JP4644359B2 - Deposition method - Google Patents

Deposition method Download PDF

Info

Publication number
JP4644359B2
JP4644359B2 JP2000364056A JP2000364056A JP4644359B2 JP 4644359 B2 JP4644359 B2 JP 4644359B2 JP 2000364056 A JP2000364056 A JP 2000364056A JP 2000364056 A JP2000364056 A JP 2000364056A JP 4644359 B2 JP4644359 B2 JP 4644359B2
Authority
JP
Japan
Prior art keywords
film
film forming
metal
deposition
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000364056A
Other languages
Japanese (ja)
Other versions
JP2002167672A (en
Inventor
厚志 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2000364056A priority Critical patent/JP4644359B2/en
Publication of JP2002167672A publication Critical patent/JP2002167672A/en
Application granted granted Critical
Publication of JP4644359B2 publication Critical patent/JP4644359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置や電子装置を製造する際に用いる成膜技術に関し、特に、CVD(化学気相成長)法を用いて金属膜、金属酸化物膜および金属窒化物膜を成膜する方法に関するものである。
【0002】
【従来の技術】
半導体メモリ、ロジックLSI、システムLSIなどの半導体装置や、液晶ならびにプラズマディスプレイやプリント基板などの電子装置では、配線や絶縁膜、バリア膜などを構成する金属(本明細書において金属はSiを含むものとする)膜、金属酸化膜、金属窒化膜が用いられている。これらの膜は、スパッタ法、真空蒸着法、鍍金法などで成膜されることが多い。これらの成膜方法のうち、スパッタ法および真空蒸着法は比較的簡便な成膜方法であるが、平坦な面上には均一な成膜が可能なものの、凹凸面への均一な成膜は困難である。特に、深い穴や溝の底および側壁への成膜は困難である。
また、鍍金法は凹凸面にも均一な成膜が可能であるが、一般に成膜速度が速いため薄膜の形成を制御することが難しい。また、薬液に浸す湿式の成膜方法であり、所望しない部分にも金属を含む薬液が回りこみ汚染の原因となる。
【0003】
【発明が解決しようとする課題】
これらの方法に対して、CVD (Chemical Vapor Deposition)法、特に大気圧以下の雰囲気圧力で成膜するLPCVD(Low Pressure CVD)法は、凹凸面にも制御性良く薄膜を堆積することが出来る成膜方法であるが、気相で原料を成膜面にまで輸送することが出来る原料が必要である。
【0004】
CVD法で金属およびその化合物を堆積する方法としては、Cl(塩素)等のハロゲンを金属と反応させた金属ハロゲン化物を用いる方法と、TMA(トリメチルアルミニウム)、TEA(トリエチルアルミニウム)等の有機金属を用いるMOCVD(Metal Organic CVD)法があるが、金属ハロゲン化物を用いる方法では、得られた膜中にCl等のハロゲンが残留するため長時間の使用のためには腐食などによる劣化が懸念される。また、有機金属を用いるMOCVD法は、残留ハロゲンによる劣化の心配はないが、適当な有機金属原料の選択と合成が重要な課題となり、必ずしも所望の金属材料に対して適切な有機金属原料が存在しているとは限らない。
【0005】
本発明の課題は、上述した従来技術の問題点を解決することであって、その目的は、半導体装置や電子装置の成膜面に凹凸があっても、金属およびその化合物を制御性と均一性良く堆積することができるようにして、良好な性能をもつ半導体装置や電子装置を製造できるようにすることである。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明によれば、成膜室内に、1種若しくは複数種のM[N(C2524(但し、Mは金属(Siを含む、以下同じ)元素)にて表される有機物原料を導入し、化学的気相成長(CVD)法にて、金属(合金を含む)膜を堆積し、堆積後に堆積中の温度よりも50〜200℃高い温度にて熱処理を行うことを特徴とする成膜方法、が提供される。また、本発明によれば、成膜室内に、1種若しくは複数種のM[N(C 2 5 2 4 (但し、Mは金属(Siを含み、Tiを除く、以下同じ)元素)にて表される有機物原料を導入し、化学的気相成長(CVD)法にて、金属化合物膜を堆積し、堆積後に堆積中の温度よりも50〜200℃高い温度にて熱処理を行うことを特徴とする成膜方法、が提供される。
【0007】
【発明の実施の形態】
次に、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の実施の形態を説明するための、成膜装置の一例を示す模式図である。本発明においては、例えば、図1に示すコールドウォール型のLPCVD装置を用いて成膜が行われる。成膜室1内には、基板を加熱するためのヒータブロック2が設置されており、その上に基板台3を介して基板4が搭載される。
成膜時の基板4の温度は、ヒータブロック2内のヒータにより例えば100〜600℃に制御する。ステップカバレッジが優先される場合には、450℃以下、より好ましくは400℃以下の基板温度が選択される。バブラー5内に原料として例えばTa[N(C25246を供給し、ヒータ7で暖めながらキャリアガスであるH2ガスを流して原料ガスを成膜室1へ輸送する。原料ガスの供給量は、H2ガスの流量をマスフローコントローラ8aにより調節することにより制御する。
成膜室1内部は、オリフィス9を介してターボ分子ポンプ10とロータリーポンプ11の組み合わせにより排気され、膜堆積時の成膜室内圧力はこれらにより例えば1〜100Torr(133.3〜13332Pa)に制御される。
【0008】
金属膜であるTa膜を形成する場合には、原料ガスとしてはTa[N(C2524のみが供給される〔但し、後述するようにTa[N(C2524にはNC25Ta[N(C2523が混入している〕。Ta膜に代え他の金属膜であるHf(ハフニウム)膜、Zr(ジルコニウム)膜、Ti(チタン)膜、Si(シリコン)膜を形成する場合には、原料ガスとしてHf[N(C2524、Zr[N(C2524、Ti[N(C2524またはSi[N(C2524を供給する。また、これらの金属の合金膜を形成する場合にはこれらの中の複数の原料を同時に供給する。例えばTiSiを形成する場合にはTi[N(C2524ガスとSi[N(C2524ガスとを同時に成膜室内に供給する。
金属(合金を含む)膜の成膜後、成膜時の温度より例えば50〜200℃高い温度にて熱処理を行う。これにより膜中に遊離して残存するC、N等を放出させて膜質の緻密化やシート抵抗の低減等を図ることができる。この熱処理は、400℃以上の温度にて行うことが望ましい。これ以下の温度では膜質の改善を十分に行うことが難しいからである。この膜堆積後の熱処理は、成膜室1内において膜堆積に引き続いて行うことができるが、成膜室から取り出してランプアニーラ等を用いて熱処理を行うようにしてもよい。
【0009】
金属酸化物膜を形成する場合には、M[N(C2524(但し、Mは金属元素)と共に基板4上に酸素を供給できる原料、例えばO2 を成膜室1に供給する。O2 ガスの流量はマスフローコントローラ8bにより調整する。
例えばTa25 膜を形成する場合には、Ta[N(C2524ガスと共にO2 を成膜室へ導入する。O2 に代えN2O、NO、H2Oを用いてもよく、またこれらの酸化性ガスの中の複数種を同時に供給するようにしてもよい。
合金の酸化物膜ないし金属酸化物の混合物膜を形成する場合には、複数種のM[N(C2524と共に酸化性ガスを供給する。
【0010】
金属窒化物膜を形成する場合には、M[N(C2524(但し、Mは金属元素)と共に基板4上に窒素を供給できる原料例えばNH3 を成膜室1に導入する。NH3 ガスの流量はマスフローコントローラ8cにより調整する。
例えばTiN膜を形成する場合には、Ti[N(C2524ガスと共にNH3 を成膜室へ導入する。NH3 に代えN2 を用いてもよく、またNH3 ガスとN2 ガスの両方を同時に供給するようにしてもよい。
合金の窒化物膜ないし金属窒化物の混合物膜を形成する場合には、複数種のM[N(C2524と共に窒化性ガスを供給する。
【0011】
図2は、M(金属元素)がTaである有機金属原料をクロマトグラフィ法等の手法を用いて分析した結果判った分子構造である。この有機原料には実際には2種類の異なった構造を持つ分子が混在していることが明らかとなった。Taの代わりに中心の金属元素MがHf、Zr、Ti、Siの場合には、図3に示すように、M[N(C2524の構造であった。
【0012】
【実施例】
次に、本発明の好ましい実施例について図面を参照して詳細に説明する。
[実施例1]
実施例1として、図1に示すLPCVD装置により、Ta[N(C2524ガスを原料ガスに用いてTa膜を成膜した。
基板4には未処理のSi基板、Si基板表面を熱酸化して作成したSiO2基板、Si基板に幅2.0μm、深さ5μm(アスペクト比=2.5)の溝を加工した基板を用いた。
配管内部での原料ガスの液化を防ぐため、バブラー5から成膜室1までの配管を図示しない手段で約80℃に加熱した。本実施例において、基板温度をヒータブロック2内のヒータを制御して100〜600℃と変化させ、ヒータ7の温度を60℃に保持し、マスフローコントローラ8aによりH2ガス流量を10sccmに調整した。また、成膜室1内の圧力を10Torr(1333Pa)に保持した。
膜堆積後、温度を成膜温度より50〜200℃上昇させて、1秒から1時間の熱処理を加えた。
【0013】
堆積した膜の膜厚は段差計およびSEM(scanning electron microscope; 走査顕微鏡)観察により、膜の抵抗値は4探針法測定により、膜の結晶構造はTEM(transparent electron microscope;透過顕微鏡)観察により、膜中の不純物はSIMS(secondary ion mass spectroscopy; 二次イオン質量分析)により、それぞれ調べた。
堆積温度400℃以下では温度の減少に伴い成長速度の急速な低下が見られたが、400℃以上では基板温度によらずほぼ一定の成長速度が得られた。溝を加工した基板に成膜した後SEMで観察した結果によれば、基板温度400℃以下では溝の上部、底および側面のどの場所もほぼ一定の膜厚が達成されていることが確認された。この結果は比較のために行った従来法であるスパッタ法ではまったく達成できない優れた特徴である。基板温度を450℃まで上げると、ステップカバレッジの指標である溝底部膜厚/平坦部膜厚は0.75程度にまで低下したが、バリア性を確保するに必要となる膜厚は十分に得ることができた。
【0014】
膜の抵抗率は基板温度が高いほど低く、基板温度400〜600℃において、0.01−1.0Ω・cmを得ることができた。よって、本発明により、LSIのバリア膜を形成するに必要となるステップカバレッジと低抵抗の両特性を備えた膜を形成できることが分かった。但し、堆積後の後熱処理を行わない試料については、膜中の残留Cも多く膜の密度も低いため、抵抗値も熱処理後の10〜100倍の値を示した。SIMSを用いた分析によれば、得られた膜はTaに少量のCおよびNが含まれた組成を示し、Cl等の膜の劣化に寄与する成分は見られなかった。また、TEMによる解析によれば400℃で堆積した膜は非晶質構造であった。
【0015】
同じ装置を用いて、Hf[N(C2524、Zr[N(C2524、Ti[N(C2524、Si[N(C2524を用いても、それぞれの特性に応じてバブラー5のヒータ7の温度をそれぞれの原料にふさわしい値に選ぶことで、Ta[N(C2524の場合と同様に成膜を行うことが出来た。さらに、2種類以上の原料を同時に供給することで合金膜を形成することができた。この合金成膜に関しては、他の方法に比べて、原料の構造が類似するものを使うことで、組成の制御が容易であるなどの利点が得られた。
【0016】
[実施例2]
実施例1の場合と同様に図1に示すLPCVD装置を用い、その他の条件を同じにして、Ta[N(C2524と同時にO2 をマスフローコントローラ5bにより流量を毎分0.01〜1000mlに調整して成膜室内に供給したところ、Ta酸化物膜を成膜することができた。膜中の酸素量はO2流量の増加に伴い増加し、化学量論的な値で飽和した。また、誘電率にも同様の変化が見られた。
Ta[N(C2524に代え、Hf[N(C2524、Zr[N(C2524、Ti[N(C2524、Si[N(C2524等と同時にO2を供給したところ、それぞれの材料の金属酸化物膜を成膜することができた。また、これらの材料についても膜中の酸素量はO2流量の増加に伴い増加し、化学量論的な値で飽和した。さらに、実施例1の場合と同様に、2種類以上の原料を同時に供給することによって、合金の酸化物が得られた。
【0017】
これらの金属酸化物膜はいずれも高い誘電率を持ち、半導体装置や電子装置で誘電体として利用することが可能である。また、他の金属とSiの合金からなる酸化物はシリケートと呼ばれ、熱的に安定なことが知られている。さらにO2の代わりに、またはO2と同時にN2O、NO、H2O等を供給しても同様に金属酸化物膜が得られた。比較のために堆積したスパッタ法による膜に比べて、トレンチ穴などへの回り込みが良く、どのような面にも均一な成膜が出来ることと、Cl等の信頼性への影響が懸念される残留不純物が存在しないこと、さらに堆積後の熱処理によって密度が向上し、そのほかの特性も改善したことは実施例1と同様であった。
【0018】
[実施例3]
実施例1の場合と同様に図1に示すLPCVD装置を用い、その他の条件を同じして、Ta[N(C2524と同時に、マスフローコントローラ8cにより流量を毎分0.01〜1000mlに調整してNH3を成膜室1内に供給したところ、Ta窒化物膜が成膜された。膜中の窒素量はNH3流量の増加に伴い増加し、化学量論的な値で飽和した。
また、Ta[N(C2524に代え、Hf[N(C2524、Zr[N(C2524、Ti[N(C2524、Si[N(C2524等と同時に毎分0.01〜1000mlのNH3を供給したところ、それぞれの材料の金属窒化物膜を成膜することができた。これらの材料の金属窒化物膜においても膜中の窒素量はNH3流量の増加に伴い増加し、化学量論的な値で飽和した。さらに、実施例1の場合と同様に2種類以上の原料を同時に供給することによって、合金の窒化物が得られた。
【0019】
これらの金属窒化物膜はいずれも他の金属の拡散を阻止する能力が高く、半導体装置や電子装置でバリア膜として利用することが可能である。図4は、Si基板上にTiN(チタン窒化物)薄膜を400℃にて0.1μmの膜厚に堆積し470℃にて30分の熱処理を行った後その上にCuを堆積し、その後550℃、1時間の後熱処理を行って、TiN薄膜のCuに対するバリア性能を評価した結果を示す図である。横軸に深さをとり、縦軸にCu濃度をとった。この図から明らかなように、TiN薄膜によりCuの拡散が阻止されていることが分かる。
また、NH3の代わりにN2 を用いてもあるいはNH3と同時にN2を供給しても同様に金属窒化物膜が得られた。比較のために堆積したスパッタ法による膜に比べて、トレンチ穴などへの回り込みが良く、どのような面にも均一な成膜が出来ることと、Cl等の信頼性への影響が懸念される残留不純物が存在しないこと、さらに堆積後の熱処理によって密度が向上し、そのほかの特性も改善したことは実施例1および実施例2と同様に確認された。
【0020】
以上、本発明の好ましい実施例について説明したが、本発明は、これら実施例に限定されるものではなく、本発明の要旨を逸脱することのない範囲内において適宜の変更が可能なものである。
【0021】
【発明の効果】
以上説明したように、本発明による金属膜、金属酸化物膜若しくは金属窒化物膜の成膜方法は、有機金属原料にHf[N(C2524、Ta[N(C2524、Zr[N(C2524、Ti[N(C2524、Si[N(C2524を用い、さらにこの各金属膜を堆積後に堆積中の温度より高い温度で熱処理を行うものであるので、半導体装置や電子装置の製造に欠かせない、金属およびその化合物(酸化物、窒化物など)を凹凸面にも制御性良く堆積することが可能となり、良好な性能をもつ半導体装置および電子装置を製造することが可能になる。
【図面の簡単な説明】
【図1】 本発明の実施の形態、実施例を説明するためのLPCVD装置の模式図。
【図2】 本発明において用いられる原料の分子構造図(その1)。
【図3】 本発明において用いられる原料の分子構造図(その2)。
【図4】 Si基板上に形成されたTiN薄膜のCuに対するバリア性能を表す図。
【符号の説明】
1 成膜室
2 ヒータブロック
3 基板台
4 基板
5 バブラー
6 Ta[N(C2524
7 ヒータ
8a〜8c マスフローコントローラ
9 オリフィス
10 ターボ分子ポンプ
11 ロータリーポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film forming technique used when manufacturing a semiconductor device or an electronic device, and in particular, a method of forming a metal film, a metal oxide film, and a metal nitride film using a CVD (chemical vapor deposition) method. It is about.
[0002]
[Prior art]
In semiconductor devices such as semiconductor memories, logic LSIs, and system LSIs, and electronic devices such as liquid crystals and plasma displays and printed boards, metals that form wirings, insulating films, barrier films, etc. (in this specification, metals include Si) ) Film, metal oxide film, and metal nitride film are used. These films are often formed by sputtering, vacuum deposition, plating, or the like. Of these film formation methods, sputtering and vacuum deposition are relatively simple film formation methods. Although uniform film formation is possible on a flat surface, uniform film formation on an uneven surface is possible. Have difficulty. In particular, film formation on the bottom and side walls of deep holes and grooves is difficult.
In addition, the plating method can form a uniform film on an uneven surface, but it is generally difficult to control the formation of a thin film because the film formation speed is high. Further, it is a wet film forming method that is immersed in a chemical solution, and a chemical solution containing metal also wraps around in an undesired portion, causing contamination.
[0003]
[Problems to be solved by the invention]
In contrast to these methods, the CVD (Chemical Vapor Deposition) method, particularly the LPCVD (Low Pressure CVD) method, which forms a film at an atmospheric pressure below atmospheric pressure, can deposit a thin film with good controllability on an uneven surface. Although it is a film | membrane method, the raw material which can transport a raw material to the film-forming surface in a gaseous phase is required.
[0004]
As a method of depositing a metal and its compound by the CVD method, a method using a metal halide obtained by reacting a halogen such as Cl (chlorine) with a metal, or an organic metal such as TMA (trimethylaluminum) or TEA (triethylaluminum). There is a MOCVD (Metal Organic CVD) method that uses metal halide, but in the method using a metal halide, halogen such as Cl remains in the obtained film, and there is a concern about deterioration due to corrosion or the like for a long time use. The In addition, the MOCVD method using an organic metal is not concerned with deterioration due to residual halogen, but selection and synthesis of an appropriate organic metal raw material is an important issue, and there is always an appropriate organic metal raw material for a desired metal material. Not necessarily.
[0005]
An object of the present invention is to solve the above-described problems of the prior art, and its purpose is to control the metal and its compound evenly even if the film formation surface of a semiconductor device or an electronic device is uneven. It is possible to manufacture a semiconductor device and an electronic device having good performance so that they can be deposited with good performance.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention , one or a plurality of M [N (C 2 H 5 ) 2 ] 4 (where M is a metal (including Si, hereinafter the same) ) Elemental material) is introduced, and a metal (including alloy) film is deposited by chemical vapor deposition (CVD). After deposition, the temperature is 50 to 200 ° C. higher than the temperature during deposition. There is provided a film forming method characterized by performing heat treatment at a temperature. According to the present invention, one or more kinds of M [N (C 2 H 5 ) 2 ] 4 (wherein M is a metal (including Si, excluding Ti, the same shall apply hereinafter) element in the film forming chamber. ), A metal compound film is deposited by a chemical vapor deposition (CVD) method, and heat treatment is performed at a temperature 50 to 200 ° C. higher than the temperature during the deposition after the deposition. A film forming method is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an example of a film forming apparatus for explaining an embodiment of the present invention. In the present invention, film formation is performed using, for example, a cold wall type LPCVD apparatus shown in FIG. A heater block 2 for heating the substrate is installed in the film forming chamber 1, and a substrate 4 is mounted thereon via a substrate table 3.
The temperature of the substrate 4 during film formation is controlled to, for example, 100 to 600 ° C. by the heater in the heater block 2. When step coverage is prioritized, a substrate temperature of 450 ° C. or lower, more preferably 400 ° C. or lower is selected. For example, Ta [N (C 2 H 5 ) 2 ] 4 6 is supplied into the bubbler 5 as a raw material, and the source gas is transported to the film forming chamber 1 by flowing H 2 gas as a carrier gas while being heated by the heater 7. The supply amount of the source gas is controlled by adjusting the flow rate of the H 2 gas by the mass flow controller 8a.
The inside of the film forming chamber 1 is evacuated by a combination of a turbo molecular pump 10 and a rotary pump 11 through an orifice 9, and the pressure in the film forming chamber at the time of film deposition is controlled to 1 to 100 Torr (133.3 to 13332 Pa), for example. Is done.
[0008]
In the case of forming a Ta film that is a metal film, only Ta [N (C 2 H 5 ) 2 ] 4 is supplied as a source gas [however, as will be described later, Ta [N (C 2 H 5 )]. 2 ] 4 is mixed with NC 2 H 5 Ta [N (C 2 H 5 ) 2 ] 3 ]. When a Hf (hafnium) film, a Zr (zirconium) film, a Ti (titanium) film, or a Si (silicon) film, which is another metal film, is used instead of the Ta film, Hf [N (C 2 H 5 ) 2 ] 4 , Zr [N (C 2 H 5 ) 2 ] 4 , Ti [N (C 2 H 5 ) 2 ] 4 or Si [N (C 2 H 5 ) 2 ] 4 are supplied. Further, when forming an alloy film of these metals, a plurality of raw materials among them are supplied simultaneously. For example, when TiSi is formed, Ti [N (C 2 H 5 ) 2 ] 4 gas and Si [N (C 2 H 5 ) 2 ] 4 gas are simultaneously supplied into the film formation chamber.
After the metal (including alloy) film is formed, heat treatment is performed at a temperature higher by 50 to 200 ° C. than the temperature at the time of film formation. As a result, C, N, etc. which are released and remaining in the film can be released, and the film quality can be increased and the sheet resistance can be reduced. This heat treatment is desirably performed at a temperature of 400 ° C. or higher. This is because it is difficult to sufficiently improve the film quality at temperatures below this. The heat treatment after the film deposition can be performed following the film deposition in the film formation chamber 1, but the heat treatment may be performed using a lamp annealer taken out from the film formation chamber.
[0009]
When forming a metal oxide film, M [N (C 2 H 5 ) 2 ] 4 (where M is a metal element) and a material capable of supplying oxygen onto the substrate 4, such as O 2, are formed in the film formation chamber 1. To supply. The flow rate of O 2 gas is adjusted by the mass flow controller 8b.
For example, when forming a Ta 2 O 5 film, O 2 is introduced into the film forming chamber together with Ta [N (C 2 H 5 ) 2 ] 4 gas. Instead of O 2 , N 2 O, NO, H 2 O may be used, or a plurality of these oxidizing gases may be supplied simultaneously.
When an alloy oxide film or a metal oxide mixture film is formed, an oxidizing gas is supplied together with a plurality of types of M [N (C 2 H 5 ) 2 ] 4 .
[0010]
In the case of forming a metal nitride film, M [N (C 2 H 5 ) 2 ] 4 (where M is a metal element) and a material capable of supplying nitrogen onto the substrate 4, for example, NH 3, are formed in the film formation chamber 1. Introduce. The flow rate of NH 3 gas is adjusted by the mass flow controller 8c.
For example, when forming a TiN film, NH 3 is introduced into the film forming chamber together with Ti [N (C 2 H 5 ) 2 ] 4 gas. N 2 may be used instead of NH 3 , and both NH 3 gas and N 2 gas may be supplied simultaneously.
When forming an alloy nitride film or a metal nitride mixture film, a nitriding gas is supplied together with a plurality of types of M [N (C 2 H 5 ) 2 ] 4 .
[0011]
FIG. 2 shows the molecular structure obtained as a result of analyzing an organometallic raw material in which M (metal element) is Ta using a technique such as chromatography. It became clear that this organic raw material actually contains two kinds of molecules having different structures. When the central metal element M was Hf, Zr, Ti, or Si instead of Ta, the structure was M [N (C 2 H 5 ) 2 ] 4 as shown in FIG.
[0012]
【Example】
Next, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[Example 1]
As Example 1, a Ta film was formed using Ta [N (C 2 H 5 ) 2 ] 4 gas as a source gas by the LPCVD apparatus shown in FIG.
The substrate 4 is an untreated Si substrate, a SiO 2 substrate prepared by thermally oxidizing the surface of the Si substrate, and a substrate obtained by processing a groove having a width of 2.0 μm and a depth of 5 μm (aspect ratio = 2.5) on the Si substrate. Using.
In order to prevent liquefaction of the source gas inside the pipe, the pipe from the bubbler 5 to the film forming chamber 1 was heated to about 80 ° C. by means not shown. In this embodiment, the substrate temperature is changed to 100 to 600 ° C. by controlling the heater in the heater block 2, the temperature of the heater 7 is maintained at 60 ° C., and the H 2 gas flow rate is adjusted to 10 sccm by the mass flow controller 8a. . Further, the pressure in the film forming chamber 1 was maintained at 10 Torr (1333 Pa).
After film deposition, the temperature was raised by 50 to 200 ° C. above the film deposition temperature, and heat treatment was applied for 1 second to 1 hour.
[0013]
The film thickness of the deposited film is measured by a step gauge and SEM (scanning electron microscope), the resistance of the film is measured by a four-probe method, and the crystal structure of the film is observed by a TEM (transparent electron microscope). The impurities in the film were examined by SIMS (secondary ion mass spectroscopy).
When the deposition temperature was 400 ° C. or lower, a rapid decrease in the growth rate was observed as the temperature decreased. However, when the deposition temperature was 400 ° C. or higher, a substantially constant growth rate was obtained regardless of the substrate temperature. According to the result of SEM observation after forming the film on the substrate on which the groove was processed, it was confirmed that almost constant film thickness was achieved at the top, bottom and side surfaces of the groove at a substrate temperature of 400 ° C. or lower. It was. This result is an excellent feature that cannot be achieved at all by the conventional sputtering method performed for comparison. When the substrate temperature is raised to 450 ° C., the groove bottom film thickness / flat film thickness, which is an indicator of step coverage, is reduced to about 0.75, but sufficient film thickness necessary to ensure barrier properties is obtained. I was able to.
[0014]
The resistivity of the film was lower as the substrate temperature was higher, and 0.01-1.0 Ω · cm could be obtained at a substrate temperature of 400 to 600 ° C. Therefore, according to the present invention, it has been found that a film having both characteristics of step coverage and low resistance necessary for forming an LSI barrier film can be formed. However, for the sample not subjected to post heat treatment after deposition, since the residual C in the film was large and the film density was low, the resistance value was 10 to 100 times that after the heat treatment. According to the analysis using SIMS, the obtained film showed a composition containing a small amount of C and N in Ta, and no component such as Cl contributing to the deterioration of the film was found. Further, according to the analysis by TEM, the film deposited at 400 ° C. had an amorphous structure.
[0015]
Using the same apparatus, Hf [N (C 2 H 5 ) 2 ] 4 , Zr [N (C 2 H 5 ) 2 ] 4 , Ti [N (C 2 H 5 ) 2 ] 4 , Si [N (C 2 H 5 ) 2 ] 4 , the temperature of the heater 7 of the bubbler 5 is selected to a value suitable for each raw material according to the respective characteristics, so that Ta [N (C 2 H 5 ) 2 ] 4 The film could be formed as in the case. Furthermore, an alloy film could be formed by supplying two or more kinds of raw materials simultaneously. With regard to this alloy film formation, advantages such as easy control of the composition were obtained by using a material having a similar material structure compared to other methods.
[0016]
[Example 2]
The LPCVD apparatus shown in FIG. 1 is used in the same manner as in Example 1, the other conditions are the same, and O 2 is simultaneously supplied to Ta [N (C 2 H 5 ) 2 ] 4 by the mass flow controller 5b. When adjusted to 0.01 to 1000 ml and supplied into the deposition chamber, a Ta oxide film could be deposited. The amount of oxygen in the film increased as the O 2 flow rate increased, and was saturated at a stoichiometric value. A similar change was also observed in the dielectric constant.
Instead of Ta [N (C 2 H 5 ) 2 ] 4 , Hf [N (C 2 H 5 ) 2 ] 4 , Zr [N (C 2 H 5 ) 2 ] 4 , Ti [N (C 2 H 5 ) 2 ] 4 , Si [N (C 2 H 5 ) 2 ] 4, etc. were supplied simultaneously with O 2, and metal oxide films of the respective materials could be formed. For these materials, the amount of oxygen in the film increased as the O 2 flow rate increased, and was saturated at a stoichiometric value. Further, in the same manner as in Example 1, two or more kinds of raw materials were simultaneously supplied to obtain an alloy oxide.
[0017]
Any of these metal oxide films has a high dielectric constant, and can be used as a dielectric in a semiconductor device or an electronic device. An oxide made of an alloy of another metal and Si is called a silicate and is known to be thermally stable. Further, instead of O 2, or O 2 at the same time as N 2 O, NO, likewise metal oxide film be supplied of H 2 O, etc. were obtained. Compared to the sputtered film deposited for comparison, it has better penetration into trench holes, etc., and it is possible to form a uniform film on any surface and affect the reliability of Cl, etc. It was the same as in Example 1 that there were no residual impurities, the density was improved by the heat treatment after deposition, and other characteristics were also improved.
[0018]
[Example 3]
As in Example 1, the LPCVD apparatus shown in FIG. 1 was used, and the other conditions were the same. At the same time as Ta [N (C 2 H 5 ) 2 ] 4 , the mass flow controller 8c changed the flow rate to 0. When NH 3 was supplied into the film forming chamber 1 after adjusting to 01 to 1000 ml, a Ta nitride film was formed. The amount of nitrogen in the film increased as the NH 3 flow rate increased, and saturated with the stoichiometric value.
Further, instead of Ta [N (C 2 H 5 ) 2 ] 4 , Hf [N (C 2 H 5 ) 2 ] 4 , Zr [N (C 2 H 5 ) 2 ] 4 , Ti [N (C 2 H 5 ) When 2 ] 4 , Si [N (C 2 H 5 ) 2 ] 4 and the like are simultaneously supplied with 0.01 to 1000 ml of NH 3 per minute, a metal nitride film of each material can be formed. did it. Also in the metal nitride films of these materials, the amount of nitrogen in the film increased as the NH 3 flow rate increased, and was saturated at a stoichiometric value. Further, in the same manner as in Example 1, two or more kinds of raw materials were supplied simultaneously to obtain an alloy nitride.
[0019]
Any of these metal nitride films has a high ability to prevent diffusion of other metals, and can be used as a barrier film in a semiconductor device or an electronic device. In FIG. 4, a TiN (titanium nitride) thin film is deposited on a Si substrate to a thickness of 0.1 μm at 400 ° C., heat treated at 470 ° C. for 30 minutes, Cu is deposited thereon, and then It is a figure which shows the result of having performed the post-heat treatment for 1 hour at 550 degreeC, and evaluating the barrier performance with respect to Cu of a TiN thin film. The horizontal axis represents depth, and the vertical axis represents Cu concentration. As is apparent from this figure, it is understood that Cu diffusion is prevented by the TiN thin film.
Similarly, the metal nitride film be also or supplying NH 3 at the same time N 2 with N 2 was obtained instead of NH 3. Compared to the sputtered film deposited for comparison, it has better penetration into trench holes, etc., and it is possible to form a uniform film on any surface and affect the reliability of Cl, etc. It was confirmed in the same manner as in Example 1 and Example 2 that there were no residual impurities, and that the density was improved by the heat treatment after deposition and other characteristics were improved.
[0020]
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments, and appropriate modifications can be made without departing from the scope of the present invention. .
[0021]
【The invention's effect】
As described above, the metal film, metal oxide film, or metal nitride film deposition method according to the present invention uses Hf [N (C 2 H 5 ) 2 ] 4 , Ta [N (C 2 ) as the organometallic raw material. H 5 ) 2 ] 4 , Zr [N (C 2 H 5 ) 2 ] 4 , Ti [N (C 2 H 5 ) 2 ] 4 , Si [N (C 2 H 5 ) 2 ] 4 Since each metal film is heat treated at a temperature higher than the temperature during deposition, the metal and its compounds (oxides, nitrides, etc.), which are indispensable for manufacturing semiconductor devices and electronic devices, are formed on the uneven surface. Can be deposited with good controllability, and semiconductor devices and electronic devices having good performance can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic view of an LPCVD apparatus for explaining embodiments and examples of the present invention.
FIG. 2 is a molecular structure diagram of raw materials used in the present invention (part 1).
FIG. 3 is a molecular structure diagram of raw materials used in the present invention (part 2).
FIG. 4 is a view showing barrier performance against Cu of a TiN thin film formed on a Si substrate.
[Explanation of symbols]
1 Deposition chamber 2 Heater block 3 Substrate base 4 Substrate 5 Bubbler 6 Ta [N (C 2 H 5 ) 2 ] 4
7 Heaters 8a to 8c Mass flow controller 9 Orifice 10 Turbo molecular pump 11 Rotary pump

Claims (13)

成膜室内に、1種若しくは複数種のM[N(C2524(但し、Mは金属(Siを含む、以下同じ)元素)にて表される有機物原料を導入し、化学的気相成長(CVD)法にて、金属(合金を含む)膜を堆積し、堆積後に堆積中の温度よりも50〜200℃高い温度にて熱処理を行うことを特徴とする成膜方法。An organic material represented by one or more kinds of M [N (C 2 H 5 ) 2 ] 4 (where M is a metal (including Si, hereinafter the same) element) is introduced into the deposition chamber, A film forming method comprising depositing a metal (including alloy) film by a chemical vapor deposition (CVD) method, and performing a heat treatment at a temperature higher by 50 to 200 ° C. than the temperature during the deposition after the deposition. . 成膜室内に、1種若しくは複数種のM[N(C One or more types of M [N (C 22 H 5Five ) 22 ] 4Four (但し、Mは金属(Siを含み、Tiを除く、以下同じ)元素)にて表される有機物原料を導入し、化学的気相成長(CVD)法にて、金属化合物膜を堆積し、堆積後に堆積中の温度よりも50〜200℃高い温度にて熱処理を行うことを特徴とする成膜方法。(However, M is an organic material represented by a metal (including Si and excluding Ti, the same applies below)), and a metal compound film is deposited by a chemical vapor deposition (CVD) method. A film forming method comprising performing heat treatment at a temperature 50 to 200 ° C. higher than a temperature during deposition after deposition. 前記Mが、Hf、Ta、Zr、Ti、Siの中の何れかであることを特徴とする請求項1記載の成膜方法。 2. The film forming method according to claim 1, wherein the M is any one of Hf, Ta, Zr, Ti, and Si. 前記Mが、Hf、Ta、Zr、Siの中の何れかであることを特徴とする請求項2記載の成膜方法。 The film forming method according to claim 2, wherein the M is any one of Hf, Ta, Zr, and Si. 金属膜の堆積を行い、堆積後の前記熱処理を真空中もしくは酸素を含まない雰囲気中にて行うことを特徴とする請求項1または3に記載の成膜方法。And accumulation of the metal film, the film forming method according to claim 1 or 3, characterized in that the post-deposition heat treatment in an atmosphere containing no vacuum or oxygen. 前記成膜室内に、前記有機物原料と同時に、O2 、N2O、NO、H2Oの中の1種若しくは複数種を供給して金属酸化物膜を堆積することを特徴とする請求項2または4に記載の成膜方法。The metal oxide film is deposited by supplying one or more of O 2 , N 2 O, NO, and H 2 O simultaneously with the organic material in the film forming chamber. 5. The film forming method according to 2 or 4 . 金属酸化物膜堆積後の前記熱処理を、酸素を含む雰囲気中にて行うことを特徴とする請求項記載の成膜方法。The film forming method according to claim 6 , wherein the heat treatment after the metal oxide film is deposited is performed in an atmosphere containing oxygen. 前記成膜室内に、前記有機物原料と同時に、N2 、NH3の中の何れか一方若しくは両方を供給して金属窒化物膜を堆積することを特徴とする請求項2または4に記載の成膜方法。The deposition chamber, the organic raw material at the same time, formed according to claim 2 or 4 by supplying either one or both in the N 2, NH 3, characterized in that depositing a metal nitride film Membrane method. 金属窒化物膜堆積後の前記熱処理を、窒素を含む雰囲気中にて行うことを特徴とする請求項記載の成膜方法。9. The film forming method according to claim 8 , wherein the heat treatment after depositing the metal nitride film is performed in an atmosphere containing nitrogen. 前記MがTaであるとき、Ta[N(C2524に加えてN(C25)Ta[N(C2523が成膜室内に導入されることを特徴とする請求項1〜9の何れかに記載の成膜方法。When M is Ta, N (C 2 H 5 ) Ta [N (C 2 H 5 ) 2 ] 3 is introduced into the deposition chamber in addition to Ta [N (C 2 H 5 ) 2 ] 4. The film forming method according to any one of claims 1 to 9, wherein 前記有機物原料に対するキャリアガスとしてH2を用いることを特徴とする請求項1〜10の何れかに記載の成膜方法。The film forming method according to any one of claims 1-10, characterized in that H 2 is used as a carrier gas for the organic raw material. 膜堆積を450℃以下の温度で行うことを特徴とする請求項1〜11の何れかに記載の成膜方法。The film forming method according to any one of claims 1 to 11, characterized in that the film deposited at 450 ° C. or lower. 前記熱処理を400℃以上の温度で行うことを特徴とする請求項1〜12の何れかに記載の成膜方法。The film forming method according to any one of claims 1 to 12, characterized in that performing the heat treatment at 400 ° C. or higher.
JP2000364056A 2000-11-30 2000-11-30 Deposition method Expired - Fee Related JP4644359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000364056A JP4644359B2 (en) 2000-11-30 2000-11-30 Deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000364056A JP4644359B2 (en) 2000-11-30 2000-11-30 Deposition method

Publications (2)

Publication Number Publication Date
JP2002167672A JP2002167672A (en) 2002-06-11
JP4644359B2 true JP4644359B2 (en) 2011-03-02

Family

ID=18835067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000364056A Expired - Fee Related JP4644359B2 (en) 2000-11-30 2000-11-30 Deposition method

Country Status (1)

Country Link
JP (1) JP4644359B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US20030232501A1 (en) 2002-06-14 2003-12-18 Kher Shreyas S. Surface pre-treatment for enhancement of nucleation of high dielectric constant materials
JP4171250B2 (en) 2002-06-19 2008-10-22 東京エレクトロン株式会社 Manufacturing method of semiconductor device
TW200411923A (en) * 2002-07-19 2004-07-01 Asml Us Inc In-situ formation of metal insulator metal capacitors
TW200526804A (en) 2003-10-30 2005-08-16 Tokyo Electron Ltd Method of manufacturing semiconductor device, film-forming apparatus, and storage medium
JP2005197675A (en) * 2003-12-11 2005-07-21 Mitsubishi Materials Corp Hafnium-containing film forming material and hafnium-containing film manufactured therefrom
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
JP2006190801A (en) * 2005-01-06 2006-07-20 Fujitsu Ltd Film formation method and manufacturing method of semiconductor device
WO2007066546A1 (en) * 2005-12-06 2007-06-14 Tri Chemical Laboratories Inc. Hafnium compound, hafnium thin film-forming material and method for forming hafnium thin film
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US20100062149A1 (en) 2008-09-08 2010-03-11 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
WO2019118845A1 (en) * 2017-12-17 2019-06-20 Applied Materials, Inc. Silicide films through selective deposition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203339A (en) * 1999-11-09 2001-07-27 Hyundai Electronics Ind Co Ltd Method of manufacturing capacitor of semiconductor element
JP2002050588A (en) * 2000-06-01 2002-02-15 Sharp Corp Method for forming amorphous conductive diffusion barrier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0174743A3 (en) * 1984-09-05 1988-06-08 Morton Thiokol, Inc. Process for transition metal nitrides thin film deposition
JP3718297B2 (en) * 1996-08-12 2005-11-24 アネルバ株式会社 Thin film manufacturing method and thin film manufacturing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203339A (en) * 1999-11-09 2001-07-27 Hyundai Electronics Ind Co Ltd Method of manufacturing capacitor of semiconductor element
JP2002050588A (en) * 2000-06-01 2002-02-15 Sharp Corp Method for forming amorphous conductive diffusion barrier

Also Published As

Publication number Publication date
JP2002167672A (en) 2002-06-11

Similar Documents

Publication Publication Date Title
JP4644359B2 (en) Deposition method
JP3875491B2 (en) Chemical properties of precursors for chemical vapor deposition of ruthenium or ruthenium oxide.
US6468604B1 (en) Method for manufacturing a titanium nitride thin film
KR100235545B1 (en) Thin film fabricating method
KR100848226B1 (en) Method for manufacturing semiconductor device and substrate processing system
US5780360A (en) Purge in silicide deposition processes dichlorosilane
US7482286B2 (en) Method for forming dielectric or metallic films
JP3417751B2 (en) Method for manufacturing semiconductor device
JP2002525432A (en) Method of forming ternary nitride thin film containing metal and silicon
EP1261754A2 (en) Methods for preparing ruthenium metal films
KR101035221B1 (en) Method for forming tungsten nitride film
US6165555A (en) Method for forming copper film using chemical vapor deposition
KR100485386B1 (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
TWI671422B (en) Thin film formation method
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
WO2016120957A1 (en) Semiconductor-device manufacturing method, substrate treating apparatus, and recording medium
JPH0982666A (en) Formation of thin film, semiconductor device and manufacture thereof
US7063871B2 (en) CVD process capable of reducing incubation time
JP4363383B2 (en) Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid
JP3718297B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JP4212013B2 (en) Dielectric film fabrication method
Amato-Wierda et al. Chemical vapor deposition of titanium nitride thin films from tetrakis (dimethylamido) titanium and hydrazine as a coreactant
Claessen et al. The 2, 2, 6, 6-tetramethyl-2-sila-3, 5-heptanedione route to the chemical vapor deposition of copper for gigascale interconnect applications
KR20030051231A (en) Method for Chemical Vapor Deposition of metal film
TWI389219B (en) Method for forming dielectric or metallic films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

R150 Certificate of patent or registration of utility model

Ref document number: 4644359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees