JPH04371221A - Production of cuprammonium regenerated cellulose porous hollow fiber membrane - Google Patents

Production of cuprammonium regenerated cellulose porous hollow fiber membrane

Info

Publication number
JPH04371221A
JPH04371221A JP14704991A JP14704991A JPH04371221A JP H04371221 A JPH04371221 A JP H04371221A JP 14704991 A JP14704991 A JP 14704991A JP 14704991 A JP14704991 A JP 14704991A JP H04371221 A JPH04371221 A JP H04371221A
Authority
JP
Japan
Prior art keywords
hollow fiber
soln
spinning
fiber membrane
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14704991A
Other languages
Japanese (ja)
Other versions
JP3093821B2 (en
Inventor
Shoichi Ide
正一 井出
Takashi Tsurumi
隆 鶴見
Hiromi Nagashima
長嶋 広見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP03147049A priority Critical patent/JP3093821B2/en
Publication of JPH04371221A publication Critical patent/JPH04371221A/en
Application granted granted Critical
Publication of JP3093821B2 publication Critical patent/JP3093821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cuprammonium regenerated cellulose porous hollow fiber membrane high in LRV with respect to a relatively small virus by using a U-shaped thin tube as the coagulation bath when the membrane is produced. CONSTITUTION:Two small funnel tubes are liquid-tightly connected at their lower parts with a U-tube or a connector having an internal U-shaped passage to form a thin tube 4. A spinning soln. A is firstly discharged from the outer outlet of an annular double spinneret 1, and an internal soln. B for separating the microphase of the soln. A and coagulating the soln. A is simultaneously discharged from the central outlet of the spinneret 1. Both solns. are introduced into a spinning cylinder 2 and the one tube 4a of the small funnel tube, and an external soln. C for separating the microphase of the soln. A and coagulating the soln. A is supplied at this time from the inlet of the spinning chamber 2. The coagulation of the soln. A proceeds in the thin tube 4 by the action of the solns. B and C with the microphase being separated. Since the fiber is spun without being sustantially drawn in this way, a membrane capable of permeating proteins and high in LRV is obtained.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、平均孔径が10〜50
0nmである銅アンモニア法再生セルロース多孔性中空
糸膜の製造方法に関する。さらに詳しくは、血漿や血漿
分画製剤あるいは培地などの蛋白質共存溶液から、ウィ
ルスやバクテリアなどの微生物粒子を除去するのに好適
な、銅アンモニア法再生セルロース多孔性中空糸膜の製
造方法に関するものである。 【0002】 【従来の技術】血漿あるいは血漿分画製剤などの血液製
剤の使用により血液由来のウィルス、例えばエイズウィ
ルス(HIV)、B型肝炎ウィルス(HBV)、nAn
B型肝炎ウィルス(NANBHV或いはHCV)などに
感染することが、大きな社会問題となっている。血液製
剤に混入するおそれのあるウィルスの不活化方法として
は、加熱処理や化学薬品による処理などが行なわれてい
るが、それら単独の処理だけではウィルスの不活化は充
分でなく、またこれらの方法では血液製剤中の有用蛋白
質そのものも変性するおそれがある。このような背景か
ら、化学的な変性を伴わない物理的なウィルス除去手段
として、膜によるウィルスの分離除去技術への要求が高
まってきている。 【0003】この用途に使用する多孔性中空糸膜の平均
孔径は、除去すべきウィルスの大きさとの関係から10
〜500nmの範囲のものが必要である。また、血液製
剤のような蛋白質共存溶液からウィルスは除去して有用
な蛋白質を実用上充分回収するためには、孔径の分布が
シャープであるとともに、蛋白質が膜素材に吸着してろ
過性能を低下させないことが重要である。このような要
件を充たす中空糸膜としては、現在、銅アンモニア法再
生セルロース多孔性中空糸膜が知られている(特開昭5
9−204912号公報、特開昭59−204911号
公報)。 【0004】従来、この種の中空糸膜の製造方法として
は、セルロース銅アンモニア溶液(以下紡糸原液と称す
)を環状二重紡口の外側紡出口より、上記紡糸原液に対
するミクロ相分離兼凝固液である内部凝固液(以下、内
液と称す)を環状二重紡口の中央紡出口より、同時に吐
出させた後、ミクロ相分離兼凝固液である外部凝固液い
わゆる凝固液(以下、外液と称す)で満たされた紡糸用
ろ斗内を流下、落下させながら凝固を進行させる。次い
で、変更装置を経て、同じく外液で満たされた凝固浴中
