TWI389219B - Method for forming dielectric or metallic films - Google Patents
Method for forming dielectric or metallic films Download PDFInfo
- Publication number
- TWI389219B TWI389219B TW94105563A TW94105563A TWI389219B TW I389219 B TWI389219 B TW I389219B TW 94105563 A TW94105563 A TW 94105563A TW 94105563 A TW94105563 A TW 94105563A TW I389219 B TWI389219 B TW I389219B
- Authority
- TW
- Taiwan
- Prior art keywords
- source
- metal
- film
- dielectric film
- deposition
- Prior art date
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Description
本發明之目的在於提供一種方法和組成物,能夠滿足形成一種薄膜的需求,其係具有絕佳電的品質以及高度保形(conformality),並且可避免使用多重形成步驟來獲得均勻的覆蓋和高度保形。本發明之另一個目的在於提供一種薄膜,其可將氯以及碳的含量降至最低,該二者均會對該薄膜之電的特性產生降解。本發明之又另一個目的在於提供控制該薄膜中M/Si比例於一寬廣範圍而不改變前趨物溶液的能力。本發明之又另一個目的在於,當將一液態前趨物(包含多重成分)溶液蒸發時、或者是當將一載體氣體起泡通過一個液態矽來源時,避免會發生的品質與保形的問題。It is an object of the present invention to provide a method and composition that meets the need to form a film that has excellent electrical quality and high conformality and that avoids the use of multiple forming steps to achieve uniform coverage and height. Conformal. Another object of the present invention is to provide a film which minimizes the chlorine and carbon content which both degrade the electrical properties of the film. Still another object of the present invention is to provide the ability to control the M/Si ratio in the film over a wide range without altering the precursor solution. Still another object of the present invention is to avoid the quality and conformality that occurs when a liquid precursor (including multiple components) solution is evaporated, or when a carrier gas is bubbled through a liquid helium source. problem.
半導體裝置的製造係在下方之矽基板與閘電極之間,使用一層薄的閘介電材料(典型地為二氧化矽)。將一層介電薄膜沉積在一矽基板上,形成一層閘介電材料。典型用於介電薄膜之成長的製程,包括了氧化作用、化學氣相沉積、以及原子層沉積方法。當積體電路裝置縮小同時,該閘介電材料的厚度也必須要按比例縮小。然而,在妥協電的特性之下,半導體製造者已經達到傳統閘介電材料的厚度所能減小的極限。要達到相同的介電性能,可以利用一層展現較高介電常數之較厚的新材料來取代二氧化矽, 而不用藉由使用二氧化矽介電材料(只有一些原子層的厚度)來降解該介電特性。因此,就需要新的組成物或方法來製造具有比氧化矽高之介電常數(被稱為「高-k值介電材料」)的介電薄膜。這些「高-k值介電材料」必須要具有低的漏電流通過該閘介電材料。因此,吾人所希冀的是研發出新的組成物和方法來沉積具有所需之較高介電特性的介電薄膜。由於介電薄膜的需求,對於閘介電材料之性能而言,具有均勻覆蓋的材料(此係為非常高的品質)是很重要的。The semiconductor device is fabricated using a thin gate dielectric material (typically cerium oxide) between the underlying germanium substrate and the gate electrode. A layer of dielectric film is deposited on a substrate to form a gate dielectric material. Typical processes for the growth of dielectric films include oxidation, chemical vapor deposition, and atomic layer deposition methods. When the integrated circuit device is shrunk, the thickness of the gate dielectric material must also be scaled down. However, under the characteristics of compromised power, semiconductor manufacturers have reached the limit that the thickness of conventional gate dielectric materials can be reduced. To achieve the same dielectric properties, a thicker new material exhibiting a higher dielectric constant can be used instead of cerium oxide. This dielectric property is not degraded by using a cerium oxide dielectric material (only some of the thickness of the atomic layer). Therefore, a new composition or method is required to produce a dielectric film having a higher dielectric constant than that of yttrium oxide (referred to as a "high-k value dielectric material"). These "high-k dielectric materials" must have low leakage current through the gate dielectric material. Therefore, what we are hoping for is the development of new compositions and methods for depositing dielectric films having the desired higher dielectric properties. Due to the demand for dielectric films, it is important for materials with uniform coverage (this is a very high quality) for the performance of the gate dielectric material.
將一金屬薄膜(具有一般式Mx Siy Nz )沉積在一層高k值薄膜或者是低k值薄膜上,是很有用的,可以用來作為電極,諸如閘電極,或者是作為載體層。典型用於金屬薄膜之成長的製程,包括了化學氣相沉積、脈衝化學氣相沉積、以及原子層沉積方法。當積體電路裝置縮小同時,使用以金屬為基之介電薄膜,就會產生有關於使用這些材料以及多晶矽(poly-Si)之相容性的問題,目前是用來作為一閘電極。目前,新一代以金屬為基之閘電極被認為可以用來克服諸如耗盡、交叉污染等問題。在DRAM當中,目前就是使用這種金屬氧化物材料。It is useful to deposit a metal film (having the general formula M x Si y N z ) on a high-k film or a low-k film, which can be used as an electrode, such as a gate electrode, or as a carrier layer. . Typical processes for the growth of metal films include chemical vapor deposition, pulsed chemical vapor deposition, and atomic layer deposition methods. At the same time as the integrated circuit device is shrunk, the use of a metal-based dielectric film produces problems with the use of these materials and the compatibility of poly-Si, which is currently used as a gate electrode. Currently, a new generation of metal-based gate electrodes is believed to be used to overcome problems such as depletion, cross-contamination, and the like. In DRAM, this metal oxide material is currently used.
將氮化金屬矽運用來作為夾在Cu互連(interconnect)或電極與一低k值之介電薄膜之間的載體層,是包含金屬與矽之化合物的另一種運用的實例。該金屬氮化物具有良好的導電率,並且可以藉由Cu來有效地預防低k值之介電薄膜的污染。再者,就降低RC遲滯的觀點來看,該載體層 之低電阻是很有利的。The use of a metal nitride ruthenium as a carrier layer sandwiched between a Cu interconnect or an electrode and a low-k dielectric film is an example of another application of a compound comprising a metal and ruthenium. The metal nitride has good electrical conductivity, and Cu can effectively prevent contamination of a low-k dielectric film. Furthermore, in terms of reducing RC hysteresis, the carrier layer The low resistance is very advantageous.
到目前為止,已經藉由CVD(使用氨和鹵化金屬,例如TiCl4 、TaCl5 )形成了氮化金屬矽薄膜。然而,這種方法需要很高的熱預算以及高的製程溫度(>650℃),並且無法與後段製程(back-end-of-line,BEOL)方法相容。So far, a tantalum nitride film has been formed by CVD (using ammonia and a halogenated metal such as TiCl 4 , TaCl 5 ). However, this method requires a high thermal budget and a high process temperature (>650 ° C) and is not compatible with the back-end-of-line (BEOL) method.
為了要克服這樣的缺點,從USP 6,602,783得知可以藉由CVD使用氨以及一種氨基金屬前趨物(例如,TDMAT、TDEAT、TBTDET、TAIMATA),以用於金屬氮化物薄膜的形成。使用這種氨基金屬前趨物,已經被發現可以改良(例如)CVD-TiSiN薄膜的薄膜特性。同樣發現到,藉由CVD使用一種氨基金屬前趨物、矽烷SiH4 、以及氨,來形成以少量矽摻雜支金屬氮化物薄膜,對於改良載體特性是很有用的。然而,SiH4 具有很高的蒸氣壓力,並且屬於引火性的(pyrophoric),任何的SiH4 洩漏都會造成安全上的問題。另一方面,當使用二烷基氨基矽烷Si(NR1 R2 )來取代矽烷作為矽的來源時,就有很高的可能性會使得大量的碳包含至該薄膜中,並且使得該載體層具有增加的電阻。In order to overcome such disadvantages, it is known from USP 6,602,783 that ammonia and an amino metal precursor (e.g., TDMAT, TDEAT, TBTDET, TAIMATA) can be used by CVD for the formation of metal nitride thin films. The use of such an amino metal precursor has been found to improve the film properties of, for example, CVD-TiSiN films. It has also been found that the use of an amino metal precursor, decane SiH 4 , and ammonia by CVD to form a thin metal-doped metal nitride film is useful for improving carrier properties. However, SiH 4 has a high vapor pressure and is pyrophoric, and any SiH 4 leak causes safety problems. On the other hand, when dialkylaminodecane Si (NR 1 R 2 ) is used in place of decane as a source of ruthenium, there is a high possibility that a large amount of carbon is contained in the film, and the carrier layer is made Has an increased resistance.
特別重要的是氧氮化金屬矽(MSiON)薄膜、金屬矽酸鹽(MSiO)、或者是金屬薄膜(MSiN)的形成,其可以是一種金屬氮化物、金屬矽化物、氮化金屬矽。形成MSiON或MSiO介電材料或者是一金屬薄膜,係典型地牽涉到金屬來源、矽來源、氧來源、以及氮來源當中(在文中共同被稱為前趨物)之相關的化學物質,以適當的相關數量進料至一沉積裝置當中,其中係將一基板支托於一高溫當中。 形成該前趨物係透過一「傳送系統」被進料至一沉積腔室當中。「傳送系統」是用來量測並控制正被進料至該沉積腔室中之各種不同介電前趨物的數量。對於熟習該項技術者而言,各種不同之傳送系統都是屬於習知的。一旦在該沉積腔室之中,該介電前趨物就會在一「形成」步驟中產生反應,並將一介電薄膜沉積在該矽基板上。一個或多個「形成」步驟,如在本案中所使用,係為材料被沉積在該基板上的步驟、或者是該基板上之薄膜的分子組成或結構被修改的步驟。該薄膜之「希冀的最終組成」係為在最後的形成步驟完成以後,該層的精確化學組成以及分子結構。鉿、鈦、以及鎢的化合物,作為金屬氮化物、金屬矽化物、或者是氮化金屬矽中任一個,都是最有希望的載體或電極材料。用於該形成步驟之金屬來源,典型地係為液態前趨物或者是液態前趨物溶液,其包含所希冀之金屬於一溶劑當中。相似地,在本發明以前的習知技藝當中,可以獲得的矽來源是使用一種液態前趨物,其包含所希冀之矽化合物於一溶劑當中。Of particular importance is the formation of a metal oxynitride (MSiON) film, a metal silicate (MSiO), or a metal film (MSiN), which may be a metal nitride, a metal telluride, or a metal nitride. Forming a MSiON or MSiO dielectric material or a metal film, typically involving a metal source, a cerium source, an oxygen source, and a nitrogen source (collectively referred to herein as a precursor), to be appropriate The relevant amount is fed into a deposition apparatus in which a substrate is supported in a high temperature. The precursor system is formed to be fed into a deposition chamber through a "transport system". A "transport system" is used to measure and control the amount of various dielectric precursors being fed into the deposition chamber. A variety of different delivery systems are known to those skilled in the art. Once in the deposition chamber, the dielectric precursor reacts in a "forming" step and a dielectric film is deposited on the germanium substrate. One or more "forming" steps, as used in the present case, are the step of depositing the material on the substrate, or the step of modifying the molecular composition or structure of the film on the substrate. The "final composition of the film" of the film is the precise chemical composition and molecular structure of the layer after the final formation step is completed. Compounds of ruthenium, titanium, and tungsten, either as metal nitrides, metal halides, or metal nitrides, are the most promising carriers or electrode materials. The source of the metal used in the forming step is typically a liquid precursor or a liquid precursor solution comprising the desired metal in a solvent. Similarly, in the prior art of the present invention, the source of ruthenium available is the use of a liquid precursor comprising a desired ruthenium compound in a solvent.
