている。しかし、上記の通常の蒸着方法では
、蒸着原料の蒸気が真空系に流出するため、蒸着原料の
大半が無駄になり、蒸着膜を効果的に形成することがで
きなかった。
2. Description of the Related Art Conventionally, a method is known in which an evaporation source and a substrate are disposed facing each other in a vacuum evaporation apparatus to form a vapor deposited film on the substrate under high vacuum. However, in the above-mentioned normal vapor deposition method, since the vapor of the vapor deposition raw material flows out into the vacuum system, most of the vapor deposition raw material is wasted, and a vapor deposition film cannot be effectively formed.

【0003】0003

【発明が解決しようとする課題】本発明は、上記の欠点
を解消し、蒸着原料を有効に利用して良好な蒸着膜を形
成することができる蒸着方法及び蒸着装置を提供しよう
とするものである。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned drawbacks and to provide a vapor deposition method and a vapor deposition apparatus that can effectively utilize vapor deposition raw materials to form a good vapor deposited film. be.

【0004】0004

【課題を解決するための手段】本発明は、真空蒸着装置
内を10−4〜10−2Paの高真空に引いた後、37
3 K以上の高温に加熱された不活性ガスを導入して0
.1 〜10Paに調整し、次いで、蒸着原料を蒸発さ
せて基板上に蒸着膜を形成することを特徴とする蒸着方
法、及び、蒸着原料を加熱する手段と、該加熱手段に対
向して配置された基板と、不活性ガスの導入管と、真空
ポンプに接続する排気管とを有する真空蒸着装置におい
て、上記導入管の周囲または不活性ガスの導入部内に加
熱器を配置したことを特徴とする蒸着装置である。
[Means for Solving the Problems] The present invention provides that after drawing the inside of a vacuum evaporation apparatus to a high vacuum of 10-4 to 10-2 Pa,
0 by introducing an inert gas heated to a high temperature of 3 K or higher.
.. 1 to 10 Pa, and then evaporating the evaporation raw material to form a deposited film on the substrate, and a means for heating the evaporation raw material; A vacuum evaporation apparatus having a substrate, an inert gas inlet pipe, and an exhaust pipe connected to a vacuum pump, characterized in that a heater is disposed around the inert gas inlet pipe or in the inert gas inlet. This is a vapor deposition device.

【0005】[0005]

【作用】従来の蒸着方法では、高真空下で行うところか
ら、蒸着原料の大半が真空系に流出するため、基板上に
有効に膜を形成することができず、得られる膜は蒸着原
料が少量であれば不連続薄膜となる場合が多く、また、
連続膜を作製できても膜を構成する結晶粒の粒内または
粒界に格子欠陥が多く発生するなどの欠点を有していた
。そこで、本発明者は、蒸着条件を種々検討した結果、
加熱された不活性ガスを蒸着装置内に導入して真空蒸着
することにより、蒸着効率を大幅に向上させることがで
き、良質の蒸着膜を形成することができることを見出し
た。特に、373K以上の高温に加熱された不活性ガス
を導入し、0.1 〜10Paの圧力の下で真空蒸着す
るときに、その効果が顕著であった。不活性ガスの加熱
温度は、特に800 〜900Kが好ましい。373K
を下回ると、従来の蒸着方法と同様の上記欠点を解消す
ることができない。また、不活性ガスの圧力が、0.1
Pa を下回ると、従来の真空蒸着法と比較して顕著な
効果が認められず、10Paを上回ると、蒸着速度が低
下するため経済的でない。
[Effect] In conventional vapor deposition methods, most of the vapor deposition raw material flows out into the vacuum system because it is performed under high vacuum, making it impossible to form a film effectively on the substrate. A small amount often results in a discontinuous thin film, and
Even if a continuous film could be produced, it had drawbacks such as the occurrence of many lattice defects within or at the grain boundaries of the crystal grains that make up the film. Therefore, as a result of examining various vapor deposition conditions, the present inventor found that
It has been found that by introducing a heated inert gas into a vapor deposition apparatus and performing vacuum vapor deposition, vapor deposition efficiency can be significantly improved and a high-quality vapor deposited film can be formed. In particular, the effect was remarkable when an inert gas heated to a high temperature of 373 K or higher was introduced and vacuum deposition was performed under a pressure of 0.1 to 10 Pa. The heating temperature of the inert gas is particularly preferably 800 to 900K. 373K
If it is less than 20%, the above-mentioned drawbacks similar to those of conventional vapor deposition methods cannot be overcome. Also, the pressure of the inert gas is 0.1
If it is less than 10 Pa, no significant effect will be observed compared to the conventional vacuum evaporation method, and if it exceeds 10 Pa, the deposition rate will decrease, making it uneconomical.