を水平方向に走行させながら追加凝固を行なった後、枠
に巻取る方法が採用されていた(図2参照)。 【0005】この方法で製造された銅アンモニア法再生
セルロース多孔性中空糸膜は、エイズウィルス(大きさ
約100nm)を高い除去率で除去することができ、血
漿中の有用蛋白質も高い透過率で回収できる優れた能力
を有していることが確認されている。しかしながら、本
発明者らの検討によれば、該多孔性中空糸膜は、B型肝
炎ウィルス(大きさ約42nm)、nAnB型肝炎ウィ
ルス(同30〜60nm)などの比較的小さいウィルス
に対しては必ずしも充分な除去性能を有しているとは言
えなかった。 【0006】例えば、上述した従来の製造方法で得られ
た平均孔径30nmの膜において、日本脳炎ウィルス(
粒子径約45nm、このウィルスはnAnB型肝炎ウィ
ルスと同じ種類と考えられている)を用いてろ過試験を
行なったところ、ウィルスの対数阻止係数LRVは、約
2.4であり、実用上満足なものではなかった。ここで
、LRVは、以下のように定義される値である。 【0007】 LRV=log10(No /Nf )No ;ろ過前
の元液中のウィルス濃度Nf ;ろ過後の濾液中のウィ
ルス濃度血漿分画製剤製造時に適用されている加熱処理
法やSolvent/Detergent法などのウィ
ルス不活化技術のウィルス除去レベルは、通常、LRV
で表すと3〜4と言われており、上記で述べた従来法で
得られた膜では、これらの技術を上回るものが得られな
かった。 【0008】従来法の膜でも、より小さな平均孔径をも
つ膜ならば、ウィルス阻止性能は向上するが、相反して
、蛋白質透過性能が低下して有用な蛋白質の回収率が低
下する問題があった。実用上は、高い蛋白質透過性を有
し、かつ高いウィルス阻止性能をもつ膜が望ましい。 【0009】   【発明が解決しようとする課題】本発明の目的は、比較
的小さなウィルスについてそのLRVが高い銅アンモニ
ア法再生セルロース多孔性中空糸膜の製造方法を提供し
ようとするものである。 【0010】 【課題を解決するための手段】本発明者らは、かかる実
用上の問題を解決すべく鋭意努力した結果、実用上充分
な蛋白質透過性を有しながら、B型肝炎ウィルス、nA
nB型肝炎ウィルスなどの比較的小さいウィルスについ
てもそのLRVが5以上であるような、銅アンモニア法
再生セルロース多孔性中空糸膜の製造方法を発明するに
至った。 【0011】即ち、本発明は、セルロース銅アンモニア
溶液からなる紡糸原液と上記紡糸原液に対してミクロ相
分離を生起させる溶液を凝固液として用いて中空糸膜を
製造するに際し、凝固浴としてU字型細管を用いること
を特徴とする銅アンモニア法再生セルロース多孔性中空
糸膜の製造方法、である。本発明の銅アンモニア法再生
セルロース多孔性中空糸膜の製造方法は、水酸基をもた
ず、28重量%のアンモニア水溶液への溶解度が10重
量%以上で、かつセルロースを膨潤させない有機溶媒を
少なくとも1種含み、しかもセルロース銅アンモニア溶
液に対してミクロ相分離を生起させる組成を有する混合
溶液を凝固液(外液、内液の両方)として用いることを
特徴としている。 【0012】上記の凝固液を採用することによって、初
めて銅アンモニア法再生セルロース多孔性中空糸膜の製
造が可能になるのであるが、この凝固は、例えば水酸化
ナトリウムなどのアルカリ水溶液あるいは硫酸などの酸
水溶液による凝固に比べて、はるかに凝固速度が遅いこ
とが一つの特徴である。そのために、従来の紡糸方法は
、通常、図2のように、まず環状二重紡口の外側紡出口
より紡糸原液、該環状二重紡口の中央部紡出口より内液
を、同時に吐出させる。その吐出された紡糸原液を外液
で満たされた1m以上の長さを有する紡糸ろ斗内を流下
延伸させつつ凝固を進めた後、変向装置を介して横方向
に変向することが可能な凝固状態に達した時点で変向し
、同じく外液で満たされた凝固浴中を水平方向にさらに
走行させて追加凝固を行なった後、巻取っていた。 【0013】この紡糸方法では、いかなる紡糸条件をと
っても、あるいは中空糸膜の寸法をどのように変えても
、本発明の目的とする、蛋白質の透過性が良好で、かつ
B型肝炎ウィルスやnAnB型肝炎ウィルスなどの比較
的小さいウィルスのLRVが5以上のものは得られなか
ったのである。本発明による銅アンモニア法再生セルロ
ース多孔性中空糸膜の膜構造形成過程は、下記のごとき
ものであると考えられている。 【0014】即ち、紡糸原液が、ミクロ相分離を生起さ
せる凝固液中に吐出されると、セルロースの濃厚なる相
が直径0.01〜数μmの粒子として分散した、いわゆ
るミクロ相分離状態が形成される。ミクロ相分離状態の
生起は、紡糸中の中空糸膜の失透現象によって直接肉眼
観察するか、あるいは紡糸後の中空糸膜の電子顕微鏡観
察により直径0.02μm以上、1μm以下の粒子の存
在により確認できる。 【0015】ミクロ相分離により形成されたこれらの粒
子は、衝突、融合しつつ更に大きな粒子として成長しな
がら、同時に凝固液の凝固作用によりこれらの粒子が次
第に液体状態から固化しはじめ、ついには粒子が三次元
的につながった膜構造が固定されて多孔膜構造が完成さ
れる。このようにして形成された膜中の微細孔によって
ウィルスなどの微小粒子を捕捉し除去するのであるが、
本発明者らは、鋭意研究の結果、ミクロ相分離法による
多孔性中空糸膜の製造方法においては、ミクロ相分離の
生起から膜構造の固定化に至る段階(いわゆる凝固段階
)で、ミクロ相分離粒子の成長と融合によって形作られ
る膜構造を、可能な限り破壊しないように維持すること
が、ウィルスなどの微小粒子の除去性能の高い膜を得る
ための必須条件であることを見いだした。 【0016】特に、従来法による中空糸の紡糸方法では
、中空糸の走行に伴い必然的に発生する各種の抵抗(凝
固浴の浴抵抗、糸条支持物と糸との接触による摩擦抵抗
など)により、中空糸を引き伸ばそうとする延伸力が、
常に中空糸に作用し、形成されつつある、あるいは既に
形成された膜構造を破壊し、不均一なボイド構造を生じ
させていることに気づき、本発明を着想するに至った。 【0017】従来、通常の湿式紡糸繊維の製造において
は、紡糸過程(凝固過程を含む)の延伸は糸条強度を向
上させるものとして、一般的には好ましいものと考えら
れてきた。しかしながら、ミクロ相分離による多孔性中
空糸膜の製造においては、上述したような理由によって
、このような延伸は可能な限り避けるべきである。本発
明者らは、これを実現する具体的手段として、凝固浴に
U字型細管を用いることが最も効果的であり、また効率
的であることを見いだした。 【0018】次に、本発明を図面に基づき具体的に説明
する。図1は、本発明の製造方法の一例を示す模式図で
ある。本発明で用いられるU字型細管4とは、図1のよ
うに実質的に鉛直に立てられた二本のろ斗細管の下部が
U字型の管ないしは内部流路がU字管形状を有する接続
装置によって液密に連結された装置を意味する。 【0019】まず、環状二重紡口1の外側紡出口より紡
糸原液Aを、該環状二重紡口の中央紡出口より上記紡糸
原液に対するミクロ相分離兼凝固液である内液Bを、同
時に吐出し、紡出筒2、さらに、ろ斗細管の一方の管(
以下、下行管と呼ぶ)4aに導入する。このとき、紡糸
原液に対してミクロ相分離兼凝固液である外液Cは紡出
筒に設けられた入口より供給される。紡出筒の大部分あ
るいは全体、U字型細管には、外液が満たされた状態で
、定常的に送液され、紡糸原液とともに、下行管中を流