舉例而言,在Jpn.J.Appl.Phys.,Vol.42,No.6A,pp.L578-580,六月2003;Applied Physics Letters,Vol.80,No.13,pp.2362-2364,四月2002;美國公開申請案第2003/0111678號、第2003/0207549號、第2003/0207549號、或者是美國專利案第06399208號、日本專利公開申請案第2000272283,其中揭示了各種不同之製造介電薄膜的方法。然而,這些所有的薄膜均具有以下即將討論的一種或 多種缺點。For example, in Jpn. J. Appl. Phys., Vol. 42, No. 6A, pp. L578-580, June 2003; Applied Physics Letters, Vol. 80, No. 13, pp. 2362-2364, April 2002; U.S. Published Application No. 2003/0111678, No. 2003/0207549, No. 2003/0207549, or US Patent No. 06399208, Japanese Patent Application No. 2000272283, which discloses various manufacturing. A method of dielectric film. However, all of these films have one of the following or A variety of shortcomings.
有些閘介電形成方法需要多重的形成步驟。舉例而言,在第一步驟中,可以藉由將一金屬與矽沉積在一基板上,而形成一層介電薄膜,在之後是第二「後沉積步驟」,其中係修改該經沉積之金屬/矽薄膜的組成或結構,以達到MSiON閘介電薄膜之所希冀的最終組成。後沉積步驟的一個實例,係為在一個充滿氮或氨之環境中的快速熱退火。由於該薄膜組成的控制在介電薄膜沉積製程步驟當中是很重要的,因此步驟越少,該製程的控制就越佳,而該介電薄膜的品質(反應在介電常數、密度、污染度、組成、以及其他的品質控制條件上)和保形(該薄膜均勻沉積在基板之所有表面和形狀上的能力)就會越高。Some gate dielectric formation methods require multiple formation steps. For example, in the first step, a dielectric film can be formed by depositing a metal and germanium on a substrate, followed by a second "post deposition step" in which the deposited metal is modified. The composition or structure of the film to achieve the desired final composition of the MSiON gate dielectric film. An example of a post deposition step is rapid thermal annealing in an environment filled with nitrogen or ammonia. Since the control of the composition of the film is important in the dielectric film deposition process, the less the number of steps, the better the control of the process, and the quality of the dielectric film (reaction in dielectric constant, density, pollution degree) The composition, composition, and other quality control conditions) and conformality (the ability of the film to deposit uniformly on all surfaces and shapes of the substrate) will be higher.
在過去所熟知的,任何一種包含碳於配位基中的矽來源,都會導致薄膜中產生碳,並且降解了電的特性,不是增強用於絕緣薄膜之洩漏電流,就是降低金屬薄膜的導電率。更進一步而言,包含在薄膜中之氯是不希冀的,因為其會損害該薄膜之電的特性,還有就是因為其在該薄膜中的穩定度,因為穩定度會使從該介電薄膜中移除氯更加困難。同時,氯存在於矽或金屬來源當中,會在反應腔室當中產生以氯化物為基之微粒,並且沉積在該排氣系統當中。因此,要達到理想的電特性、並且將微粒的產生降至最低,以及將因為排氣系統的清潔所導致的工具停工時間降到最低,最好是沉積來自於在原子結構當中不含碳或氯之前趨物的薄膜。As is well known in the past, any source of ruthenium containing carbon in the ligand causes carbon to be produced in the film and degrades the electrical properties, either to enhance the leakage current for the insulating film or to reduce the conductivity of the metal film. . Furthermore, the chlorine contained in the film is not desirable because it would impair the electrical properties of the film, and also because of its stability in the film, since stability will result from the dielectric film. It is more difficult to remove chlorine. At the same time, chlorine is present in the ruthenium or metal source, producing chloride-based particles in the reaction chamber and deposited in the exhaust system. Therefore, to achieve the desired electrical characteristics, and to minimize the generation of particulates, and to minimize tool downtime due to the cleaning of the exhaust system, it is preferable to deposit from carbon in the atomic structure or A film of the precursor of chlorine.
一薄膜的物理特性可以藉由金屬(M)和矽(Si)的比例,或者是(M/Si)來加以修改。希冀的是控制M/Si比例於一寬廣範圍中。因此,能夠分別改變金屬和矽的進料是很重要的,以達到最寬廣的可能M/Si比例。有些方法係使用一矽來源前趨物,包含某些數量之預沉積的金屬。然而,在包含金屬之矽來源前趨物的進料速率變化,改變了被進料至該方法中的總金屬含量(係因為包含在該矽前趨物當中的金屬的緣故)。此會限制了沉積方法的可控制性,因為該矽進料速率無法在不改變金屬(正被進料至該沉積腔室中的金屬)總數量前提下被改變。更進一步而言,該可被進料之M/Si比例係受限於在該矽來源前趨物中之金屬的組成。因此,在所希冀之M/Si比例中的變化,可能會需要改變正被進料至該方法中的前趨物溶液。The physical properties of a film can be modified by the ratio of metal (M) to germanium (Si) or (M/Si). It is hoped that the M/Si ratio is controlled over a wide range. Therefore, it is important to be able to vary the feed of metal and tantalum separately to achieve the widest possible M/Si ratio. Some methods use a source of precursors that contain some amount of pre-deposited metal. However, the change in feed rate of the precursor containing the metal ruthenium changes the total metal content fed to the process (due to the metal contained in the ruthenium precursor). This limits the controllability of the deposition process because the feed rate cannot be altered without changing the total amount of metal (the metal being fed into the deposition chamber). Still further, the M/Si ratio that can be fed is limited by the composition of the metal in the precursor of the cerium source. Therefore, variations in the desired M/Si ratio may require changes to the precursor solution being fed to the process.
將矽前驅物流動(streams)同樣可以造成薄膜組成控制上的問題。在該技藝中的某些方法,則係使用一蒸發器來蒸發該液態矽來源。然後將該經蒸發之流動進料至該沉積腔室之中。當該金屬來源與該矽來源是以液態形式被供應時,其二者都必須要在導入至該沉積腔室中以前被蒸發。蒸發二種不同的流動,會產生可變化之進料濃度、以及在該蒸發器中之矽或金屬殘餘物的形成,這些會對該薄膜組成之保形產生不利的影響。該矽與金屬來源之蒸發的差異,可以在介電材料當中產生組成上的梯度。The flow of the ruthenium precursors can also cause problems in the control of the film composition. Some methods in the art use an evaporator to evaporate the source of liquid helium. The evaporated stream is then fed into the deposition chamber. When the source of the metal and the source of the crucible are supplied in liquid form, both must be evaporated prior to introduction into the deposition chamber. Evaporation of two different flows produces a variable feed concentration and the formation of ruthenium or metal residues in the evaporator which can adversely affect the conformation of the film composition. The difference in evaporation of the ruthenium from the metal source can produce a compositional gradient among the dielectric materials.
將一載體氣體起泡通過一個液態前驅物,同樣會導致品質上的問題。在某些方法當中,係藉由將一載體氣體起 泡通過一個液態矽來源而進料。在這些方法當中並沒有使用蒸發器,因為該矽來源之蒸氣壓力就已足夠高到可以在具有載體氣體之混合物當中當作蒸氣來進行輸送。在這些方法當中,該流動將矽來源輸送至該沉積腔室中,可以隨著起泡系統中的溫度與壓力進行變化。在流動組成中的可變化性,會導致該介電薄膜在組成上的可變化性,這是一個很嚴重的品質問題。Foaming a carrier gas through a liquid precursor also causes quality problems. In some methods, by using a carrier gas The bubbles are fed through a source of liquid helium. The evaporator is not used in these processes because the vapor pressure of the helium source is sufficiently high to be transported as a vapor in a mixture with a carrier gas. Among these methods, the flow transports the helium source into the deposition chamber, which can vary with temperature and pressure in the foaming system. The variability in the flow composition causes the compositional variability of the dielectric film, which is a serious quality problem.
就上述的理由,吾人所希冀的是在一單一形成步驟當中,形成一種具有最終之希冀組成的薄膜。更進一步而言,該薄膜應該要將分子結構當中之氯和碳的含量降至最低。同樣希冀的是,使用一個不含任何沉積金屬的矽來源,使得該矽來源的進料以及該金屬來源的進料得以個別地加以控制。最後,吾人所希冀的是具有一種在製程進料條件下之氣相形式的矽來源,以避免需要將一液態矽來源蒸發的需求,或者是將一載體氣體起泡而通過一液態來源的需求。For the above reasons, it is our hope to form a film with a final composition in a single forming step. Furthermore, the film should minimize the chlorine and carbon content of the molecular structure. It is also desirable to use a source of ruthenium that does not contain any deposited metal so that the feed from the ruthenium source and the feed from the source of the metal can be individually controlled. Finally, what we would like to have is a source of helium in the form of a gas phase under process feed conditions to avoid the need to evaporate a liquid helium source, or the need to bubble a carrier gas through a liquid source. .