【0006】ここで使用される不活性ガスとしては、H
e,Ne,Ar,Kr等の希ガスの他にN2 ガスを挙
げることができ、目的に応じてCO2 ガスも使用する
ことができる。また、下地基板としては、マイカ, S
i,NaCl,KCl 等の単結晶劈開面、清浄なガラ
ス面、炭素蒸着膜、Al板表面に形成した酸化膜などを
挙げることができ、さらに、MgO 単結晶表面、Ge
単結晶表面、SiO蒸着膜、MgO蒸着膜、Ge板表面
に形成した酸化膜なども使用することができる。
[0006] The inert gas used here is H
In addition to rare gases such as e, Ne, Ar, and Kr, N2 gas can be used, and CO2 gas can also be used depending on the purpose. In addition, as the base substrate, mica, S
Examples include cleavage planes of single crystals such as i, NaCl, KCl, etc., clean glass surfaces, carbon evaporated films, and oxide films formed on the surfaces of Al plates.Furthermore, MgO single crystal surfaces, Ge
An oxide film formed on the surface of a single crystal, a deposited SiO film, a deposited MgO film, a Ge plate, etc. can also be used.

【0007】図1は、本発明の1具体例である真空蒸着
装置の概念図である。この装置は、真空ポンプに接続さ
れたチャンバの中央に下地基板をホルダで支持し、これ
に対向する位置に開口を有する隔壁板で、周囲を包囲し
た膜材料蒸発源を配置し、下地基板の近傍に開口を有す
る不活性ガス導入管を配置し、その導入管の周囲および
導入部内にはガス加熱器を設けた。図1ではガス加熱器
を2つ設けたが、必要に応じて一方を省略してもよい。
FIG. 1 is a conceptual diagram of a vacuum evaporation apparatus which is a specific example of the present invention. In this device, a base substrate is supported by a holder in the center of a chamber connected to a vacuum pump, and a membrane material evaporation source surrounded by a partition plate with an opening at a position opposite to this is placed. An inert gas introduction pipe having an opening was placed nearby, and a gas heater was provided around the introduction pipe and within the introduction part. Although two gas heaters are provided in FIG. 1, one may be omitted if necessary.

【0008】[0008]

【実施例】【Example】

(実施例1)図1の真空蒸着装置を用いて、表面積4 
×4mm2 のNaCl単結晶基板上にAgの膜を形成
した。まず、装置内を真空ポンプで10−4Paまで真
空に引いた後、800Kに設定された加熱器で加熱され
たArガスを流量25ml/minで供給し、装置内の
圧力を 1Paに調整した後、Ag蒸着原料を1300
K に加熱して蒸発を開始し、1分間蒸着を行った。得
られたAg膜は、平均厚さが13nmであり、基板結晶
と平行方位または45度方位に成長した擬単結晶薄膜で
あることが分かった。
(Example 1) Using the vacuum evaporation apparatus shown in FIG. 1, a surface area of 4
An Ag film was formed on a ×4 mm 2 NaCl single crystal substrate. First, the inside of the device was evacuated to 10-4 Pa with a vacuum pump, then Ar gas heated with a heater set to 800 K was supplied at a flow rate of 25 ml/min, and the pressure inside the device was adjusted to 1 Pa. , Ag evaporation raw material 1300
Evaporation was started by heating to K 2 and deposition was carried out for 1 minute. The obtained Ag film had an average thickness of 13 nm and was found to be a pseudo-single crystal thin film grown parallel to the substrate crystal or oriented at 45 degrees.

【0009】(比較例1)実施例1において、不活性ガ
スの加熱器を停止し、導入Arガスの温度を300Kと
し、その他の条件を実施例1と同一にしてAgを蒸着し
たところ、得られた膜は、厚さが12nmであり、実施
例1と同様の擬単結晶薄膜であったが、結晶粒内に多く
の格子欠陥を含み、亜粒界や双晶境界も多く観察された
。また、Arガスの温度を280Kに設定して、同様に
Agを蒸着したところ、得られたAg膜は、厚さが12
nmであったが、不活性ガスを使用しない従来の蒸着方
法で得た膜と同程度の配向性を有する多結晶薄膜である
ことが分かった。
(Comparative Example 1) In Example 1, when the inert gas heater was stopped, the temperature of the introduced Ar gas was set to 300K, and other conditions were the same as in Example 1, Ag was deposited. The resulting film had a thickness of 12 nm and was a quasi-single crystal thin film similar to that in Example 1, but contained many lattice defects within the crystal grains and many subgrain boundaries and twin boundaries were observed. . Furthermore, when Ag was deposited in the same manner by setting the Ar gas temperature to 280K, the resulting Ag film had a thickness of 12
nm, but it was found to be a polycrystalline thin film with orientation comparable to that of a film obtained by a conventional vapor deposition method that does not use an inert gas.

【0010】(実施例2)実施例1において、導入Ar
ガスの温度を373Kに設定し、その他の条件を実施例
1と同一にしてAgを 5分間蒸着した。得られたAg
膜は、厚さが60nmであり、基板結晶と平行方位の連
続的な単結晶膜であり、基板表面に存在する劈開階段の
鋭い立ち上がり面においてもステップ上面と同様に連続
した単結晶膜が成長していることが分かった。
(Example 2) In Example 1, introduced Ar
Ag was evaporated for 5 minutes with the gas temperature set at 373K and other conditions the same as in Example 1. Obtained Ag
The film has a thickness of 60 nm and is a continuous single crystal film oriented parallel to the substrate crystal, and a continuous single crystal film grows on the sharp rising surface of the cleavage step existing on the substrate surface as well as on the top surface of the step. I found out that it was.

【0011】(比較例2)実施例2において、導入Ar
ガスの温度を500Kに設定し、装置内の圧力を0.0
1Paに調整し、その他の条件を実施例2と同一にして
Agを 5分間蒸着した。得られた膜は、厚さが40n
mであり、不活性ガスを使用しない従来の蒸着方法で得
た膜と同程度の配向性を有する多結晶薄膜であることが
分かった。また、この場合には、基板表面に存在する劈
開階段の鋭い立ち上がり面にAg膜が成長していないこ
とが分かった。
(Comparative Example 2) In Example 2, introduced Ar
Set the gas temperature to 500K and the pressure inside the device to 0.0
The pressure was adjusted to 1 Pa, and other conditions were the same as in Example 2, and Ag was deposited for 5 minutes. The resulting film has a thickness of 40n
m, and it was found that the polycrystalline thin film had an orientation comparable to that of a film obtained by a conventional vapor deposition method that does not use an inert gas. Furthermore, in this case, it was found that the Ag film did not grow on the sharp rising surfaces of the cleavage steps existing on the substrate surface.

【0012】(実施例3)実施例1において、表面積2
5×80mm2 のガラス基板上に面積 2×40mm
2 の細長いAg膜を形成した。ガス加熱器の温度を3
73Kに設定し、その他の条件を実施例1と同一にして
Agを10分間蒸着した。得られたAg膜は、厚さが 
120nmであり、配向性のない多結晶膜であることが
分かった。また、このAg膜の電気抵抗率は 3×10
−8Ωm であり、電気抵抗の経時変化は安定した単調
減少であることが分かった。
(Example 3) In Example 1, the surface area 2
Area 2 x 40 mm on a 5 x 80 mm2 glass substrate
2 elongated Ag films were formed. Set the temperature of the gas heater to 3
The temperature was set at 73K, and other conditions were the same as in Example 1, and Ag was deposited for 10 minutes. The thickness of the obtained Ag film is
It was found that the film had a thickness of 120 nm and was a polycrystalline film with no orientation. Also, the electrical resistivity of this Ag film is 3×10
-8 Ωm, and it was found that the change in electrical resistance over time was a stable monotonous decrease.

【0013】(比較例3)実施例3において、Arガス
の導入を停止して装置内の圧力を10−3Paに調整し
、その他の条件を実施例3と同一にしてAgを13分間
蒸着した。得られた膜は、厚さが 120nmであり、
配向性のない多結晶薄膜であることが分かった。また、
このAg膜の電気抵抗率は 4×10−8Ωm であり
、電気抵抗の経時変化は実施例3とは異なり不安定であ
り、変化の途中2回電気抵抗が急に増大した後再び減少
した。
(Comparative Example 3) In Example 3, the introduction of Ar gas was stopped and the pressure inside the apparatus was adjusted to 10-3 Pa, and Ag was evaporated for 13 minutes under the same conditions as in Example 3. . The resulting film had a thickness of 120 nm,
It turned out to be a polycrystalline thin film with no orientation. Also,
The electrical resistivity of this Ag film was 4×10 −8 Ωm, and unlike in Example 3, the electrical resistance changed over time in an unstable manner, and during the change, the electrical resistance suddenly increased twice and then decreased again.

【0014】[0014]

【発明の効果】本発明は、上記の構成を採用することに
より、蒸着原料を有効に利用し、高い蒸着速度で良質の
蒸着膜を形成することができるようになった。
[Effects of the Invention] By adopting the above structure, the present invention makes it possible to effectively utilize vapor deposition raw materials and form a high quality vapor deposited film at a high vapor deposition rate.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の1実施例である真空蒸着装置の概念図
である。
FIG. 1 is a conceptual diagram of a vacuum evaporation apparatus that is an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  真空蒸着装置内を10−4〜10−2
Paの高真空に引いた後、373K以上の高温に加熱し
た不活性ガスを導入して0.1 〜10Paに調整し、
次いで、蒸着原料を蒸発させて基板上に蒸着膜を形成す
ることを特徴とする蒸着方法。
Claim 1: The inside of the vacuum evaporation apparatus is 10-4 to 10-2.
After drawing a high vacuum of Pa, inert gas heated to a high temperature of 373 K or higher was introduced to adjust the pressure to 0.1 to 10 Pa.
A vapor deposition method characterized in that the vapor deposition raw material is then evaporated to form a vapor deposited film on the substrate.
【請求項2】  蒸着原料を加熱する手段と、該加熱手
段に対向して配置された基板と、不活性ガスの導入管と
、真空ポンプに接続する排気管とを有する真空蒸着装置
において、上記導入管の周囲または不活性ガスの導入部
内に加熱器を配置したことを特徴とする蒸着装置。
2. A vacuum evaporation apparatus comprising: means for heating a vapor deposition raw material; a substrate disposed opposite to the heating means; an inert gas introduction pipe; and an exhaust pipe connected to a vacuum pump. A vapor deposition apparatus characterized in that a heater is arranged around an introduction pipe or within an inert gas introduction part.
JP14463491A 1991-06-17 1991-06-17 Vacuum vapor deposition method and device Pending JPH04371569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14463491A JPH04371569A (en) 1991-06-17 1991-06-17 Vacuum vapor deposition method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14463491A JPH04371569A (en) 1991-06-17 1991-06-17 Vacuum vapor deposition method and device

Publications (1)

Publication Number Publication Date
JPH04371569A true JPH04371569A (en) 1992-12-24

Family

ID=15366619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14463491A Pending JPH04371569A (en) 1991-06-17 1991-06-17 Vacuum vapor deposition method and device

Country Status (1)

Country Link
JP (1) JPH04371569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043599A (en) * 2012-08-24 2014-03-13 Gifu Univ METHOD OF MANUFACTURING Ge CLATHRATE
US8771422B2 (en) 2005-03-18 2014-07-08 Ulvac, Inc. Coating method and apparatus, a permanent magnet, and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141765A (en) * 1984-08-02 1986-02-28 Koito Mfg Co Ltd Method and apparatus for vacuum vapor deposition
JPH02246326A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Manufacturing method and equipment for semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141765A (en) * 1984-08-02 1986-02-28 Koito Mfg Co Ltd Method and apparatus for vacuum vapor deposition
JPH02246326A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Manufacturing method and equipment for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771422B2 (en) 2005-03-18 2014-07-08 Ulvac, Inc. Coating method and apparatus, a permanent magnet, and manufacturing method thereof
JP2014043599A (en) * 2012-08-24 2014-03-13 Gifu Univ METHOD OF MANUFACTURING Ge CLATHRATE

Similar Documents

Publication Publication Date Title
US4339300A (en) Process for smoothing surfaces of crystalline materials
JPH08151296A (en) Method for forming single crystal diamond film
JPH05206034A (en) Method for low-temperature and high- pressure vapor deposition of wafer
JP4644359B2 (en) Deposition method
CN106868469A (en) A kind of method that non-metal catalyst in silicon substrate prepares Graphene
US5876504A (en) Process for producing oxide thin films and chemical vapor deposition apparatus used therefor
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
JPH04371569A (en) Vacuum vapor deposition method and device
JPH0641631B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
Itoh et al. Growth process of CuO (1 1 1) and Cu2O (0 0 1) thin films on MgO (0 0 1) substrate under metal-mode condition by reactive dc-magnetron sputtering
Zakar et al. Controlling defects in fine-grained sputtered nickel catalyst for graphene growth
JPS5856249B2 (en) Method for manufacturing thin films by plasma reaction
JPS5840820A (en) Formation of silicon single crystal film
JP2002543293A5 (en)
JP2003160865A (en) Ruthenium compound for organometallic chemical vapor deposition, and ruthenium-containing thin film obtained from the compound
JP2768364B2 (en) Method for manufacturing semiconductor device
JP2004137101A (en) Method of producing titanium oxide film
Gardiner et al. The growth and orientation of vapour-deposited thin films of silver on glass
JPH082999A (en) Production of aluminum nitride thin film
Karim et al. FABRICATION OF ULTRA-THIN CdTe LAYERS BY THE CLOSE-SPACED SUBLIMATION TECHNIQUES FOR CdTe/CdS SOLAR CELLS.
JPH06192829A (en) Thin film forming device
JPH035306A (en) Production and heat treatment of superconducting thin film
JP2006099976A (en) Manufacturing method of transparent conductive film
JPH0959086A (en) Formation of thin film