下する。 【0020】紡糸原液を紡出筒に導入する場合、エアギ
ャップ長(エア中の走行長さ)を設けて外液中に導入し
ても、あるいは直接外液に導入してもよい。エアギャッ
プ長は、紡糸原液が真っすぐに進入する長さが好ましい
。本発明の場合は、好ましくは10cm以内である。 下行管中を流下している段階で、紡糸原液は、中空糸膜
の形状を有するようになり、この中空糸膜は、U字型細
管の下端のU字部において変向され、紡糸ろ斗細管のも
う一方の管(以下、上行管と呼ぶ)4b中を外液ととも
に上昇し、上行管の開口部より引き出され巻取枠10に
巻取られる。 【0021】このようにして、紡糸原液は、U字型細管
中で、内液、外液の作用により、ミクロ相分離を生じつ
つ、引き続き凝固が進行する。このようなU字型細管を
用いて紡糸を行なえば、中空糸膜は下行管および上昇管
のいずれにおいても管壁に接触することなく凝固浴中を
走行させることができる。さらに、このとき、U字型細
管の下端に、中空糸膜に対して駆動力を及ぼす回転体(
以下、駆動変向ロールと呼ぶ)5を設ければ、下端のU
字部における中空糸膜とU字管壁との接触抵抗により必
然的に中空糸膜に作用する延伸力も実質的にゼロにする
ことができる。 【0022】このとき、駆動変向ロールの速度が、巻取
速度より極端に遅い場合は、上行管中で、当然延伸がか
かるようになり、好ましくない。本発明では、駆動変向
ロール速度と巻取速度の関係は、その速度差が20%以
下にあることが望ましい。さらに、本発明では、凝固浴
中の浴抵抗を抑えることに大きな長所がある。この浴抵
抗は、U字型細管中の凝固液(外液)の流速を、可能な
限り大きくすることによって最小限に抑えることができ
る。しかし、この時、外液流速が速くなりすぎると、下
行管中での中空糸膜の糸揺れが激しくなり紡糸が困難に
なるので、適切な値に設定する必要がある。最も好まし
くは、下行管で中空糸膜の糸揺れが生じない範囲での最
大流速を選ぶことである。 【0023】本発明は、上記のようにして、凝固段階に
おいて中空糸膜に対して実質的に糸長方向の延伸がかか
らないように紡糸することを特徴とする銅アンモニア法
再生セルロース多孔性中空糸膜の製造方法を提供するも
のである。U字型細管の径は、大きい方が紡出作業は容
易であるが、凝固液量を多量に必要とするために小さい
方が望ましく、3mm〜20mmの間が好適である。よ
り望ましくは、5mm〜10mmの間である。 【0024】U字型細管の長さは、中空糸膜構造の形成
に対応して適切な凝固時間を与え得るものでなければな
らないために、中空糸膜の紡糸速度に対応して適切な長
さに設定されることが好ましい。U字型細管の材質は、
凝固液に対して耐久性のある素材であればどのような素
材でも使用することが可能であるが、紡糸状態を観察す
ることのできる透明の材質が望ましく、例えば、ガラス
、ポリエチレン、ポリプロピレン、ポリテトラフルオロ
エチレン等が使用できる。U字型細管の、紡糸ろ斗細管
および下部のU字型の管は、紡糸原液が付着しにくいた
め紡出作業が容易であるという特徴をもつポリテトラフ
ルオロエチレンが最も好適な材質である。 【0025】本発明の方法によって実用上充分な蛋白質
透過性を有しかつB型肝炎ウィルスやnAnB型肝炎ウ
ィルス等の比較的小さなウィルスについてのLRVが5
以上である性能を有する銅アンモニア法再生セルロース
多孔性中空糸膜が得られる。なお、本発明における銅ア
ンモニア溶液とは、銅とアンモニアを主成分とする溶液
つまりシュバイツアー試薬と呼ばれる濃紺色の溶液であ
り、実質的にセルロースを溶解することのできる溶媒系
を意味するものであり、銅以外の陽イオンあるいはアン
モニア以外の溶媒を一部混入したものも含む。また、セ
ルロース濃度とは、セルロースの銅アンモニア溶液中で
の重量濃度を意味する。 【0026】本発明でいう、平均分子量は、特開昭59
−204912号公報に記載の方法と同一の方法で測定
した。空孔率Pr は、以下の方法で算出する。中空糸
膜の内径、膜厚、長さ、絶乾重量より、見掛け密度ρa
 を求め、式(1)より空孔率を求めた。       ρa =Wd /Vw            =4Wd /π・l(Do 2 
−Di 2 )      Pr =(1−ρa /ρ
p )×100  ………………      (1) 
       Pr ;空孔率           
       (  %  )Wd ;中空糸膜の絶乾
重量      (  g  )Vw ;中空糸膜の体
積          (cm3 )l  ;中空糸膜
の長さ          (cm  )Do ;中空
糸膜の外径          (cm  )Di ;
中空糸膜の内径          (cm  )ρp
 ;セルロースの密度        (g/cm3 
)平均孔径は、以下の方法で算出する。10本の中空糸
膜を束ね、1本毎の有効長さが16cmになるようにモ
ジュールを作成する。このモジュールの一端を閉じ、反
対の多端から200mmHgの圧力をかけ、温度37℃
の水を通す。このとき、この中空糸膜モジュールを通し
て出てくる水の量を透水量として測定する。そうして、
式(2)より平均孔径2γを算出する。 【0027】 【数1】 【0028】 2r ;平均孔径                (
nm)Kw ;定数(2.0) V  ;透水量                  
(ml/min)d  ;中空糸膜の膜厚      
    (μm)μ  ;水の粘度         
       (cp)p  ;圧力差       
           (mmHg)A  ;膜面積 
                 (cm2 )Pr
 ;空孔率                  ( 
 %  )日本脳炎ウィルスは、Perkin株から調
整し、ろ過前とろ過後のその力価は、BHK−21細胞
を用いてTCID50で測定した。元液の力価は、10
10.5TCID50(ml−1)であった。ここで、
TCID50(50%感染終末点)法とは、ウィルスの
感染量の測定法である。 【0029】まず、測定するウィルス液を10倍段階希
釈し、各希釈液を一定数以上の細胞に接種し、一定期間
培養し、ウィルスによる細胞変性効果(CPE)が認め
られる細胞を陽性とし、認められないものを陰性とする
。各希釈液における陽性細胞の出現率を、対数プロット
し、50%陽性を示す希釈率をTCID50とする。こ
の計算には、Reed−Muenchの方法を用いた。 LRVは、以下の式で計算した。二本脳炎ウィルスをウ
ィルス除去性能の指標として用いた理由は、nAnB型
ウィルスがこの日本脳炎ウィルスと同じ種類と考えられ
ており、また両者の粒子径も同じような大きさにあるか
らである。 【0030】 LRV=1og10(No /Nf )No ;ろ過前
の元液中のウィルスの力価Nf ;ろ過後のろ液中のウ
ィルスの力価蛋白質透過率は以下のようにして求めた。 まず、ヒヒ新鮮血液400mlを用意し、これを、40
00G、4℃で10分間遠心分離し、約250mlのヒ
ト新鮮血漿を得た。ろ過前とろ過後の蛋白質濃度は、次
の方法で測定した。総蛋白、アルブミンの濃度は、自動
分析計を用いて測定した。IgA、IgG、IgMの濃
度は、turbidimetric免疫測定試薬で測定
した。蛋白質透過率は、以下の式で計算した。 【0031】 SC=(Cf /Co )×100 SC;蛋白質透過率 Cr ;ろ過後の蛋白質濃度 Co ;ろ過前の蛋白質濃度 【0032】 【実施例】以下、本発明の銅アンモニア法再生セルロー
ス多孔性中空糸膜の製造方法を実施例によって具体的に
説明する。 【0033】 【実施例1】コットンリンター(平均分子量1.44×
105 )を公知の方法で調製した銅アンモニア溶液中
に溶解せしめ、ろ過脱泡を行ない、セルロース濃度が5
.7重量%、アンモニア濃度が4.0重量%、銅濃度が
2.1重量%の紡糸原液とした。該紡糸原液を環状二重
紡口の外側紡出口より2.0cc/minで吐出し、同
時に表1に示す条件のアセトン/アンモニア/水より成
る内液を該紡口の中央紡出口より0.7cc/minで
吐出した。 【0034】表1に示した条件のアセトン/アンモニア
/水より成る外液で満たされた、図1に示すU字型細管
を備えた装置に、吐出した紡糸原液を導入して、ミクロ
相分離を生起させるとともに引き続き凝固させ、紡速5
m/minで平枠に巻取った。このとき、ろ斗細管径は
7mm、外液流速は1.0m/min、駆動変向ロール
速度は4.7m/min、律速ロール速度は5m/mi
n、平枠速度は5m/minであった。巻取浴成分は、
30℃の水を用い、40分間巻取った後、さらに巻取浴
と同じ30℃の水に60分間浸漬した。 【0035】しかる後に、3重量%の硫酸水溶液で再生
し、さらに水洗した。得られた中空糸膜をメタノールで
水分を置換し、その後、緊張状態で、50℃、2Tor
rの条件下で真空乾燥させた。こうして得られた中空糸
膜の製造条件と物性を表1に示す。 【0036】 【比較例1】コットンリンター(平均分子量1.44×
105 )を公知の方法で調製した銅アンモニア溶液中
に溶解せしめ、ろ過脱泡を行ない、セルロース濃度が6
.7重量%、アンモニア濃度が4.7重量%、銅濃度が
2.4重量%の紡糸原液とした。 【0037】該紡糸原液を環状二重紡口の外側紡出口よ
り、表2に示した内液を該紡口の中央紡出口より、同時
に吐出せしめ、図2に示す装置を用いて、表1に示す外
液中に導入し、1.6mの長さのろ斗(管径16mm)
を経て、変向棒を用いて変向させ、4.4mの長さの凝
固浴を走行させ、紡速10m/minで巻取った。この
とき、凝固浴の外液は、ろ斗から流れこむようになって
いる。巻取浴成分は、外液と同じ組成の液を用い、40
分間巻取った後、さらに外液と同じ組成の液(浸漬液)
に60分間浸漬した。しかる後に、3重量%の硫酸水溶
液で再生し、さらに水洗した。 【0038】得られた中空糸膜をメタノールで水分を置
換し、その後、緊張状態で、50℃、2Torrの条件
下で真空乾燥させた。こうして得られた中空糸膜の製造
条件と物性を表1に示す。 【0039】 【表1】 【0040】 【発明の効果】本発明の製造方法によると、実用上充分
な蛋白質透過性を有し、かつB型肝炎ウィルス、nAn
B型肝炎ウィルスなどの比較的小さなウィルスについて
そのLRVが5以上である銅アンモニア法再生セルロー
ス多孔性中空糸膜が得られる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention is directed to the use of pores with an average pore size of 10 to 50
The present invention relates to a method for producing a cuprammonium regenerated cellulose porous hollow fiber membrane having a diameter of 0 nm. More specifically, it relates to a method for producing a porous hollow fiber membrane regenerated by the cuprammonium method, which is suitable for removing microbial particles such as viruses and bacteria from plasma, plasma fraction preparations, and protein-coexisting solutions such as culture media. be. [0002] Blood-borne viruses such as AIDS virus (HIV), hepatitis B virus (HBV), nAn
Infection with hepatitis B virus (NANBHV or HCV) has become a major social problem. Heat treatment and treatment with chemicals are used as methods to inactivate viruses that may be contaminated with blood products, but these treatments alone are not sufficient to inactivate viruses, and these methods In this case, useful proteins in blood products may also be denatured. Against this background, there is an increasing demand for membrane-based virus separation and removal technology as a physical virus removal method that does not involve chemical denaturation. [0003] The average pore diameter of the porous hollow fiber membrane used for this purpose is 10% due to the relationship with the size of the virus to be removed.
~500 nm range is required. In addition, in order to remove viruses from protein-coexisting solutions such as blood products and recover enough useful proteins for practical purposes, it is necessary to have a sharp pore size distribution, and the proteins will adsorb to the membrane material, reducing filtration performance. It is important not to let this happen. As a hollow fiber membrane that satisfies these requirements, a porous hollow fiber membrane made of regenerated cellulose using a cuprammonium method is currently known (Japanese Patent Application Laid-Open No.
9-204912, JP-A-59-204911). Conventionally, as a manufacturing method for this type of hollow fiber membrane, a cellulose cupric ammonia solution (hereinafter referred to as a spinning stock solution) is passed through an outer spinning port of an annular double spinneret to form a microphase separation and coagulation solution for the above-mentioned spinning stock solution. After simultaneously discharging the internal coagulating liquid (hereinafter referred to as the internal liquid) from the central spinneret of the annular double spinneret, the external coagulating liquid that is a microphase separation and coagulating liquid (hereinafter referred to as the external liquid) is discharged simultaneously. Solidification progresses as it flows down and falls through a spinning funnel filled with Next, a method was adopted in which the material was passed through a changing device, where it was further coagulated while traveling horizontally in a coagulation bath also filled with an external liquid, and then wound onto a frame (see FIG. 2). [0005] The cuprammonium regenerated cellulose porous hollow fiber membrane produced by this method can remove the AIDS virus (about 100 nm in size) with a high removal rate, and can also remove useful proteins in plasma with a high permeability. It has been confirmed that it has excellent recovery ability. However, according to the studies of the present inventors, the porous hollow fiber membrane is effective against relatively small viruses such as hepatitis B virus (approximately 42 nm in size) and nAn hepatitis B virus (approximately 30 to 60 nm in size). could not necessarily be said to have sufficient removal performance. For example, in a membrane with an average pore diameter of 30 nm obtained by the conventional manufacturing method described above, Japanese encephalitis virus (
When a filtration test was conducted using a virus with a particle diameter of approximately 45 nm, which is considered to be the same type as the nAn hepatitis B virus, the logarithmic inhibition coefficient LRV of the virus was approximately 2.4, which is satisfactory for practical use. It wasn't something. Here, LRV is a value defined as follows. [0007] LRV=log10(No/Nf)No; Virus concentration in the original solution before filtration Nf; Virus concentration in the filtrate after filtration Heat treatment method and Solvent/Detergent method applied when manufacturing plasma fraction preparations The virus removal level of virus inactivation techniques such as LRV
It is said to be 3 to 4 when expressed as 3 to 4, and with the films obtained by the conventional methods described above, it has not been possible to obtain anything superior to these techniques. [0008] Even with conventional membranes, if the membrane has a smaller average pore diameter, the virus inhibition performance will be improved, but on the other hand, there is a problem that the protein permeation performance will be lowered and the recovery rate of useful proteins will be lowered. Ta. Practically speaking, a membrane having high protein permeability and high virus-blocking performance is desirable. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a porous hollow fiber membrane made of regenerated cellulose using the cuprammonium method and having a high LRV for relatively small viruses. [Means for Solving the Problems] As a result of our earnest efforts to solve such practical problems, the present inventors have found that while having practically sufficient protein permeability, hepatitis B virus, nA
We have now invented a method for producing a porous hollow fiber membrane regenerated from cupric ammonia cellulose, in which the LRV is 5 or more even for relatively small viruses such as nB hepatitis virus. That is, the present invention provides a U-shaped coagulation bath when producing a hollow fiber membrane using a spinning dope consisting of a cellulose copper ammonia solution and a solution that causes microphase separation in the spinning dope as a coagulation liquid. This is a method for producing a regenerated cellulose porous hollow fiber membrane using a cuprammonium method, characterized by using molded capillaries. The method for producing a regenerated cellulose porous hollow fiber membrane using the cuprammonium method of the present invention uses at least one organic solvent that does not have hydroxyl groups, has a solubility in a 28% by weight ammonia aqueous solution of 10% by weight or more, and does not swell cellulose. It is characterized in that a mixed solution containing seeds and having a composition that causes microphase separation in the cellulose cuprammonium solution is used as the coagulation liquid (both the external liquid and the internal liquid). [0012] By employing the above-mentioned coagulation liquid, it becomes possible for the first time to produce a regenerated cellulose porous hollow fiber membrane using the cuprammonium method, but this coagulation is carried out using an alkaline aqueous solution such as sodium hydroxide or an aqueous solution such as sulfuric acid. One of its characteristics is that the coagulation rate is much slower than coagulation using an acid aqueous solution. For this purpose, in the conventional spinning method, as shown in Fig. 2, first, the spinning stock solution is first discharged from the outer spinning opening of the annular double spinneret, and the inner solution is simultaneously discharged from the central spinning opening of the annular double spinneret. . After the discharged spinning dope is coagulated while being flow-drawn in a spinning funnel with a length of 1 m or more filled with an external liquid, it is possible to change the direction in the lateral direction via a direction change device. When a certain solidification state was reached, the direction was changed, and the material was further run horizontally in a coagulation bath also filled with external liquid for additional coagulation, and then wound up. [0013] In this spinning method, no matter what spinning conditions are used or how the dimensions of the hollow fiber membrane are changed, it is possible to achieve the object of the present invention, which is to have good protein permeability and to prevent hepatitis B virus and nAnB. It was not possible to obtain relatively small viruses such as hepatitis virus with an LRV of 5 or more. The membrane structure formation process of the cuprammonium regenerated cellulose porous hollow fiber membrane according to the present invention is considered to be as follows. That is, when the spinning stock solution is discharged into a coagulation solution that causes microphase separation, a so-called microphase separation state is formed in which the concentrated cellulose phase is dispersed as particles with a diameter of 0.01 to several μm. be done. The occurrence of a microphase separation state can be observed directly with the naked eye by the devitrification phenomenon of the hollow fiber membrane during spinning, or by the presence of particles with a diameter of 0.02 μm or more and 1 μm or less by electron microscopic observation of the hollow fiber membrane after spinning. You can check it. [0015] These particles formed by microphase separation collide and coalesce, growing into larger particles, and at the same time, due to the coagulation action of the coagulation liquid, these particles gradually begin to solidify from a liquid state, and finally become particles. The membrane structure in which the membranes are connected three-dimensionally is fixed to complete the porous membrane structure. The micropores in the membrane formed in this way capture and remove microscopic particles such as viruses.
As a result of intensive research, the present inventors have discovered that in a method for manufacturing porous hollow fiber membranes using microphase separation, the microphase is We have discovered that maintaining the membrane structure formed by the growth and fusion of separated particles as undamaged as possible is an essential condition for obtaining a membrane with high performance in removing microparticles such as viruses. In particular, in the conventional hollow fiber spinning method, various resistances inevitably occur as the hollow fiber runs (bath resistance of the coagulation bath, frictional resistance due to contact between the yarn support and the yarn, etc.). Therefore, the stretching force that tries to stretch the hollow fiber is
The present invention was conceived based on the realization that the membrane constantly acts on the hollow fibers, destroying the membrane structure that is being formed or has already been formed, and causing a non-uniform void structure. Conventionally, in the production of conventional wet-spun fibers, drawing during the spinning process (including the coagulation process) has been generally considered preferable as it improves the yarn strength. However, in the production of porous hollow fiber membranes by microphase separation, such stretching should be avoided as much as possible for the reasons mentioned above. The present inventors have found that the use of a U-shaped capillary in the coagulation bath is the most effective and efficient means of achieving this. Next, the present invention will be specifically explained based on the drawings. FIG. 1 is a schematic diagram showing an example of the manufacturing method of the present invention. The U-shaped thin tube 4 used in the present invention is a tube in which the lower part of two funnel tubes erected substantially vertically is U-shaped, or the internal flow path is shaped like a U-shaped tube, as shown in FIG. means a device that is fluid-tightly connected by a connecting device with First, the spinning dope A is simultaneously fed from the outer spinning spout of the annular double spinneret 1, and the inner solution B, which is a microphase separation and coagulating liquid for the spinning dope, is simultaneously fed from the central spinning spout of the annular double spinneret. Discharge, spinning tube 2, and one tube of the funnel tube (
(hereinafter referred to as the descending tube) 4a. At this time, an external liquid C, which serves as a microphase separation and coagulation liquid for the spinning dope, is supplied from an inlet provided in the spinning tube. Most or all of the spinning tube, or the U-shaped tube, is filled with external liquid, which is constantly fed, and flows down in the descending tube together with the spinning dope. When the spinning dope is introduced into the spinning tube, it may be introduced into the external liquid by providing an air gap length (travel length in air), or it may be introduced directly into the external liquid. The air gap length is preferably such that the spinning dope enters straight into the air gap. In the case of the present invention, the distance is preferably within 10 cm. At the stage of flowing down the descending tube, the spinning stock solution takes on the shape of a hollow fiber membrane, and this hollow fiber membrane is diverted at the U-shaped portion at the lower end of the U-shaped capillary, and the spinning dope is passed through the spinning funnel. It rises together with the external liquid in the other tube (hereinafter referred to as the ascending tube) 4b of the thin tubes, is pulled out from the opening of the ascending tube, and is wound up on the winding frame 10. [0021] In this manner, the spinning dope continues to solidify in the U-shaped tube while microphase separation occurs due to the action of the inner and outer liquids. If spinning is performed using such a U-shaped thin tube, the hollow fiber membrane can run through the coagulation bath without contacting the tube walls in either the descending tube or the ascending tube. Furthermore, at this time, a rotating body (
(Hereinafter, referred to as drive direction change roll) 5, the lower end U
The stretching force that inevitably acts on the hollow fiber membrane due to the contact resistance between the hollow fiber membrane and the U-shaped tube wall at the shaped portion can also be reduced to substantially zero. [0022] At this time, if the speed of the drive direction change roll is extremely slower than the winding speed, stretching will naturally occur in the ascending tube, which is not preferable. In the present invention, it is desirable that the relationship between the driving direction change roll speed and the winding speed is such that the speed difference is 20% or less. Furthermore, the present invention has the great advantage of suppressing bath resistance in the coagulation bath. This bath resistance can be minimized by making the flow rate of the coagulation liquid (external liquid) in the U-shaped tube as high as possible. However, at this time, if the flow rate of the external liquid becomes too high, the hollow fiber membrane in the descending tube will violently shake, making spinning difficult, so it is necessary to set it to an appropriate value. Most preferably, the maximum flow rate is selected within a range that does not cause the hollow fiber membrane to sway in the descending tube. The present invention provides a porous hollow fiber regenerated by the cuprammonium method, which is characterized in that the hollow fiber membrane is spun so as not to be substantially stretched in the longitudinal direction of the fiber during the coagulation step, as described above. A method for manufacturing a membrane is provided. The larger the diameter of the U-shaped tube, the easier the spinning operation, but since a large amount of coagulation liquid is required, a smaller diameter is desirable, and a diameter between 3 mm and 20 mm is preferable. More preferably, it is between 5 mm and 10 mm. [0024] The length of the U-shaped capillary must be such that it can provide an appropriate coagulation time in accordance with the formation of the hollow fiber membrane structure. It is preferable to set it to . The material of the U-shaped tube is
Any material can be used as long as it is durable against the coagulating liquid, but a transparent material that allows the spinning state to be observed is preferable, such as glass, polyethylene, polypropylene, polyester, etc. Tetrafluoroethylene etc. can be used. The most suitable material for the spinning funnel tube and the lower U-shaped tube of the U-shaped tube is polytetrafluoroethylene, which is characterized in that the spinning stock solution does not easily adhere to it, making the spinning operation easy. By the method of the present invention, the LRV for relatively small viruses such as hepatitis B virus and nAn hepatitis B virus that has practically sufficient protein permeability is 5.
A cuprammonium regenerated cellulose porous hollow fiber membrane having the above performance is obtained. In addition, the cuprammonium solution in the present invention is a solution whose main components are copper and ammonia, that is, a dark blue solution called Schweitzer's reagent, and means a solvent system that can substantially dissolve cellulose. , including those containing some cations other than copper or solvents other than ammonia. Moreover, the cellulose concentration means the weight concentration of cellulose in a cupric ammonia solution. [0026] In the present invention, the average molecular weight is
It was measured by the same method as described in JP-204912. The porosity Pr is calculated by the following method. From the inner diameter, membrane thickness, length, and absolute dry weight of the hollow fiber membrane, the apparent density ρa
was calculated, and the porosity was calculated from equation (1). ρa = Wd /Vw =4Wd /π・l(Do 2
-Di 2 ) Pr = (1-ρa /ρ
p ) × 100 ……………… (1)
Pr; porosity
(%) Wd; Absolute dry weight of hollow fiber membrane (g) Vw; Volume of hollow fiber membrane (cm3) l; Length of hollow fiber membrane (cm) Do; Outer diameter of hollow fiber membrane (cm) Di;
Inner diameter of hollow fiber membrane (cm)ρp
; Density of cellulose (g/cm3
) The average pore diameter is calculated by the following method. A module is created by bundling 10 hollow fiber membranes so that the effective length of each fiber is 16 cm. One end of this module was closed, a pressure of 200 mmHg was applied from the opposite end, and the temperature was 37°C.
Let the water pass through. At this time, the amount of water coming out through this hollow fiber membrane module is measured as the amount of water permeation. Then,
The average pore diameter 2γ is calculated from equation (2). [Equation 1] 2r; Average pore diameter (
nm) Kw ; constant (2.0) V ; water permeability
(ml/min) d ; Thickness of hollow fiber membrane
(μm) μ ; Viscosity of water
(cp)p; pressure difference
(mmHg)A; Membrane area
(cm2)Pr
; Porosity (
%) Japanese encephalitis virus was prepared from Perkin strain, and its titer before and after filtration was measured by TCID50 using BHK-21 cells. The titer of the original solution is 10
It was 10.5TCID50 (ml-1). here,
The TCID50 (50% end point of infection) method is a method for measuring the infectious amount of a virus. First, the virus solution to be measured is serially diluted 10 times, each dilution is inoculated into a certain number of cells or more, cultured for a certain period of time, and cells in which cytopathic effect (CPE) caused by the virus is observed are determined to be positive. Those that are not recognized are considered negative. The appearance rate of positive cells in each dilution is plotted logarithmically, and the dilution rate showing 50% positivity is defined as TCID50. The Reed-Muench method was used for this calculation. LRV was calculated using the following formula. The reason why the double encephalitis virus was used as an index of virus removal performance is that the nAnB virus is considered to be the same type as the Japanese encephalitis virus, and the particle sizes of both are similar. LRV=1og10(No/Nf)No; Virus titer in the original solution before filtration Nf; Virus titer in the filtrate after filtration The protein permeability was determined as follows. First, prepare 400 ml of fresh baboon blood, and add 400 ml of fresh baboon blood.
About 250 ml of fresh human plasma was obtained by centrifugation at 00G and 4°C for 10 minutes. The protein concentration before and after filtration was measured by the following method. Total protein and albumin concentrations were measured using an automatic analyzer. The concentrations of IgA, IgG, and IgM were measured using turbidimetric immunoassay reagents. Protein permeability was calculated using the following formula. [0031] SC=(Cf/Co)×100 SC; Protein permeability Cr; Protein concentration after filtration Co; Protein concentration before filtration [Example] Hereinafter, the porosity of regenerated cellulose using the cuprammonium method of the present invention will be explained. The method for manufacturing hollow fiber membranes will be specifically explained using examples. [Example 1] Cotton linter (average molecular weight 1.44×
105) was dissolved in a copper ammonia solution prepared by a known method, filtered and defoamed, and the cellulose concentration was reduced to 5.
.. The spinning dope had a spinning stock solution of 7% by weight, an ammonia concentration of 4.0% by weight, and a copper concentration of 2.1% by weight. The spinning stock solution is discharged from the outer spinning opening of the annular double spinneret at a rate of 2.0 cc/min, and at the same time, the inner solution consisting of acetone/ammonia/water under the conditions shown in Table 1 is discharged from the central spinning opening of the spinneret at a rate of 2.0 cc/min. It was discharged at 7cc/min. The discharged spinning stock solution was introduced into a device equipped with a U-shaped tube shown in FIG. 1, which was filled with an external liquid consisting of acetone/ammonia/water under the conditions shown in Table 1, and microphase separation was carried out. is caused and continues to solidify, and the spinning speed is increased to 5.
It was wound up onto a flat frame at m/min. At this time, the diameter of the funnel tube is 7 mm, the external liquid flow rate is 1.0 m/min, the driving direction change roll speed is 4.7 m/min, and the rate-limiting roll speed is 5 m/min.
n, the flat frame speed was 5 m/min. The components of the winding bath are:
After winding it up for 40 minutes using 30°C water, it was further immersed in the same 30°C water as the winding bath for 60 minutes. Thereafter, it was regenerated with a 3% by weight aqueous sulfuric acid solution and further washed with water. Water in the obtained hollow fiber membrane was replaced with methanol, and then heated at 50°C and 2 Tor under tension.
It was vacuum dried under conditions of r. Table 1 shows the manufacturing conditions and physical properties of the hollow fiber membrane thus obtained. [Comparative Example 1] Cotton linter (average molecular weight 1.44×
105) was dissolved in a cupric ammonia solution prepared by a known method, filtered and defoamed, and the cellulose concentration reached 6.
.. A spinning stock solution having an ammonia concentration of 7% by weight, an ammonia concentration of 4.7% by weight, and a copper concentration of 2.4% by weight was prepared. The spinning dope was simultaneously discharged from the outer spinning port of the annular double spinneret, and the internal solution shown in Table 2 was simultaneously discharged from the central spinning port of the spinneret. Using the apparatus shown in FIG. Introduce the liquid into the external liquid shown in Figure 2, using a 1.6 m long funnel (tube diameter 16 mm).
After that, the coagulation bath was changed direction using a direction change rod, and a coagulation bath having a length of 4.4 m was run, and the coagulation bath was wound up at a spinning speed of 10 m/min. At this time, the external liquid of the coagulation bath flows into the funnel. The winding bath component uses a liquid with the same composition as the external liquid, and
After winding for a minute, a liquid with the same composition as the external liquid (immersion liquid) is added.
immersed in for 60 minutes. Thereafter, it was regenerated with a 3% by weight aqueous sulfuric acid solution and further washed with water. The moisture in the obtained hollow fiber membrane was replaced with methanol, and then it was vacuum-dried under tension at 50° C. and 2 Torr. Table 1 shows the manufacturing conditions and physical properties of the hollow fiber membrane thus obtained. [Table 1] [Effects of the Invention] According to the production method of the present invention, the production method has practically sufficient protein permeability, and the hepatitis B virus, nAn
A cuprammonium-method regenerated cellulose porous hollow fiber membrane having an LRV of 5 or more for relatively small viruses such as hepatitis B virus can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による多孔性中空糸膜の製造法を行なう
ための装置の一実施例を示す概略断面図。
FIG. 1 is a schematic cross-sectional view showing one embodiment of an apparatus for carrying out the method for producing a porous hollow fiber membrane according to the present invention.

【図2】比較例1に使用した装置の概略断面図。FIG. 2 is a schematic cross-sectional view of the device used in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1  環状二重紡口 2  紡出筒 3  整流板 4  U字型細管 4a  下行管 4b  上行管 5  駆動変向ロール 6  変向ロールカバー 7  律速ロール 8  排出筒 9  巻取浴 10  巻取平枠 11  巻取水 12  変向棒 13  凝固浴 14  巻取液 1. Annular double spinneret 2 Spinning cylinder 3. Current plate 4 U-shaped tube 4a Descending canal 4b Ascending canal 5 Drive direction change roll 6 Direction change roll cover 7 Rate-limiting roll 8 Discharge pipe 9 Winding bath 10 Winding flat frame 11. Winding water 12 Direction rod 13 Coagulation bath 14 Winding liquid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  セルロース銅アンモニア溶液からなる
紡糸原液と上記紡糸原液に対してミクロ相分離を生起さ
せる溶液を凝固液として用いて中空糸膜を製造するに際
し、凝固浴としてU字型細管を用いることを特徴とする
銅アンモニア法再生セルロース多孔性中空糸膜の製造方
法。
Claim 1: A U-shaped capillary is used as a coagulation bath when manufacturing a hollow fiber membrane using a spinning dope consisting of a cellulose cupric ammonia solution and a solution that causes microphase separation in the spinning dope as a coagulation liquid. A method for producing a regenerated cellulose porous hollow fiber membrane using a cuprammonium method, characterized by:
JP03147049A 1991-06-19 1991-06-19 Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method Expired - Lifetime JP3093821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03147049A JP3093821B2 (en) 1991-06-19 1991-06-19 Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03147049A JP3093821B2 (en) 1991-06-19 1991-06-19 Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method

Publications (2)

Publication Number Publication Date
JPH04371221A true JPH04371221A (en) 1992-12-24
JP3093821B2 JP3093821B2 (en) 2000-10-03

Family

ID=15421347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03147049A Expired - Lifetime JP3093821B2 (en) 1991-06-19 1991-06-19 Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method

Country Status (1)

Country Link
JP (1) JP3093821B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009376A1 (en) * 1994-09-21 1996-03-28 Haemacure Biotech Inc. Therapeutic grade thrombin production and products
WO2001014047A1 (en) * 1999-08-20 2001-03-01 Asahi Kasei Kabushiki Kaisha Filter membranes for physiologically active substances
JP2010115655A (en) * 2010-02-15 2010-05-27 Toyobo Co Ltd Drying method of polysulfonic hollow fiber membrane bundle with selective permeability
KR20160087892A (en) 2014-04-11 2016-07-22 아사히 가세이 메디컬 가부시키가이샤 Virus removal membrane
KR20180087381A (en) 2016-03-31 2018-08-01 아사히 가세이 메디컬 가부시키가이샤 Method for manufacturing virus removal membrane and virus removal membrane
CN110592690A (en) * 2019-09-04 2019-12-20 宜兴市新东茂纺织科技有限公司 Cotton and flax blended hollow thick spinning spinneret plate
US10829514B2 (en) 2014-04-11 2020-11-10 Asahi Kasei Medical Co., Ltd. Virus removal membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127739B1 (en) 2007-03-08 2012-03-22 아사히 가세이 메디컬 가부시키가이샤 Method for test on integrity of microporous membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009376A1 (en) * 1994-09-21 1996-03-28 Haemacure Biotech Inc. Therapeutic grade thrombin production and products
WO2001014047A1 (en) * 1999-08-20 2001-03-01 Asahi Kasei Kabushiki Kaisha Filter membranes for physiologically active substances
EP1206961A4 (en) * 1999-08-20 2002-10-23 Asahi Chemical Ind Filter membranes for physiologically active substances
AU766583B2 (en) * 1999-08-20 2003-10-16 Asahi Kasei Pharma Corporation Filter membranes for physiologically active substances
AU766583C (en) * 1999-08-20 2004-08-19 Asahi Kasei Pharma Corporation Filter membranes for physiologically active substances
JP2010115655A (en) * 2010-02-15 2010-05-27 Toyobo Co Ltd Drying method of polysulfonic hollow fiber membrane bundle with selective permeability
KR20160087892A (en) 2014-04-11 2016-07-22 아사히 가세이 메디컬 가부시키가이샤 Virus removal membrane
US10675593B2 (en) 2014-04-11 2020-06-09 Asahi Kasei Medical Co., Ltd. Virus removal membrane
US10829514B2 (en) 2014-04-11 2020-11-10 Asahi Kasei Medical Co., Ltd. Virus removal membrane
KR20180087381A (en) 2016-03-31 2018-08-01 아사히 가세이 메디컬 가부시키가이샤 Method for manufacturing virus removal membrane and virus removal membrane
US11491446B2 (en) 2016-03-31 2022-11-08 Asahi Kasei Medical Co., Ltd. Virus removal membrane and method for manufacturing virus removal membrane
CN110592690A (en) * 2019-09-04 2019-12-20 宜兴市新东茂纺织科技有限公司 Cotton and flax blended hollow thick spinning spinneret plate

Also Published As

Publication number Publication date
JP3093821B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US4808315A (en) Porous hollow fiber membrane and a method for the removal of a virus by using the same
JP2004525755A (en) Asymmetric hollow fiber membrane
WO2016072409A1 (en) Hollow fiber filtration membrane
WO2016117565A1 (en) Porous hollow fiber filtration membrane
WO2013012024A1 (en) Porous hollow fiber membrane
WO1997022405A1 (en) Hollow fiber type filtration membrane
RU2718981C1 (en) Membrane for virus removal and method for production of membrane for virus removal
WO2015032786A1 (en) Permselective asymmetric membranes
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP3093821B2 (en) Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method
JP6770807B2 (en) Hollow fiber membrane
JP6367977B2 (en) Porous hollow fiber membrane
US4857196A (en) Porous hollow fiber membrane and a method for the removal of a virus by using the same
JPH025132B2 (en)
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
JPS6388007A (en) Virus free module
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP3424807B2 (en) Hollow fiber membrane
JP3167370B2 (en) Hollow fiber membrane having novel structure and method for producing the same
JPS5841883B2 (en) Plasma separation membrane and its manufacturing method
JPH03228671A (en) Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma
JP2601312B2 (en) Method for drying porous regenerated cellulose hollow fiber
JPH11179174A (en) Hollow fiber membrane for separation and manufacture thereof
JPS6388130A (en) Production of blood plasma free from hepatitis b virus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000718

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

EXPY Cancellation because of completion of term