本發明之目的在於提供一種方法和組成物,能夠滿足形成一種薄膜的需求,其係具有絕佳電的品質以及高度保形(conformality),並且可避免使用多重形成步驟來獲得均勻的覆蓋和高度保形。本發明之另一個目的在於提供一種薄膜,其可將氯以及碳的含量降至最低,該二者均會對該薄膜之電的特性產生降解。本發明之又另一個目的在於提供控制該薄膜中M/Si比例於一寬廣範圍而不改變前趨 物溶液的能力。本發明之又另一個目的在於,當將一液態前趨物(包含多重成分)溶液蒸發時、或者是當將一載體氣體起泡通過一個液態矽來源時,避免會發生的品質與保形的問題。It is an object of the present invention to provide a method and composition that meets the need to form a film that has excellent electrical quality and high conformality and that avoids the use of multiple forming steps to achieve uniform coverage and height. Conformal. Another object of the present invention is to provide a film which minimizes the chlorine and carbon content which both degrade the electrical properties of the film. Still another object of the present invention is to provide for controlling the M/Si ratio in the film over a wide range without changing the predecessor The ability of the solution. Still another object of the present invention is to avoid the quality and conformality that occurs when a liquid precursor (including multiple components) solution is evaporated, or when a carrier gas is bubbled through a liquid helium source. problem.
根據本發明之薄膜的形成,係藉由將一金屬來源蒸發後,再將至少一個前驅物(係選自於由包括以下來源之群組中的前驅物:經蒸發的金屬來源、矽來源、氧來源、及/或氮來源)進料至一沉積裝置之中,並於單一形成步驟當中形成一層具有希冀之最終組成的薄膜。通常不會需要後沉積步驟,來達到該薄膜之希冀的最終組成。The film according to the present invention is formed by evaporating a source of metal and then at least one precursor (selected from a precursor from a group comprising: source of vaporized metal, source of germanium, The source of oxygen, and/or the source of nitrogen, is fed into a deposition apparatus and forms a film having the desired final composition in a single formation step. A post-deposition step is generally not required to achieve the desired final composition of the film.
根據本發明之一較佳具體態樣,係使用一個氣相矽前驅物與一個液相金屬前驅物,以用於沉積具有希冀之化學計量的薄膜。該氣相矽前驅物在15℃以上的溫度下,必須要具有足夠的揮發性,以當作蒸氣來供應該方法,避免將一載體氣體起泡而通過一液體或者是避免於一蒸發器當中加熱。這樣可以消除有關於二個前驅物(一種包含前驅物之金屬以及一種包含前驅物之矽)之蒸發的控制和品質問題,或者是將一載體氣體起泡而通過一液體,以將該矽來源進料。此外,該氣相矽前驅物並沒有歸類於一種可以獨立控制將該金屬來源與該矽來源之進料的金屬。因此,該M/Si比例可以輕易地在一寬廣的範圍中變化,而無須混合新的前驅物溶液,也無須將該方法對該新的混合物進行重新校準。更進一步而言,該氣相矽前驅物係無碳也無氯,因此會很戲劇化的降低介電薄膜中之不希冀的碳與氯的效 應。最後,根據本發明,在一單一步驟當中形成了一個具有希冀之最終組成的介電薄膜。According to a preferred embodiment of the invention, a gas phase ruthenium precursor and a liquid phase metal precursor are used for depositing a film having a stoichiometric stoichiometry. The gas phase ruthenium precursor must have sufficient volatility at a temperature above 15 ° C to supply the method as a vapor to avoid bubbling a carrier gas through a liquid or avoiding it in an evaporator. heating. This eliminates the control and quality problems associated with evaporation of two precursors (a metal containing a precursor and a precursor containing a precursor), or a bubble of a carrier gas through a liquid to source the source Feeding. Moreover, the gas phase ruthenium precursor is not classified as a metal that can independently control the feed of the metal source to the source of the ruthenium. Therefore, the M/Si ratio can be easily varied over a wide range without the need to mix a new precursor solution, and the method is not required to recalibrate the new mixture. Furthermore, the gas phase ruthenium precursor is carbon-free and chlorine-free, so it can dramatically reduce the effect of carbon and chlorine in the dielectric film. should. Finally, in accordance with the present invention, a dielectric film having the desired final composition is formed in a single step.
該金屬來源係典型地為一液態前驅物、或者是一液態前驅物溶液。將該液相前驅物注射至一系統當中,該系統會將其蒸發成一氣相。該經蒸發之前驅物進入了該沉積腔室之中,也就是在高溫下發生沉積作用的腔室。The metal source is typically a liquid precursor or a liquid precursor solution. The liquid phase precursor is injected into a system which vaporizes it into a gas phase. The precursor before the evaporation enters the deposition chamber, that is, the chamber where deposition occurs at a high temperature.
同時將該矽前驅物與該金屬前驅物注射至一沉積腔室之中。根據本發明之一具體態樣,可以使用一種惰性氣體的混合物,諸如氮氣、氬氣、或者是其相似者,以及該矽前驅物n氣相。該混合物較佳可包括大約1/1000 vol.至大約1000/1 vol.之間的前驅物和惰性氣體比例。在較佳情形下,該矽前驅物來源在該矽來源之化合物的分子結構當中,應該要不含任何的碳和氯,及/或沉積金屬原子。以下的分子係為矽前驅物的實例,其可以根據本發明而加以使用:At the same time, the ruthenium precursor and the metal precursor are injected into a deposition chamber. According to an embodiment of the present invention, a mixture of inert gases such as nitrogen, argon, or the like, and the gas phase of the ruthenium precursor n may be used. The mixture preferably may comprise a precursor to inert gas ratio of between about 1/1000 vol. to about 1000/1 vol. In a preferred embodiment, the ruthenium precursor source is contained in the molecular structure of the ruthenium-derived compound and should be free of any carbon and chlorine, and/or metal atoms. The following molecular systems are examples of ruthenium precursors which can be used in accordance with the present invention:
(1)三甲矽烷基胺(Trisilylamine):(1) Trisilylamine:
(2)二甲矽烷基胺(Disilylamine):(2) Disilylamine:
(3)甲矽烷基胺(Silylamine):(3) Silylamine:
(4)三-二甲矽烷基胺(Tridisilylamine):(4) Tridisilylamine:
(5)氨基二甲矽烷基胺(Aminodisilylamine):(5) Aminodisilylamine:
(6)四甲矽烷氨基(Tetrasilyldiamine):(6) Tetrasilyldiamine:
(7)二矽烷衍生物,其中任何一個鍵結至N上的H都可以SiH2 -SiH3 來加以取代。(7) A dioxane derivative in which any one of H bonded to N may be substituted with SiH 2 -SiH 3 .
(8)三矽烷與其衍生物。(8) Trioxane and its derivatives.
包含氧氣和氮氣的氣體,同樣也可以注入至該沉積腔 室之中,該沉積腔室同時具有晶蒸發之金屬前驅物以及該矽前驅物氣相。在較佳的情形下,該氣體之所有的分子以及經導入之氣相產物,將會是不含碳及或氯的分子。Gas containing oxygen and nitrogen can also be injected into the deposition chamber In the chamber, the deposition chamber has both a crystal evaporated metal precursor and a gas phase of the ruthenium precursor. In the preferred case, all molecules of the gas, as well as the introduced gas phase product, will be molecules free of carbon and or chlorine.
在該沉積腔室中的前驅物,其反應會導致在該係基板上形成一層薄膜。該薄膜之組成可以單獨藉由精確地控制每一個前驅物的流速,來加以精確控制。該矽和金屬來源的進料速率係具有單獨可控制性的,因此,該最終薄膜之M/Si比例值可以在一寬廣的範圍之內進行控制,而無須改變該金屬來源或者是該矽來源的組成。The precursor in the deposition chamber reacts to form a thin film on the substrate. The composition of the film can be precisely controlled by precisely controlling the flow rate of each precursor. The feed rate of the ruthenium and metal source is individually controllable, so that the M/Si ratio value of the final film can be controlled over a wide range without changing the source of the metal or the source of the ruthenium. Composition.
該前驅物於該沉積腔室之中的反應,會在一單獨反應步驟當中,形成一層具有希冀之最終組成的薄膜。在該介電沉積物被沉積在該基板上之後,就不需要一個後沉積步驟,也就是不需要將該介電薄膜之組成藉由一步驟進行修改。The reaction of the precursor in the deposition chamber forms a thin film with a desired final composition in a separate reaction step. After the dielectric deposit is deposited on the substrate, a post deposition step is not required, i.e., the composition of the dielectric film need not be modified by a single step.
由於在本發明之矽、氧、以及氮的來源,全都是不含碳和氯的,因此該最終薄膜會具有極佳的特性,也就是用於閘介電材料之高介電常數,或者是用於金屬薄膜之絕佳導電性。Since the sources of helium, oxygen, and nitrogen in the present invention are all free of carbon and chlorine, the final film will have excellent properties, that is, a high dielectric constant for a gate dielectric material, or Excellent electrical conductivity for metal films.
較佳具體態樣的敘述:A description of the preferred embodiment:
本發明係有關於一種在半導體基板上形成MSiON絕緣薄膜的方法與組成,以及有關於一種根據此方法所製得的介電薄膜。本發明可運用於化學氣相沉積以及原子層沉積方法上,以及其他熟習該項技術者所熟之的方法上。The present invention relates to a method and composition for forming an MSiON insulating film on a semiconductor substrate, and to a dielectric film produced according to the method. The invention is applicable to chemical vapor deposition as well as to atomic layer deposition methods, as well as to other methods familiar to those skilled in the art.
參照圖2中之MSiON方法,該蒸發步驟1包括了:蒸 發一金屬來源以形成一經蒸發之金屬來源。一個較佳之具體態樣的金屬來源,係為液相的前驅物溶液,較佳為二烴氨基、烷氧基、或者是鉿(Hf)、鋯(Zr)、鈦(Ti)、鈮(Nb)、鉭(Ta)、鈧(Sc)、釔(Y)、鑭(La)、釓(Gd)、銪(Eu)、或鐠(Pr)、或者是任何一種鑭系元素(Ln)的無機化合物。該液相金屬前驅物溶液,是在市售的儀器當中,於熟習該項技術者所知悉之適當的條件下,進行製備和蒸發。Referring to the MSiON method in Figure 2, the evaporation step 1 includes: steaming A source of metal is emitted to form a source of evaporated metal. A preferred embodiment of the metal source is a liquid phase precursor solution, preferably a dihydrocarbylamino group, an alkoxy group, or a hafnium (Hf), zirconium (Zr), titanium (Ti), niobium (Nb). ), 钽 (Ta), 钪 (Sc), 钇 (Y), 镧 (La), 釓 (Gd), 铕 (Eu), or 鐠 (Pr), or any inorganic element of the lanthanide (Ln) Compound. The liquid metal precursor solution is prepared and evaporated in a commercially available apparatus under suitable conditions known to those skilled in the art.
再次參照圖2中之MSiON的方法,在該進料步驟2的期間,係將矽來源、氧來源、以及氮來源(在此共同稱作介電前驅物)進料至沉積腔室之中,其中係將基板(需要沉積於其上)放置在高溫之下。該沉積腔是典型地係維持在介於大約300至大約900℃之間。在較佳的情形下,於該沉積腔室之中,該工件之表面會在大約500至600℃之間。該介電前驅物之進料有效地同時發生(原子層沉積牽涉到進料材料之高速連續的脈衝,其就本發明之目的而言,較佳為有效地同時發生(concurrent))。Referring again to the method of MSiON in Figure 2, during the feed step 2, the source of helium, the source of oxygen, and the source of nitrogen (collectively referred to herein as a dielectric precursor) are fed into the deposition chamber. Among them is the substrate (which needs to be deposited thereon) is placed under high temperature. The deposition chamber is typically maintained between about 300 and about 900 °C. In the preferred case, the surface of the workpiece will be between about 500 and 600 ° C in the deposition chamber. The feed of the dielectric precursor is effectively simultaneously occurring (atomic layer deposition involves high speed continuous pulses of the feed material, which for the purposes of the present invention are preferably effectively concurrent).
參照圖2中之MSiON方法,在該MSiON方法之進料步驟2的期間,該矽來源以可控制的方式注射至該沉積腔室之中,有效地與該經蒸發之金屬來源、以及其他介電前驅物或者是矽薄膜元件同時發生。在一較佳具體態樣當中,矽來源是在製程進料條件之下以氣相存在。也就是說,一較佳具體態樣中之矽來源,在20℃下具有大於大約50托耳之蒸氣壓力,其係足夠在該進料控制系統中以氣相存 在,而不需要在輸送系統中之蒸發或起泡儀器。一個較佳的矽來源,三甲矽烷基胺可以當作液體被儲存,但其卻具有足夠的蒸氣壓(在25℃下大於300托耳的蒸氣壓)可以在該輸送系統當中以氣相存在,而無須使用蒸發器或起泡器系統。由於該矽來源是屬於氣相,因此其可以利用傳統習知的裝置精確地加以量測並控制,並且在蒸發該矽或金屬來源的期間,其不會受到在蒸發中的沉積物或者是進料條件中的震動所影響。Referring to the MSiON method of Figure 2, during the feed step 2 of the MSiON method, the source of helium is injected into the deposition chamber in a controlled manner, effectively interacting with the evaporated metal source, and other media The electric precursor or the tantalum film element occurs simultaneously. In a preferred embodiment, the source of rhodium is present in the gas phase under process feed conditions. That is, a source of ruthenium in a preferred embodiment has a vapor pressure of greater than about 50 Torr at 20 ° C, which is sufficient for storage in the feed control system. There is no need for evaporation or foaming instruments in the delivery system. A preferred source of ruthenium, trimethyl decylamine can be stored as a liquid, but it has sufficient vapor pressure (more than 300 Torr vapor pressure at 25 ° C) to be present in the gas phase in the delivery system. There is no need to use an evaporator or a bubbler system. Since the source of the crucible belongs to the gas phase, it can be accurately measured and controlled using conventional means, and it is not subject to deposits or evaporation during evaporation during evaporation of the crucible or metal source. The vibration in the material condition is affected.
同樣再次參照圖2中的MSiON方法,該進料步驟2之較佳具體態樣,包括了(但並非侷限於)使用一種係來源,其不包含碳及/或氯於該分子結構當中。因此,該介電薄膜具有一最小數量之包含的碳和氯,如此就會產生最理想的電的特性。Referring again to the MSiON method of Figure 2, a preferred embodiment of the feed step 2 includes, but is not limited to, the use of a source of a source that does not contain carbon and/or chlorine in the molecular structure. Thus, the dielectric film has a minimum amount of carbon and chlorine contained therein, which results in the most desirable electrical characteristics.
同樣再次參照圖2中的MSiON方法,該進料步驟2之較佳具體態樣,包括了(但並非侷限於)將氧與氮來源進料至該沉積腔室之中,與該矽來源同時發生(concurrently)。MSiON方法之各種不同較佳具體態樣,係使用不含碳或氯於其分子結構當中的氮來源。其不需要將氮氣作為個別的流動來加以進料。該氮來源可以與該金屬來源、矽來源或者是氧來源相同。本發明之較佳的氧來源同樣是不含碳或氯於其分子結構當中。較佳的具體態樣包括了(但並非侷限於)氧氣、一氧化二氮、及/或臭氧,做為氧來源。該氮來源較佳地係選自於包括氨、二甲矽烷基胺、甲矽烷基胺、三-二甲矽烷基胺、氨基二甲矽烷基胺、 四甲矽烷基二胺、及/或二矽烷衍生物,其中任何一個H都可以NH2 以及此群組中任何一種產物的混合物來加以取代。另一種較佳之具體態樣的氮來源則是三甲矽烷基胺。利用熟習該項技術者所熟知的裝置來進料並控制該氧與氮來源。Referring again to the MSiON method of Figure 2, a preferred embodiment of the feed step 2 includes, but is not limited to, feeding an oxygen and nitrogen source to the deposition chamber simultaneously with the source of the crucible Occurs (concurrently). Various preferred embodiments of the MSiON process use a source of nitrogen that does not contain carbon or chlorine in its molecular structure. It does not require nitrogen to be fed as a separate flow. The source of nitrogen can be the same as the source of the metal, the source of hydrazine or the source of oxygen. A preferred source of oxygen for the present invention is likewise free of carbon or chlorine in its molecular structure. Preferred embodiments include, but are not limited to, oxygen, nitrous oxide, and/or ozone as a source of oxygen. The nitrogen source is preferably selected from the group consisting of ammonia, dimethyl hydrazine alkylamine, formamylamine, tri-dimethyl hydrazine alkylamine, amino dimethyl hydrazine alkylamine, tetramethyl decyl diamine, and/or two A decane derivative in which any one of H can be substituted with NH 2 and a mixture of any of the products in this group. Another preferred embodiment of the nitrogen source is trimethylammonium alkylamine. The oxygen and nitrogen sources are fed and controlled using a device well known to those skilled in the art.
在該沉積腔室中的介電前驅物,其沉積和反應會導致在該形成步驟3的期間,於經加熱之矽基板上,形成一MSiON薄膜。MSiON薄膜的一個較佳具體態樣係為矽酸鉿薄膜或者是矽酸鋯薄膜,其係藉由使用一種金屬來源(諸如Hf(DEA)4 或者是Zr(DEA)4 )、三甲矽烷基胺、以及氧氣的混合物,來將鉿或鋯金屬進料而形成。The deposition and reaction of the dielectric precursor in the deposition chamber results in the formation of an MSiON film on the heated substrate during the formation step 3. A preferred embodiment of the MSiON film is a bismuth ruthenate film or a zirconium silicate film by using a metal source such as Hf(DEA) 4 or Zr(DEA) 4 or trimethyl decylamine. And a mixture of oxygen to form a bismuth or zirconium metal.
MSiON薄膜的一個較佳具體態樣係為氧氮化鉿矽薄膜或者是氧氮化鋯矽薄膜,其係藉由使用一種金屬來源(諸如Hf(DEA)4 或者是Zr(DEA)4 )、三甲矽烷基胺、以及氧氣的混合物,來將鉿或鋯金屬進料而形成。A preferred embodiment of the MSiON film is a hafnium oxynitride film or a zirconium oxynitride film, which is obtained by using a metal source such as Hf(DEA) 4 or Zr(DEA) 4 , A mixture of trimethyl decylamine, and oxygen, is formed by feeding cerium or zirconium metal.
再次參照圖2中之MSiON方法,該MSiON介電薄膜的組成可以在該進料步驟2的期間,個別地藉由改變該每一個介電前驅物的流動來加以控制。特而言之,該矽來源與該金屬來源的進料速率分別為可獨立控制的,因為該矽來源並不包含任何的沉積金屬。因此,該矽來源進料速率可以無關於該金屬來源進料速率而進行變化,以影響所希冀之金屬(M)和矽(Si)的比例。相似地,該金屬來源進料速率可以在不影響到該矽來源進料速率的情形下而進行變化,亦可以改變M/Si比例。由於該矽來源和金屬來源 的進料速率係為可獨立控制的,因此最終介電薄膜的M/Si比例可以控制在一寬廣的範圍之內,而不會改變該矽來源和金屬來源的組成。Referring again to the MSiON method of Figure 2, the composition of the MSiON dielectric film can be controlled individually during the feed step 2 by varying the flow of each of the dielectric precursors. In particular, the feed rate of the ruthenium source and the metal source are independently controllable because the ruthenium source does not contain any deposited metal. Thus, the feed rate of the helium source can be varied independently of the feed rate of the metal source to affect the proportion of metal (M) and helium (Si) desired. Similarly, the metal source feed rate can be varied without affecting the feed rate of the helium source, and the M/Si ratio can also be varied. Due to the source and source of the metal The feed rate is independently controllable so that the M/Si ratio of the final dielectric film can be controlled over a wide range without altering the composition of the source and source of the metal.
參照圖2中之MSiON方法,該介電前驅物進料至該沉積腔室之中,在一單一形成步驟3當中,會形成一層具有希冀之最終組成的介電薄膜。在某些或所有的介電沉積物被沉積在該基板上而達到所希冀之最終組成以後,就不需要一個後沉積步驟,也就是其中該介電薄膜之組成或結構進行修改的後沉積步驟。Referring to the MSiON method of Figure 2, the dielectric precursor is fed into the deposition chamber, and in a single formation step 3, a dielectric film having the desired final composition is formed. After some or all of the dielectric deposits are deposited on the substrate to the desired final composition, a post-deposition step, ie a post-deposition step in which the composition or structure of the dielectric film is modified, is not required. .
根據另一個具體態樣,本發明亦有關於一種在半導體片上形成一MSiO絕緣薄膜的方法與組成。本發明可運用於化學氣相沉積以及原子層沉積方法上,以及其他熟習該項技術者所熟之的方法上。According to another embodiment, the invention also relates to a method and composition for forming an MSiO insulating film on a semiconductor wafer. The invention is applicable to chemical vapor deposition as well as to atomic layer deposition methods, as well as to other methods familiar to those skilled in the art.
參照圖3中之MSiO方法,其包括將一金屬來源蒸發,以形成一經蒸發之金屬來源。一個較佳具體態樣之金屬來源係為液相的前驅物溶液,較佳為二烴氨基、烷氧基、或者是鉿(Hf)、鋯(Zr)、鈦(Ti)、鈮(Nb)、鉭(Ta)、鈧(Sc)、釔(Y)、鑭(La)、釓(Gd)、銪(Eu)、或鐠(Pr)、或者是任何一種鑭系元素(Ln)的無機化合物。該液相金屬前驅物溶液,是在市售的儀器當中,於熟習該項技術者所知悉之適當的條件下,進行製備和蒸發。Referring to the MSiO process of Figure 3, it involves evaporating a source of metal to form a source of evaporated metal. A preferred embodiment of the metal source is a liquid phase precursor solution, preferably a dihydrocarbylamino group, an alkoxy group, or hafnium (Hf), zirconium (Zr), titanium (Ti), niobium (Nb). , 钽 (Ta), 钪 (Sc), 钇 (Y), 镧 (La), 釓 (Gd), 铕 (Eu), or 鐠 (Pr), or any of the lanthanide (Ln) inorganic compounds . The liquid metal precursor solution is prepared and evaporated in a commercially available apparatus under suitable conditions known to those skilled in the art.
再次參照圖3中之MSiO的方法,在該進料步驟3的期間,係將矽來源、氧來源、以及氮來源(在此共同稱作介電前驅物)進料至一沉積腔室之中,其中係將一基板(需 要沉積於其上)放置在高溫之下。該沉積腔是典型地係維持在介於大約300至大約900℃之間。在較佳的情形下,於該沉積腔室之中,該工件之表面會在大約500至600℃之間。該介電前驅物之進料有效地同時發生(原子層沉積牽涉到進料材料之高速連續的脈衝,其就本發明之目的而言,較佳為有效地同時發生)。Referring again to the method of MSiO in FIG. 3, during the feeding step 3, the source of cerium, the source of oxygen, and the source of nitrogen (collectively referred to herein as a dielectric precursor) are fed into a deposition chamber. Which is a substrate (required) To be deposited on it) placed under high temperature. The deposition chamber is typically maintained between about 300 and about 900 °C. In the preferred case, the surface of the workpiece will be between about 500 and 600 ° C in the deposition chamber. The feed of the dielectric precursor is effective to occur simultaneously (atomic layer deposition involves high speed continuous pulses of the feed material, which for the purposes of the present invention are preferably simultaneously effective).
參照圖3中之MSiO方法,在該MSiO方法之進料步驟3的期間,該矽來源以可控制的方式注射至該沉積腔室之中,有效地與該經蒸發之金屬來源、以及其他介電前驅物或者是矽薄膜元件同時發生。在一較佳具體態樣當中,一矽來源是製程進料條件之下以氣相存在。也就是說,一較佳具體態樣中之矽來源,在20℃下具有大於大約50托耳之蒸氣壓力,其係足夠在該進料控制系統中以氣相存在,而不需要在輸送系統中之蒸發或起泡儀器。一個較佳的矽來源,三甲矽烷基胺可以當作液體被儲存,但其卻具有足夠的蒸氣壓(在25℃下大於300托耳的蒸氣壓)可以在該輸送系統當中以氣相存在,而無須使用蒸發器或起泡器系統。由於該矽來源是屬於氣相,因此其可以利用傳統習知的裝置精確地加以量測並控制,並且在蒸發該矽或金屬來源的期間,其不會受到在蒸發中的沉積物或者是進料條件中的震動所影響。Referring to the MSiO process of Figure 3, during the feed step 3 of the MSiO process, the source of helium is injected into the deposition chamber in a controlled manner, effectively interacting with the vaporized metal source, and other media. The electric precursor or the tantalum film element occurs simultaneously. In a preferred embodiment, one source is in the gas phase under process feed conditions. That is, a source of ruthenium in a preferred embodiment has a vapor pressure of greater than about 50 Torr at 20 ° C, which is sufficient to be present in the gas phase in the feed control system without the need for a delivery system. Evaporation or foaming equipment in the middle. A preferred source of ruthenium, trimethyl decylamine can be stored as a liquid, but it has sufficient vapor pressure (more than 300 Torr vapor pressure at 25 ° C) to be present in the gas phase in the delivery system. There is no need to use an evaporator or a bubbler system. Since the source of the crucible belongs to the gas phase, it can be accurately measured and controlled using conventional means, and it is not subject to deposits or evaporation during evaporation during evaporation of the crucible or metal source. The vibration in the material condition is affected.
同樣再次參照圖3中的MSiO方法,該進料步驟2之較佳具體態樣,包括了(但並非侷限於)使用一種係來源,其不包含碳及/或氯於該分子結構當中。因此,該介電薄 膜具有一最小數量之包含的碳和氯,如此就會產生最理想的電的特性。Referring again to the MSiO process of Figure 3, a preferred embodiment of the feed step 2 includes, but is not limited to, the use of a source that does not contain carbon and/or chlorine in the molecular structure. Therefore, the dielectric thin The membrane has a minimum amount of carbon and chlorine contained, which results in the most desirable electrical properties.
同樣再次參照圖3中的MSiO方法,該進料步驟2之較佳具體態樣,包括了(但並非侷限於)將氧與氮來源進料至該沉積腔室之中,與該矽來源同時發生。MSiO方法之各種不同較佳具體態樣,係使用不含碳或氯於其分子結構當中的氮來源。其不需要將氮作為個別的流動來加以進料。該氮來源可以與該金屬來源、矽來源或者是氧來源相同。本發明之較佳的氧來源同樣是不含碳或氯於其分子結構當中。較佳的具體態樣包括了(但並非侷限於)氧氣、一氧化二氮、及/或臭氧,做為氧來源。最佳的具體態樣包括了水氣。利用熟習該項技術者所熟知的裝置來進料並控制該氧與氮來源。Referring again to the MSiO process of Figure 3, a preferred embodiment of the feed step 2 includes, but is not limited to, feeding an oxygen and nitrogen source to the deposition chamber simultaneously with the source of the helium occur. Various preferred embodiments of the MSiO process use a source of nitrogen that does not contain carbon or chlorine in its molecular structure. It does not require nitrogen to be fed as an individual flow. The source of nitrogen can be the same as the source of the metal, the source of hydrazine or the source of oxygen. A preferred source of oxygen for the present invention is likewise free of carbon or chlorine in its molecular structure. Preferred embodiments include, but are not limited to, oxygen, nitrous oxide, and/or ozone as a source of oxygen. The best specific aspects include moisture. The oxygen and nitrogen sources are fed and controlled using a device well known to those skilled in the art.
同樣再次參照圖3中的MSiO方法,在該沉積腔室中的介電前驅物,其沉積和反應會導致在該形成步驟3的期間,於經加熱之矽基板上,形成一MSiO薄膜。MSiO薄膜的一個較佳具體態樣係為矽酸鉿薄膜或者是矽酸鋯薄膜,其係藉由使用一種金屬來源(諸如Hf(DEA)4 或者是Zr(DEA)4 )、三甲矽烷基胺、水氣、以及氧氣的混合物,來將鉿或鋯金屬進料而形成。Referring again to the MSiO method of Figure 3, the deposition and reaction of the dielectric precursor in the deposition chamber results in the formation of an MSiO film on the heated germanium substrate during the formation step 3. A preferred embodiment of the MSiO film is a bismuth ruthenate film or a zirconium silicate film by using a metal source such as Hf(DEA) 4 or Zr(DEA) 4 or trimethyl decylamine. a mixture of water, gas, and oxygen to form a bismuth or zirconium metal.
再次參照圖3中之MSiO方法,該MSiO介電薄膜的組成可以在該進料步驟2的期間,個別地藉由改變該每一個介電前驅物的流動來加以控制。特而言之,該矽來源與該金屬來源的進料速率分別為可獨立控制的,因為該矽來源 並不包含任何的沉積金屬。因此,該矽來源進料速率可以無關於該金屬來源進料速率而進行變化,以影響所希冀之金屬(M)和矽(Si)的比例。相似地,該金屬來源進料速率可以在不影響到該矽來源進料速率的情形下而進行變化,亦可以改變M/Si比例。由於該矽來源和金屬來源的進料速率係為可獨立控制的,因此最終介電薄膜的M/Si比例可以控制在一寬廣的範圍之內,而不會改變該矽來源和金屬來源的組成。Referring again to the MSiO process of Figure 3, the composition of the MSiO dielectric film can be controlled individually during the feed step 2 by varying the flow of each of the dielectric precursors. In particular, the feed rate of the helium source and the metal source are independently controllable because of the source of the helium Does not contain any deposited metals. Thus, the feed rate of the helium source can be varied independently of the feed rate of the metal source to affect the proportion of metal (M) and helium (Si) desired. Similarly, the metal source feed rate can be varied without affecting the feed rate of the helium source, and the M/Si ratio can also be varied. Since the feed rate of the ruthenium source and the metal source is independently controllable, the M/Si ratio of the final dielectric film can be controlled over a wide range without changing the composition of the ruthenium source and the metal source. .
參照圖3中之MSiO方法,該介電前驅物進料至該沉積腔室之中,在一單一形成步驟3當中,會形成一層具有希冀之最終組成的介電薄膜。在某些或所有的介電沉積物被沉積在該基板上而達到所希冀之最終組成以後,就不需要一個後沉積步驟,也就是其中該介電薄膜之組成或結構進行修改的後沉積步驟。Referring to the MSiO method of FIG. 3, the dielectric precursor is fed into the deposition chamber, and in a single formation step 3, a dielectric film having a desired final composition is formed. After some or all of the dielectric deposits are deposited on the substrate to the desired final composition, a post-deposition step, ie a post-deposition step in which the composition or structure of the dielectric film is modified, is not required. .
該矽來源之矽前驅物,較佳係相似於以上已經揭示過的矽前驅物的名單。The ruthenium precursor of the ruthenium source is preferably a list similar to the ruthenium precursors disclosed above.
根據另一個具體態樣,本發明亦有關於一種在半導體片上形成一MSiN絕緣薄膜的方法與組成。本發明可運用於化學氣相沉積以及原子層沉積方法上,以及其他熟習該項技術者所熟之的方法上。According to another embodiment, the invention also relates to a method and composition for forming an MSiN insulating film on a semiconductor wafer. The invention is applicable to chemical vapor deposition as well as to atomic layer deposition methods, as well as to other methods familiar to those skilled in the art.
參照圖5中之MSiN方法,該蒸發步驟1包括了將一金屬來源蒸發,以形成一經蒸發之金屬來源。一個較佳具體態樣之金屬來源係為液相的前驅物溶液,較佳為二烴氨基、烷氧基、或者是鉿(Hf)、鋯(Zr)、鈦(Ti)、鈮(Nb)、 鉭(Ta)、鈧(Sc)、釔(Y)、鑭(La)、釓(Gd)、銪(Eu)、或鐠(Pr)、或者是任何一種鑭系元素(Ln)的無機化合物。該液相金屬前驅物溶液,是在市售的儀器當中,於熟習該項技術者所知悉之適當的條件下,進行製備和蒸發。Referring to the MSiN method of Figure 5, the evaporation step 1 involves evaporating a source of metal to form an evaporated source of metal. A preferred embodiment of the metal source is a liquid phase precursor solution, preferably a dihydrocarbylamino group, an alkoxy group, or hafnium (Hf), zirconium (Zr), titanium (Ti), niobium (Nb). , An inorganic compound of lanthanum (Ta), strontium (Sc), yttrium (Y), lanthanum (La), lanthanum (Gd), lanthanum (Eu), or praseodymium (Pr), or any lanthanide (Ln). The liquid metal precursor solution is prepared and evaporated in a commercially available apparatus under suitable conditions known to those skilled in the art.
再次參照圖5中之MSiN的方法,在該進料步驟2的期間,係將矽來源、氧來源、以及氮來源(在此共同稱作介電前驅物)進料至一沉積腔室之中,其中係將基板(需要沉積於其上)放置在高溫之下。該沉積腔是典型地係維持在介於大約300至大約900℃之間。在較佳的情形下,於該沉積腔室之中,該工件之表面會在大約500至600℃之間。該介電前驅物之進料有效地同時發生(原子層沉積牽涉到進料材料之高速連續的脈衝,其就本發明之目的而言,較佳為有效地同時發生)。Referring again to the method of MSiN in FIG. 5, during the feed step 2, a source of helium, a source of oxygen, and a source of nitrogen (collectively referred to herein as a dielectric precursor) are fed into a deposition chamber. Where the substrate (which needs to be deposited thereon) is placed under high temperature. The deposition chamber is typically maintained between about 300 and about 900 °C. In the preferred case, the surface of the workpiece will be between about 500 and 600 ° C in the deposition chamber. The feed of the dielectric precursor is effective to occur simultaneously (atomic layer deposition involves high speed continuous pulses of the feed material, which for the purposes of the present invention are preferably simultaneously effective).
參照圖5中之MSiN方法,在該MSiN方法之進料步驟2的期間,該矽來源以可控制的方式注射至該沉積腔室之中,有效地與該經蒸發之金屬來源、以及其他介電前驅物或者是矽薄膜元件同時發生。在一較佳具體態樣當中,一矽來源是製程進料條件之下以氣相存在。也就是說,一較佳具體態樣中之矽來源,在20℃下具有大於大約50托耳之蒸氣壓力,其係足夠在該進料控制系統中以氣相存在,而不需要在輸送系統中之蒸發或起泡儀器。一個較佳的矽來源,三甲矽烷基胺可以當作液體被儲存,但其卻具有足夠的蒸氣壓(在25℃下大於300托耳的蒸氣壓)可以在該輸 送系統當中以氣相存在,而無須使用蒸發器或起泡器系統。由於該矽來源是屬於氣相,因此其可以利用傳統習知的裝置精確地加以量測並控制,並且在蒸發該矽或金屬來源的期間,其不會受到在蒸發中的沉積物或者是進料條件中的震動所影響。Referring to the MSiN method of FIG. 5, during the feed step 2 of the MSiN method, the source of the helium is injected into the deposition chamber in a controlled manner, effectively interacting with the vaporized metal source, and other media. The electric precursor or the tantalum film element occurs simultaneously. In a preferred embodiment, one source is in the gas phase under process feed conditions. That is, a source of ruthenium in a preferred embodiment has a vapor pressure of greater than about 50 Torr at 20 ° C, which is sufficient to be present in the gas phase in the feed control system without the need for a delivery system. Evaporation or foaming equipment in the middle. A preferred source of hydrazine, trimethyl decylamine can be stored as a liquid, but it has sufficient vapor pressure (more than 300 Torr vapor pressure at 25 ° C) at which The delivery system is present in the gas phase without the use of an evaporator or bubbler system. Since the source of the crucible belongs to the gas phase, it can be accurately measured and controlled using conventional means, and it is not subject to deposits or evaporation during evaporation during evaporation of the crucible or metal source. The vibration in the material condition is affected.
同樣再次參照圖5中的MSiN方法,該進料步驟2之較佳具體態樣,包括了(但並非侷限於)使用一種係來源,其不包含碳及/或氯於該分子結構當中。因此,該介電薄膜具有一最小數量之包含的碳和氯,如此就會產生最理想的電的特性。Referring again to the MSiN method of Figure 5, a preferred embodiment of the feed step 2 includes, but is not limited to, the use of a source of a source that does not contain carbon and/or chlorine in the molecular structure. Thus, the dielectric film has a minimum amount of carbon and chlorine contained therein, which results in the most desirable electrical characteristics.
同樣再次參照圖5中的MSiN方法,該進料步驟2之較佳具體態樣,包括了(但並非侷限於)將氧與氮來源進料至該沉積腔室之中,與該矽來源同時發生。MSiN方法之各種不同較佳具體態樣,係使用不含碳或氯於其分子結構當中的氮來源。其不需要將氮氣作為個別的流動來加以進料。該氮氣來源可以與該金屬來源、矽來源或者是氧來源相同。本發明之較佳的氧來源同樣是不含碳或氯於其分子結構當中。較佳的具體態樣包括了(但並非侷限於)氧氣、一氧化二氮、及/或臭氧,做為氧來源。該氮來源較佳地係為氨。另一種較佳之具體態樣的氮來源則是三甲矽烷基胺。利用熟習該項技術者所熟知的裝置來進料並控制該氧與氮來源。Referring again to the MSiN method of Figure 5, a preferred embodiment of the feed step 2 includes, but is not limited to, feeding an oxygen and nitrogen source to the deposition chamber, simultaneously with the source of the crucible occur. Various preferred embodiments of the MSiN method use a source of nitrogen that does not contain carbon or chlorine in its molecular structure. It does not require nitrogen to be fed as a separate flow. The source of nitrogen can be the same as the source of the metal, the source of cerium or the source of oxygen. A preferred source of oxygen for the present invention is likewise free of carbon or chlorine in its molecular structure. Preferred embodiments include, but are not limited to, oxygen, nitrous oxide, and/or ozone as a source of oxygen. The nitrogen source is preferably ammonia. Another preferred embodiment of the nitrogen source is trimethylammonium alkylamine. The oxygen and nitrogen sources are fed and controlled using a device well known to those skilled in the art.
同樣再次參照圖5中的MSiN方法,在該沉積腔室中的介電前驅物,其沉積和反應會導致在該形成步驟3的期間, 於經加熱之矽基板上,形成一MSiON薄膜。MSiN薄膜的一個較佳具體態樣係為氮化鉭矽薄膜或者是氮化鈦矽薄膜,其係藉由使用一種金屬來源(諸如TaCl5 、TiCl4 、Ta(DMA)5 、或者是Ti(DEA)4 )、以及三甲矽烷基胺的混合物,來將鉿或鋯金屬進料而形成。Referring again to the MSiN method of Figure 5, the deposition and reaction of the dielectric precursor in the deposition chamber results in the formation of an MSiON film on the heated substrate during the formation step 3. A preferred embodiment of the MSiN film is a tantalum nitride film or a titanium nitride film by using a metal source such as TaCl 5 , TiCl 4 , Ta(DMA) 5 , or Ti ( DEA) 4 ), and a mixture of trimethyl decylamine to form a ruthenium or zirconium metal.
再次參照圖3中之MSiN方法,該MSiN介電薄膜的組成可以在該進料步驟2的期間,個別地藉由改變該每一個介電前驅物的流動來加以控制。特而言之,該矽來源與該金屬來源的進料速率分別為可獨立控制的,因為該矽來源並不包含任何的沉積金屬。因此,該矽來源進料速率可以無關於該金屬來源進料速率而進行變化,以影響所希冀之金屬(M)和矽(Si)的比例。相似地,該金屬來源進料速率可以在不影響到該矽來源進料速率的情形下而進行變化,亦可以改變M/Si比例。由於該矽來源和金屬來源的進料速率係為可獨立控制的,因此最終介電薄膜的M/Si比例可以控制在一寬廣的範圍之內,而不會改變該矽來源和金屬來源的組成。Referring again to the MSiN method of Figure 3, the composition of the MSiN dielectric film can be controlled individually during the feeding step 2 by varying the flow of each of the dielectric precursors. In particular, the feed rate of the ruthenium source and the metal source are independently controllable because the ruthenium source does not contain any deposited metal. Thus, the feed rate of the helium source can be varied independently of the feed rate of the metal source to affect the proportion of metal (M) and helium (Si) desired. Similarly, the metal source feed rate can be varied without affecting the feed rate of the helium source, and the M/Si ratio can also be varied. Since the feed rate of the ruthenium source and the metal source is independently controllable, the M/Si ratio of the final dielectric film can be controlled over a wide range without changing the composition of the ruthenium source and the metal source. .
參照圖5中之MSiN方法,該介電前驅物進料至該沉積腔室之中,在一單一形成步驟3當中,會形成一層具有希冀之最終組成的介電薄膜。在某些或所有的介電沉積物被沉積在該基板上而達到所希冀之最終組成以後,就不需要一個後沉積步驟,也就是其中該介電薄膜之組成或結構進行修改的後沉積步驟。Referring to the MSiN method of FIG. 5, the dielectric precursor is fed into the deposition chamber, and in a single formation step 3, a dielectric film having a desired final composition is formed. After some or all of the dielectric deposits are deposited on the substrate to the desired final composition, a post-deposition step, ie a post-deposition step in which the composition or structure of the dielectric film is modified, is not required. .
根據此具體態樣之矽和氮的來源,係相似於以上已經 揭示過的來源。According to this specific aspect, the source of nitrogen and nitrogen is similar to the above. Revealed sources.
此實施例係有關於氧氮化鉿矽的製造。This embodiment relates to the manufacture of yttrium oxynitride.
在此實施例中所使用的CVD工具係說明於圖6之中。在圖6之中,係將一矽晶圓1安裝在一CVD腔室11之中,該CVD腔室11在其周圍具有一個加熱器,而該希冀之薄膜係形成於該矽晶圓1的表面上。利用泵12將該CVD腔室11排空。在此例子當中,該金屬前驅物Hf(NEt2 )4 (tetrakisdiethylaminohafnium)被儲存在一液體容器21當中。氦氣22被用來當作用於該Hf(NEt2 )4 之載體氣體。在該液體容器21當中的Hf(NEt2 )4 係藉由氦22通過一液態質流控制器23、並進入至一蒸發氣25之中的壓力來進行輸送。同樣將氦氣22輸送通過一個質流控制器24,並進入至一蒸發氣25之中。將該藉由蒸發氣25而爭發之Hf(NEt2 )4 ,係隨著He而被進料至該CVD腔室11中。將三甲矽烷基胺(TSA)支托在一瓶子31中,並將此TSA輸送通過一個質流控制器32而進入該CVD腔室11中。將一條用於氮氣33的線路沿著該TSA線路的路徑連接,並將氮氣33沿著進料至該CVD腔室11以及該TSA之中。將氧氣41(氧化劑)進料通過一質流控制器42,並進入至該CVD腔室11中。使用所敘述之CVD工具,在以下的條件之下,製造出氧氮化鉿矽薄膜。The CVD tool used in this embodiment is illustrated in FIG. In FIG. 6, a wafer 1 is mounted in a CVD chamber 11, the CVD chamber 11 has a heater around it, and the desired film is formed on the wafer 1 On the surface. The CVD chamber 11 is evacuated by means of a pump 12. In this example, the metal precursor Hf(NEt 2 ) 4 (tetrakisdiethylaminohafnium) is stored in a liquid container 21. Helium 22 is used as a carrier gas for the Hf(NEt 2 ) 4 . Hf(NEt 2 ) 4 in the liquid container 21 is transported by the pressure of the crucible 22 through a liquid mass flow controller 23 and into an evaporating gas 25. Helium 22 is also conveyed through a mass flow controller 24 and into an evaporating gas 25. Hf(NEt 2 ) 4 , which is contending by the vaporizing gas 25, is fed into the CVD chamber 11 with He. Trimethyldecylamine (TSA) is supported in a bottle 31 and the TSA is conveyed through a mass flow controller 32 into the CVD chamber 11. A line for nitrogen gas 33 is connected along the path of the TSA line, and nitrogen gas 33 is fed along the CVD chamber 11 and the TSA. Oxygen 41 (oxidant) is fed through a mass flow controller 42 and into the CVD chamber 11. Using a CVD tool as described, a yttrium oxynitride film was produced under the following conditions.
模式1-1Mode 1-1
壓力=0.35托耳,溫度=500℃,Hf(NEt2 )4 流速=0.5sccm,He流速=180sccm,TSA流速=4sccm,O2 流速=40sccm,N2 流速=25sccm。Pressure = 0.35 Torr, temperature = 500 ° C, Hf (NEt 2 ) 4 flow rate = 0.5 sccm, He flow rate = 180 sccm, TSA flow rate = 4 sccm, O 2 flow rate = 40 sccm, N 2 flow rate = 25 sccm.
使用這組條件,在135Å/min的薄膜形成速率之下,得到的是具有Hf/Si=5:1以及O/N=3:1之成分比例的氧氮化鉿矽。Using this set of conditions, at a film formation rate of 135 Å/min, yttrium oxynitride having a composition ratio of Hf/Si = 5:1 and O/N = 3:1 was obtained.
模式1-2Mode 1-2
壓力=0.35托耳,溫度=400℃,Hf(NEt2 )4 流速=0.5sccm,He流速=180sccm,TSA流速=4sccm,O2 流速=40sccm,N2 流速=25sccm。此模式與模式1-1相同,除了將溫度降低至400℃以外。Pressure = 0.35 Torr, temperature = 400 ° C, Hf (NEt 2 ) 4 flow rate = 0.5 sccm, He flow rate = 180 sccm, TSA flow rate = 4 sccm, O 2 flow rate = 40 sccm, N 2 flow rate = 25 sccm. This mode is the same as mode 1-1 except that the temperature is lowered to 400 °C.
使用這組條件,在72Å/min的薄膜形成速率之下,得到的是具有Hf/Si=6.6:1以及O/N=4:1之成分比例的氧氮化鉿矽。Using this set of conditions, at a film formation rate of 72 Å/min, yttrium oxynitride having a composition ratio of Hf/Si = 6.6:1 and O/N = 4:1 was obtained.
模式1-3Mode 1-3
壓力=1.0托耳,溫度=300℃,Hf(NEt2 )4 流速=0.5sccm,He流速=180sccm,TSA流速=4sccm,O2 流速=100sccm,N2 流速=500sccm。Pressure = 1.0 Torr, temperature = 300 ° C, Hf (NEt 2 ) 4 flow rate = 0.5 sccm, He flow rate = 180 sccm, TSA flow rate = 4 sccm, O 2 flow rate = 100 sccm, N 2 flow rate = 500 sccm.
使用這組條件,在30Å/min的薄膜形成速率之下,得到氧氮化鉿矽。就此氧氮化鉿矽之成分值為O/N=13:1,以及微量的矽。Using this set of conditions, yttrium oxynitride was obtained at a film formation rate of 30 Å/min. In this case, the composition of yttrium oxynitride is O/N = 13:1, and a trace amount of ruthenium.
此實施例係有關於氧化鉿矽的製造。This embodiment relates to the manufacture of cerium oxide.
在此實施例中所使用的CVD工具係說明於圖7之 中。在圖7中之該CVD工具具有非常相似於圖1之CVD工具的結構,不同於後者是處在於提供了一個以H2 O填充之起泡器43,沿著該O2 氣體42線路的路徑,會導致H2 O隨著作為氧化劑之O2 而被導入至該CVD腔室11之中。使用所敘述之CVD工具,在以下的條件之下,製造出氧氮化鉿矽薄膜。The CVD tool used in this embodiment is illustrated in FIG. The CVD tool of Figure 7 has a structure very similar to the CVD tool of Figure 1, which differs from the latter in that it provides a H 2 O filled bubbler 43 along the path of the O 2 gas 42 line. This causes H 2 O to be introduced into the CVD chamber 11 in accordance with O 2 which is an oxidizing agent. Using a CVD tool as described, a yttrium oxynitride film was produced under the following conditions.
模式2-1Mode 2-1
壓力=0.5托耳,溫度=400℃,Hf(NEt2 )4 流速=0.5sccm,He流速=160sccm,TSA流速=4sccm,O2 流速=40sccm,H2 O流速=1.2sccm,N2 流速=20sccm。Pressure = 0.5 Torr, temperature = 400 ° C, Hf (NEt 2 ) 4 flow rate = 0.5 sccm, He flow rate = 160 sccm, TSA flow rate = 4 sccm, O 2 flow rate = 40 sccm, H 2 O flow rate = 1.2 sccm, N 2 flow rate = 20sccm.
使用這組條件,在135Å/min的薄膜形成速率之下,得到的是具有Hf/Si=3.5:1之成分比例的氧化鉿矽(低於偵測極限的C)。Using this set of conditions, at a film formation rate of 135 Å/min, yttrium oxide having a composition ratio of Hf/Si = 3.5:1 (C below the detection limit) was obtained.
此實施例係有關於以矽摻雜之氮化鈦薄膜的製造。This embodiment is related to the fabrication of a titanium nitride film doped with antimony.
在此實施例中所使用的CVD工具係說明於圖8之中。於圖8之中,係將一矽晶圓1安裝在一CVD腔室11之中,該CVD腔室11在其周圍具有一個加熱器,而該希冀之薄膜係形成於該矽晶圓1的表面上。利用泵12將該CVD腔室11排空。在此例子當中,該金屬前驅物四氯化鈦(TiCl4 )被支托在一起泡氣51當中,並將TiCl4 蒸氣進料至該CVD腔室11當中。將三甲矽烷基胺(TSA)支托在一瓶子31中,並將此TSA輸送通過一個質流控制器32 而進入該CVD腔室11中。從CVD腔室11排出的氣體系從通過一吸收器13而被排出。使用所敘述之CVD工具,在以下的條件之下,製造出以矽摻雜之氮化鈦薄膜。The CVD tool used in this embodiment is illustrated in FIG. In FIG. 8, a wafer 1 is mounted in a CVD chamber 11 having a heater around the CVD chamber 11 and the desired film is formed on the wafer 1 On the surface. The CVD chamber 11 is evacuated by means of a pump 12. In this example, the metal precursor titanium tetrachloride (TiCl 4 ) is supported in the bubble 51 and the TiCl 4 vapor is fed into the CVD chamber 11. Trimethyldecylamine (TSA) is supported in a bottle 31 and the TSA is conveyed through a mass flow controller 32 into the CVD chamber 11. The gas system discharged from the CVD chamber 11 is discharged from passing through an absorber 13. Using the CVD tool described, a titanium nitride film doped with antimony was produced under the following conditions.
模式3-1Mode 3-1
壓力=1托耳,溫度=625℃,TiCl4 流速=5sccm,,TSA流速=4sccm,N2 流速=20sccm,時間=15分鐘。Pressure = 1 Torr, temperature = 625 ° C, TiCl 4 flow rate = 5 sccm, TSA flow rate = 4 sccm, N 2 flow rate = 20 sccm, time = 15 minutes.
根據AES分析,最終薄膜為具有化學劑量組成之氮化鈦,其係包含微量的矽。此薄膜大約為4000Å的厚度。而薄膜形成速率大約為270Å/min。According to the AES analysis, the final film is a titanium nitride having a stoichiometric composition containing a trace amount of ruthenium. This film is approximately 4000 Å thick. The film formation rate is approximately 270 Å/min.
模式3-2Mode 3-2
壓力=1托耳,溫度=550℃(此薄膜形成溫度實質上係低於先前技術之使用TiCl4 /NH3 的薄膜形成溫度),TiCl4 流速=5sccm,,TSA流速=4sccm,N2 流速=20sccm,時間=15分鐘。Pressure = 1 Torr, temperature = 550 ° C (this film formation temperature is substantially lower than the film formation temperature of TiCl 4 /NH 3 used in the prior art), TiCl 4 flow rate = 5 sccm, TSA flow rate = 4 sccm, N 2 flow rate = 20sccm, time = 15 minutes.
根據AES分析,最終薄膜為具有化學劑量組成之氮化鈦,其係包含微量的矽。此薄膜大約為290Å的厚度。而薄膜形成速率大約為19Å/min。According to the AES analysis, the final film is a titanium nitride having a stoichiometric composition containing a trace amount of ruthenium. This film is approximately 290 Å thick. The film formation rate is approximately 19 Å/min.
來自於替代脈衝之Hf(NEt2 )4 、臭氧、以及TSA之HfSiO的原子層沉積。Atomic layer deposition from Hf(NEt 2 ) 4 , ozone, and HfSiO of TSA instead of pulses.
P=0.5托耳,T=350℃P=0.5 Torr, T=350°C
具有載體氣體(N2 :25 sccm)的Hf(NEt2 )4 (0.25 sccm):7秒Hf(NEt 2 ) 4 (0.25 sccm) with carrier gas (N 2 : 25 sccm): 7 seconds
TSA(1 sccm):3秒TSA (1 sccm): 3 seconds
與O2 (50 sccm)相混合之O3 (2.5 sccm):5秒O 3 (2.5 sccm) mixed with O 2 (50 sccm): 5 seconds
N2 :70 sccm(連續)N 2 : 70 sccm (continuous)
在這些實驗條件之下獲得的是氧化鉿矽(Hf0.75 Si0.05 O2 )的沉積。Obtained under these experimental conditions is the deposition of cerium oxide (Hf 0.75 Si 0.05 O 2 ).
來自於TaCl5 和TSA(CVD)之TaN的沉積Deposition of TaN from TaCl 5 and TSA (CVD)
熔爐:500C-1托耳(該反應器係為一熱壁形式)Furnace: 500C-1 Torr (the reactor is in the form of a hot wall)
FR TSA:5 sccm(FR:流速)FR TSA: 5 sccm (FR: flow rate)
FR NH3 :20 sccmFR NH 3 : 20 sccm
FR TaCl5 :5 sccm(+FR N2 載體氣體:20 sccm)FR TaCl 5 : 5 sccm (+FR N 2 carrier gas: 20 sccm)
10分鐘沉積10 minute deposition
獲得的是具有微量矽之氮化鉭的沉積。What is obtained is the deposition of tantalum nitride with a trace amount of antimony.
來自於TaCl5 和TSA之TaN的原子層沉積Atomic layer deposition of TaN from TaCl 5 and TSA
反應器:150C,感受器(Susceptor):T=300 C-P=2托耳(該反應器係為冷壁形式,也就是說,該晶圓被沉積通過一個在下面的感受器)Reactor: 150C, Susceptor: T = 300 C-P = 2 Torr (The reactor is in the form of a cold wall, that is, the wafer is deposited through a susceptor below)
FR TSA:1 sccmFR TSA: 1 sccm
FR TaCl5 :0.5 sccm(+FR Ar載體氣體:42 sccm)FR TaCl 5 : 0.5 sccm (+FR Ar carrier gas: 42 sccm)
40個循環40 cycles
獲得的是具有微量矽之氮化鉭的沉積。What is obtained is the deposition of tantalum nitride with a trace amount of antimony.
雖然本發明已經以相當細節的方式加以說明敘述,並參照其某些較佳的形式,但是其他的形式可是可行的。舉 例而言,該組成和方法可以在除了化學氣相沉積或原子層沉積方法中加以實施。此外,該介電薄膜的沉積可以在各種不同之溫度和條件的變化下完成。更進一步而言,本發明可包括各種不同之習知技藝所熟知的金屬、矽、以及鉭來源。因此,所附的申請專利範圍的精神與範疇並不受限於包含在文中之較佳形式的一個敘述。本發明人的目的在於包含所有的修改、等同物、以及落於本發明之精神及範疇之中的替代物,如同所附上之申請專利範圍所定義一般。Although the present invention has been described in considerable detail and reference to certain preferred forms thereof, other forms are possible. Lift For example, the composition and method can be practiced in addition to chemical vapor deposition or atomic layer deposition methods. In addition, the deposition of the dielectric film can be accomplished under varying temperatures and conditions. Still further, the invention can include a variety of metal, germanium, and germanium sources as are well known in the art. Therefore, the spirit and scope of the appended claims are not limited by the description of the preferred forms included herein. The inventors intend to include all modifications, equivalents, and alternatives falling within the spirit and scope of the invention, as defined by the appended claims.
1‧‧‧矽晶圓1‧‧‧矽 wafer
11‧‧‧CVD腔室11‧‧‧ CVD chamber
12‧‧‧泵12‧‧‧ pump
13‧‧‧吸收器13‧‧‧ absorber
21‧‧‧液態容器21‧‧‧Liquid container
22‧‧‧He氣體22‧‧‧He gas
23‧‧‧液態質流控制器23‧‧‧Liquid mass flow controller
24‧‧‧質流控制器24‧‧‧Flow Controller
25‧‧‧蒸發氣25‧‧‧evaporation gas
31‧‧‧瓶子31‧‧‧ bottles
32‧‧‧質流控制器32‧‧‧Flow Controller
33‧‧‧N2 氣體33‧‧‧N 2 gas
41‧‧‧O2 氣體41‧‧‧O 2 gas
圖1係為先前技藝之用於形成一層MSiON絕緣薄膜之方法流程圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow diagram of a prior art method for forming a layer of MSiON insulating film.
圖2係為根據本發明之用於形成一層MSiON絕緣薄膜之方法步驟的流程圖。2 is a flow chart showing the steps of a method for forming a layer of MSiON insulating film in accordance with the present invention.
圖3係為根據本發明之用於形成一層MSiO絕緣薄膜之方法步驟的流程圖。Figure 3 is a flow chart showing the steps of a method for forming a layer of MSiO insulating film in accordance with the present invention.
圖4係為先前技藝之用於形成一層MSiN金屬薄膜之方法流程圖。4 is a flow chart of a prior art method for forming a layer of MSiN metal film.
圖5係為根據本發明之用於形成一層MSiN金屬薄膜之方法步驟的流程圖。Figure 5 is a flow diagram of the steps of a method for forming a layer of MSiN metal film in accordance with the present invention.
圖6係為對本發明之實施例1中所使用之CVD工具的氣體分佈系統的概要圖式。Fig. 6 is a schematic view showing a gas distribution system of a CVD tool used in Example 1 of the present invention.
圖7係為對本發明之實施例2中所使用之CVD工具的氣體分佈系統的概要圖式。Fig. 7 is a schematic view showing a gas distribution system of a CVD tool used in Example 2 of the present invention.
圖8係為對本發明之實施例3中所使用之CVD工具 的氣體分佈系統的結構圖式。Figure 8 is a CVD tool used in Example 3 of the present invention. The structural pattern of the gas distribution system.
1‧‧‧矽晶圓1‧‧‧矽 wafer
11‧‧‧CVD腔室11‧‧‧ CVD chamber
12‧‧‧泵12‧‧‧ pump
13‧‧‧吸收器13‧‧‧ absorber
21‧‧‧液態容器21‧‧‧Liquid container
22‧‧‧He氣體22‧‧‧He gas
23‧‧‧液態質流控制器23‧‧‧Liquid mass flow controller
24‧‧‧質流控制器24‧‧‧Flow Controller
25‧‧‧蒸發氣25‧‧‧evaporation gas
31‧‧‧瓶子31‧‧‧ bottles
32‧‧‧質流控制器32‧‧‧Flow Controller
33‧‧‧N2 氣體33‧‧‧N 2 gas
41‧‧‧O2 氣體41‧‧‧O 2 gas
Claims (18)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55090804P | 2004-03-05 | 2004-03-05 | |
JP2004193710A JP2006016641A (en) | 2004-06-30 | 2004-06-30 | Method for producing metal silicon oxide, method for producing metal silicon oxynitride and method for producing silicon-doped metal nitride |
US10/939,269 US7098150B2 (en) | 2004-03-05 | 2004-09-10 | Method for novel deposition of high-k MSiON dielectric films |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200531182A TW200531182A (en) | 2005-09-16 |
TWI389219B true TWI389219B (en) | 2013-03-11 |
Family
ID=48471166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94105563A TWI389219B (en) | 2004-03-05 | 2005-02-24 | Method for forming dielectric or metallic films |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI389219B (en) |
-
2005
- 2005-02-24 TW TW94105563A patent/TWI389219B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200531182A (en) | 2005-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7482286B2 (en) | Method for forming dielectric or metallic films | |
US7723245B2 (en) | Method for manufacturing semiconductor device, and substrate processing apparatus | |
CN100537842C (en) | The method for preparing metal silicon nitride films by cyclic deposition | |
KR101283835B1 (en) | Deposition method of ternary films | |
US7547952B2 (en) | Method for hafnium nitride deposition | |
US7544389B2 (en) | Precursor for film formation and method for forming ruthenium-containing film | |
US20060110930A1 (en) | Direct liquid injection system and method for forming multi-component dielectric films | |
KR101060911B1 (en) | Fabrication of Metal-Containing Films by Ald or Cdd Process | |
KR20180114159A (en) | Deposition of molybdenum thin films using molybdenum carbonyl precursors | |
JP2008502805A (en) | System and method for forming a multi-component dielectric film | |
KR20060003895A (en) | System and method for forming multi-component dielectric films | |
JP4644359B2 (en) | Deposition method | |
JP2005533390A (en) | Molecular layer deposition of thin films with mixed components. | |
WO2011006035A2 (en) | Bis-ketoiminate copper precursors for deposition of copper-containing films | |
TW202030352A (en) | Methods of vapor deposition of ruthenium using an oxygen-free co-reactant | |
US20060051975A1 (en) | Novel deposition of SiON dielectric films | |
JP2010258411A (en) | Zirconium precursor useful in atomic layer deposition of zirconium-containing film | |
TWI251620B (en) | Process for CVD of Hf and Zr containing oxynitride films | |
KR20210155106A (en) | Lanthanide precursor and lanthanide-containing film using the same and deposition method of the same and semiconductor device comprising the same | |
TWI389219B (en) | Method for forming dielectric or metallic films | |
JP2022548037A (en) | Formulation for deposition of silicon-doped hafnium oxide | |
KR20240128699A (en) | Homoleptic bismuth precursor for deposition of thin films containing bismuth oxide | |
CN117242204A (en) | Deposition of vanadium-containing films | |
KR20040102754A (en) | Method of forming an atomic layer and method of forming a thin film using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |