JPH03228671A - Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma - Google Patents

Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma

Info

Publication number
JPH03228671A
JPH03228671A JP2213290A JP2213290A JPH03228671A JP H03228671 A JPH03228671 A JP H03228671A JP 2213290 A JP2213290 A JP 2213290A JP 2213290 A JP2213290 A JP 2213290A JP H03228671 A JPH03228671 A JP H03228671A
Authority
JP
Japan
Prior art keywords
mycoplasma
membrane
filtration
regenerated cellulose
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2213290A
Other languages
Japanese (ja)
Inventor
Seiichi Manabe
征一 真鍋
Masuo Satani
佐谷 満州夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2213290A priority Critical patent/JPH03228671A/en
Publication of JPH03228671A publication Critical patent/JPH03228671A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title porous regenerated cellulose membrane having high removal ratio of mycoplasma, having specific average pore diameter range by water filtration speed method, specific membrane thickness and pore structure capable of being approximated by multi-layer structure membrane substantially having multi-stage filtration function. CONSTITUTION:The above-mentioned porous regenerated cellulose membrane for removing mycoplasma has 30-100nm average pore diameter 2rf by water filtration speed method and <=20mum membrane thickness (d) in a range shown by the formula. The membrane has pore structure capable of being approximated by multi-layer structure membrane substantially having multi-stage filtration function. By using the membrane, mycoplasma can be removed from animal plasma, serum, an aqueous solution of salt or an aqueous solution containing protein or amino acid. In the removal, mycoplasma can be removed in high removal ratio such as >=99.999%. In the case of a solution containing protein, permeability of protein is >=80% and recovery ratio can be increased >=90% by filtration followed by washing with a buffer solution, etc., and filtration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩水溶液又は蛋白質もしくはアミノ酸を含む水
溶液中に存在するマイコプラズマを除去する高分子多孔
膜および該多孔膜を用いたマイコプラズマの除去方法に
関する。ここで多孔膜とは電子顕微鏡を用いて10万倍
で観察した場合、明瞭に孔が観察される膜であり、いわ
ゆる透析型人工腎臓用の膜や脱塩用の膜のように分離機
能を有する膜の表面には10万倍での電子顕微鏡観察で
孔が明瞭には認められない膜は含まれない。換言すれば
高分子多孔膜とは水濾過速度法による平均孔径が10n
m以上の膜ともいえる。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a porous polymer membrane for removing mycoplasma present in an aqueous salt solution or an aqueous solution containing proteins or amino acids, and a method for removing mycoplasma using the porous membrane. . Here, a porous membrane is a membrane in which pores are clearly observed when observed using an electron microscope at a magnification of 100,000 times. A film in which pores are not clearly observed on the surface of the film when observed under an electron microscope at 100,000 times magnification is not included. In other words, a porous polymer membrane has an average pore diameter of 10n according to the water filtration rate method.
It can also be said to be a film with a diameter of m or more.

本発明の好ましい適用例として下記のような用途が挙げ
られる。
Preferred application examples of the present invention include the following uses.

(1)牛、馬等動物の血漿や血清等の動物由来の体液か
らのマイコプラズマの除去。
(1) Removal of mycoplasma from animal-derived body fluids such as plasma and serum of animals such as cows and horses.

(2)細胞培養用の血清含有培地、あるいは無血清培地
からのマイコプラズマの除去。
(2) Removal of mycoplasma from serum-containing or serum-free media for cell culture.

(3)遺伝子工学等で使用される蛋白質を含む薬剤ある
いは水溶液からのマイコプラズマの除去。
(3) Removal of mycoplasma from drugs or aqueous solutions containing proteins used in genetic engineering, etc.

(4)ワクチン製造工程中へのマイコプラズマの混入防
止。
(4) Preventing mycoplasma from entering the vaccine manufacturing process.

本発明は、医学、生物化学、畜産分野、生化学工業を含
むバイオインダストリー分野等において広く利用できる
The present invention can be widely used in medicine, biochemistry, animal husbandry, bioindustry including biochemical industry, and the like.

〔従来の技術〕[Conventional technology]

マイコプラズマは、人工無細胞培地で発育し得る最小の
微生物で、人をはじめ牛、馬、豚、羊、山羊、七面鳥、
鶏、鳩、犬、猫、ラット、マウス等のあらゆる動物に感
染する。細胞壁がなく、多形態性であり、自己増殖出来
る最小の増殖単位は125〜250nIlで大きいもの
は600〜900nI11に達する。細胞培養は、生化
学、医学、薬学の研究やバイオインダストリーでの生産
において欠かせない操作であるが、この細胞培養におい
てマイコプラズマが培養細胞系に混入すると、細胞膜の
性質が変化し、その結果細胞の形態が変化したり、細胞
の代謝系や染色体に異常を来たしたりすることがある。
Mycoplasma is the smallest microorganism that can grow in an artificial cell-free culture medium, and it can be used in humans, cows, horses, pigs, sheep, goats, turkeys, etc.
It infects all animals including chickens, pigeons, dogs, cats, rats, and mice. It has no cell wall, is pleomorphic, and the smallest self-proliferating unit is 125-250 nIl, with the largest one reaching 600-900 nI11. Cell culture is an essential operation in biochemical, medical, and pharmaceutical research and production in bioindustry, but when mycoplasma enters the cultured cell system, the properties of the cell membrane change, resulting in cell The morphology of cells may change, or abnormalities may occur in the cell's metabolic system or chromosomes.

そのためマイコプラズマの混入はバイオインダストリー
分野での研究や生産に大きな影響を与えることがある。
Therefore, mycoplasma contamination can have a major impact on research and production in the bioindustry field.

マイコプラズマの細胞培養系への混入ルートは、■空気
あるいは飛沫、■細胞・組織などの生物材料自体が既感
染し、これからの混入、■培地からの混入等多岐にわた
る。
Mycoplasma can be introduced into a cell culture system in a variety of ways, including through air or droplets, biological materials such as cells and tissues that have already been infected and will become infected, and contamination from the culture medium.

マイコプラズマの除去方法あるいは不活化法としては、
(イ)高温・高圧の水蒸気による加熱滅菌法、(II)
殺マイコプラズマ化合物(通常抗生物質)を培養系に混
入する方法等がある。しかし加熱滅菌法では細胞培養系
の主として蛋白質の変性により、蛋白質の生理活性が低
下し、細胞が十分に成長しない等の問題点があり、又、
加熱滅菌出来ない組成の培地や血清には、加熱滅菌法は
適用できない、また化学薬品(殺マイコプラズマ用抗生
物質)の添加により不活化させることも一部では成功し
ているが、必ずしも完全不活化とはいえず、また添加物
の細胞への副作用の点において問題を残している。
As a method for removing or inactivating mycoplasma,
(B) Heat sterilization method using high temperature and high pressure steam, (II)
There are methods such as mixing mycoplasmacidal compounds (usually antibiotics) into the culture system. However, the heat sterilization method has problems such as denaturation of proteins mainly in the cell culture system, which reduces the physiological activity of proteins and prevents cells from growing sufficiently.
Heat sterilization cannot be applied to media and serum whose composition cannot be heat sterilized, and although some success has been achieved in some cases by adding chemicals (antibiotics for mycoplasma), complete inactivation is not always possible. However, problems still remain regarding the side effects of additives on cells.

一方、マイコプラズマの除去の方法として、濾過による
除去が採用されている。しかし、現在市販されているポ
リ塩化ビニル・プロピレンコポリマー製の膜(メーカー
公称孔径0.22μm)あるいはポリビニリデンジフロ
ライド製の膜(メーカ公称孔径0.1μ蒙)では1回の
濾過操作によって細胞培養用培地溶液から完全にマイコ
プラズマを除去することは不可能である。そのため、2
回あるいは3回と濾過を繰り返してマイコプラズマの除
去率を高めようとしているのが実情である。さらにこれ
ら市販の膜では、蛋白質水溶液を濾過する場合には、蛋
白質の膜への吸着による目詰りが起り、濾過速度が大幅
に減少する。このような濾過速度の低下のため1〜5k
g/c−の加圧が必要となり、加圧力が高まると蛋白質
の膜透過率が大幅に減少する。加圧力によるマイコプラ
ズマ自体の変形が起こり、あるいは膜のマイコプラズマ
除去率の加圧力の増大に伴う減少も起こっている可能性
も大きい。
On the other hand, removal by filtration has been adopted as a method for removing mycoplasma. However, with currently commercially available polyvinyl chloride-propylene copolymer membranes (manufacturer's nominal pore size: 0.22 μm) or polyvinylidene difluoride membranes (manufacturer's nominal pore size: 0.1 μm), cells can be removed by one filtration operation. It is impossible to completely remove mycoplasma from culture medium solutions. Therefore, 2
The reality is that filtration is repeated three or more times to increase the removal rate of mycoplasma. Furthermore, when these commercially available membranes are used to filter an aqueous protein solution, clogging occurs due to protein adsorption to the membrane, and the filtration rate is significantly reduced. 1-5k due to such a decrease in filtration speed
A pressure of g/c- is required, and as the pressure increases, the membrane permeability of proteins decreases significantly. It is highly possible that the mycoplasma itself is deformed by the applied pressure, or that the mycoplasma removal rate of the membrane decreases as the applied pressure increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、マイコプラズマの除去率が高く、動物
の血漿もしくは血清、又は蛋白質もしくはアミノ酸を含
有する水溶液からの蛋白質の回収率が高く、かつ短時間
で多量の濾過が出来る蛋白質水溶液からのマイコプラズ
マの除去用高分子多孔膜およびマイコプラズマ除去方法
を提供するにある。
The purpose of the present invention is to provide a method for removing mycoplasma from an aqueous protein solution that has a high removal rate of mycoplasma, a high recovery rate of protein from animal plasma or serum, or an aqueous solution containing proteins or amino acids, and which can filter a large amount in a short time. To provide a porous polymer membrane for removing mycoplasma and a method for removing mycoplasma.

蛋白質水溶液中のマイコプラズマを除去して蛋白質を回
収する場合、マイコプラズマ除去の要求達成水準は蛋白
質の膜透過の水準にくらべて格段に高い。たとえば、高
分子膜を用いて蛋白質と共存するマイコプラズマの除去
を行なう場合、蛋白質の膜透過率(=(炉液中の蛋白質
濃度/原液中の蛋白質濃度) X100 ) (χ)は
1〜99%の範囲での論議が、あるいは蛋白質の透過率
は高ければ高いほど良いとするのが一般的である。一方
、マイコプラズマの除去率(=(1−(F液中のマイコ
プラズマ濃度/原液中のマイコプラズマ濃度)〕X10
0 ) (χ)は、99.99〜99.999999%
またはそれ以上が問題となる。マイコプラズマの除去の
みが目的であれば、膜の平均孔径を小さくすれば、マイ
コプラズマの除去率は、ある程度向上するであろう。し
かし、溶液が蛋白質を含有する場合には、平均孔径を小
さくすることにより蛋白質による膜の目詰りが起り、蛋
白質の透過率が低下するとともに蛋白質を含む溶液の透
過速度も低下し、濾過前後における蛋白質の組成変化が
大きくなるといった問題が生じる。
When recovering proteins by removing mycoplasma from an aqueous protein solution, the required level of mycoplasma removal is much higher than the level of membrane permeation of proteins. For example, when removing mycoplasma that coexists with proteins using a polymer membrane, the membrane permeability of proteins (=(protein concentration in furnace solution/protein concentration in stock solution) X100) (χ) is 1 to 99%. Generally speaking, the higher the protein permeability, the better. On the other hand, mycoplasma removal rate (=(1-(mycoplasma concentration in solution F/mycoplasma concentration in stock solution))]X10
0 ) (χ) is 99.99 to 99.999999%
or more is a problem. If the purpose is only to remove mycoplasma, reducing the average pore diameter of the membrane will improve the mycoplasma removal rate to some extent. However, when the solution contains proteins, reducing the average pore size causes clogging of the membrane with proteins, which reduces the permeability of proteins and the permeation rate of solutions containing proteins. A problem arises in that protein composition changes greatly.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の目的を達成するために、本発明においては、水
濾過速度法による平均孔径2芹が30nm以上1100
n以下で膜厚dが20μm以上で下記式の範囲にあり、 (1000/7) (2石−)+10≦d≦(1500
0/7)(2五)−14(ただし単位は μm)かつ実
質的に多段濾過機能を有する多層構造膜で近似出来る孔
構造を有するマイコプラズマ除去用多孔性再生セルロー
ス膜が提供され、並びに該膜を用いて動物の血漿もしく
は血清、塩の水溶液又は蛋白質もしくはアミノ酸を含有
する水溶液からマイコプラズマを除去するマイコプラズ
マ除去方法が提供される。
In order to achieve the purpose of the present invention, in the present invention, the average pore diameter 2 by the water filtration rate method is 30 nm or more and 1100 nm or more.
n or less and the film thickness d is 20 μm or more, it is in the range of the following formula, (1000/7) (2 stones -) + 10≦d≦(1500
0/7)(25)-14 (unit: μm) and a porous regenerated cellulose membrane for mycoplasma removal having a pore structure that can be approximated by a multilayer structure membrane having substantially a multistage filtration function, and the membrane Provided is a method for removing mycoplasma from animal plasma or serum, an aqueous salt solution, or an aqueous solution containing proteins or amino acids using the method.

本発明の第1の特徴は多孔性再生セルロース膜を採用す
る点にある。再生セルロース膜は水溶液中に存在する蛋
白質の吸着がきわめてわずかであり、またわずかに吸着
されている蛋白質は可逆的に吸脱着が生じており、吸着
に伴う蛋白質の生理活性の変化がほとんど認められない
。蛋白質の吸着性において再生セルロースの中でも銅安
法再生セルロースにおいて特に有機溶媒(たとえばアセ
トン)を20重量%以上含有する溶液で凝固して得た構
造物において吸着に伴う蛋白質の変性あるいは再生セル
ロースと蛋白質との相互作用が少ない。したがって銅安
法再生セルロースが本目的達成のために特に好ましい。
The first feature of the present invention is that it employs a porous regenerated cellulose membrane. The regenerated cellulose membrane adsorbs very little protein present in an aqueous solution, and the slightly adsorbed protein is reversibly adsorbed and desorbed, and almost no change in the physiological activity of the protein due to adsorption is observed. do not have. Regarding protein adsorption, among regenerated celluloses, ammonium-produced cellulose is particularly susceptible to denaturation of proteins due to adsorption, or regenerated cellulose and proteins in structures obtained by coagulating with a solution containing 20% by weight or more of an organic solvent (e.g., acetone). There is little interaction with Therefore, ammonium ammonium regenerated cellulose is particularly preferred for achieving this purpose.

本発明の第2の特徴は、特定された孔構造を持つ点にあ
る。すなわち実質的に多段濾過機能を有する多層構造膜
で近似出来る孔構造を有する。ここで実質的に多段濾過
機能を有する多層構造膜とは、次のように説明される。
The second feature of the present invention is that it has a specified pore structure. That is, it has a pore structure that can be approximated by a multilayer structure membrane having substantially a multistage filtration function. Here, the multilayer structure membrane having substantially a multistage filtration function is explained as follows.

(a)高分子多孔膜の表面あるいは裏面(中空糸形状の
場合は内壁面あるいは外壁面)に平行な面内テは、セル
ロース凝集体がネットワーク状の組織を作り、比較的円
形状−楕円形状のいわゆる閉じた形(孔として観察出来
る形状)を持つ。
(a) In the plane parallel to the surface or back surface (inner wall surface or outer wall surface in the case of a hollow fiber shape) of the porous polymer membrane, the cellulose aggregates form a network-like structure, and the shape is relatively circular to elliptical. It has a so-called closed shape (a shape that can be observed as a hole).

同一平面内では場所に依存せず、はぼ同一の孔径分布と
孔形状を持ち、この−枚の面の濾過性能の点において、
−枚のスクリーンフィルターと近似出来る。
In the same plane, the pore size distribution and pore shape are almost the same regardless of the location, and in terms of the filtration performance of this plane,
-Can be approximated by a screen filter.

(b)この−枚の面内での孔の相互の配置関係は実質的
に無秩序かあるいは多孔膜が中空糸の場合には再生セル
ロースで構成された粒子の流動に伴う孔の繊維軸方向へ
の配向かわずかに認められる。
(b) The mutual arrangement of the pores within the plane of this sheet is substantially disordered, or if the porous membrane is a hollow fiber, the pores move in the direction of the fiber axis due to the flow of particles composed of regenerated cellulose. Orientation is slightly recognized.

(c)この面内ではある特定された孔径分布と平均孔径
、面内空孔率が電子顕微鏡写真より測定できる。
(c) Within this plane, a specified pore size distribution, average pore diameter, and in-plane porosity can be measured from an electron micrograph.

(cl)膜表面(中空糸の場合は内壁面)がらの膜厚方
向での距離を異にする面の相互の間には、平均孔径、孔
径分布、面内空孔率のいずれもが実質的には相関性はな
い。すなわちこれらの孔特性は膜表面からの距離の関数
として与えられる。
(cl) The average pore diameter, pore diameter distribution, and in-plane porosity are all substantially different between the membrane surfaces (inner wall surfaces in the case of hollow fibers) at different distances in the membrane thickness direction. There is essentially no correlation. That is, these pore properties are given as a function of distance from the membrane surface.

(e)膜厚方向から電子顕微鏡で膜断面を観察した場合
、膜表面に平行方向(中空糸の場合には円周方向)に沿
って再生セルロースで構成された粒子が連続化して一部
は棒状に変形した形態が観察される。層状構造をもつ多
孔膜は、これを液体窒素中で破断し、その断面を電子顕
微鏡で観察すると、直径0.05〜2μmの粒子(粒子
径の平均を232 (μII+)とする)の堆積物で近
似される。層状構造の暦数は、6””d/23zで与え
られる。dは膜厚(中空糸の場合の壁厚)(μm)であ
る。層数を10以上にするとマイコプラズマの除去率は
極端に大きくなる。
(e) When the cross section of the membrane is observed using an electron microscope from the membrane thickness direction, particles composed of regenerated cellulose are continuous along the direction parallel to the membrane surface (circumferential direction in the case of hollow fibers), and some of the particles are A rod-shaped deformed form is observed. When a porous film with a layered structure is fractured in liquid nitrogen and its cross section is observed under an electron microscope, it reveals deposits of particles with a diameter of 0.05 to 2 μm (average particle size is 232 (μII+)). It is approximated by The calendar number of the layered structure is given by 6''d/23z. d is the membrane thickness (wall thickness in the case of hollow fibers) (μm). When the number of layers is 10 or more, the mycoplasma removal rate becomes extremely high.

上記(a)〜(e)の特徴を持つ膜は濾過の際、実質的
に多段濾過機能を有する。
A membrane having the characteristics (a) to (e) above substantially has a multistage filtration function during filtration.

本発明の第3の特徴は特定された平均孔径2 rtと膜
厚dとの組合せを持つ点である。すなわち水濾過速度法
による平均孔径(2丘)が30nm以上で100na+
以下で膜厚d Cam単位)が20 μva以上で(1
)式の範囲内にある。
The third feature of the present invention is that it has a specified combination of average pore diameter 2rt and film thickness d. In other words, the average pore diameter (2 pores) determined by the water filtration rate method is 30 nm or more and 100 na+
Below, the film thickness d Cam unit) is 20 μva or more (1
) is within the range of Eq.

(1000/7) (2芹)+10≦d≦(15000
/7)(2rr)   14            
 (1)2丘が30nm以下の場合、蛋白質の透過性が
急速に低下する。特に人血漿あるいは牛血漿のように多
種類の成分を持ち、特に中性脂肪等のように水溶液中で
微粒子を構成する成分の濃度が高い場合、蛋白質の透過
性はより急激に減少する。蛋白質の透過性および濾過速
度、濾過容量の点では、2石−は大きければ大きいほど
良い。しかし2汗が1100nを越えると膜間差圧0.
1気圧以下での濾過での除去率が99.99%以下とな
るマイコプラズマ種がある。したがってマイコプラズマ
の除去率を99.99%以上にするには2■は100n
s+以下でなくてはならない。一方、2■が一定で膜厚
dを変化させた場合dを大きくするとマイコプラズマの
除去率は増大し、また濾過容量も増大する。ただし、濾
過速度は減少する。したがって濾過速度を増大させるた
めには2石−を増加させる。
(1000/7) (2)+10≦d≦(15000
/7) (2rr) 14
(1) When the diameter of the two peaks is 30 nm or less, protein permeability decreases rapidly. In particular, when human plasma or bovine plasma contains many types of components, and especially when the concentration of components that form particulates in an aqueous solution, such as neutral fat, is high, the permeability of proteins decreases more rapidly. In terms of protein permeability, filtration rate, and filtration capacity, the larger the two stones, the better. However, when the amount of sweat exceeds 1100n, the transmembrane differential pressure becomes 0.
There are some Mycoplasma species that have a removal rate of 99.99% or less when filtered at 1 atmosphere or less. Therefore, in order to increase the removal rate of mycoplasma to 99.99% or more, 2■ is 100n.
Must be less than or equal to s+. On the other hand, when 2 is constant and the film thickness d is varied, increasing d increases the mycoplasma removal rate and also increases the filtration capacity. However, the filtration rate decreases. Therefore, to increase the filtration rate, the number of stones is increased.

しかし2■の増加はマイコプラズマの除去率を減少させ
る。そのため実用的に利用可能な濾過条件下で利用出来
るdと2芹との間には(1)式の関係が経験的に得られ
る。
However, an increase of 2■ decreases the mycoplasma removal rate. Therefore, the relationship expressed by equation (1) can be empirically obtained between d and 2 diaphragms that can be used under practically usable filtration conditions.

蛋白質の透過性をより高く、また濾過速度、濾過容量を
大きくするためには素材として銅安法再生セルロースを
採用し、かつ見掛は密度法による空孔率(Prρ)が1
5%以上60%以下であることが好ましい。Prρが6
0%を越えるとマイコプラズマの除去率が急激に低下す
る。もし濾過対象とする溶液量が極端に少ない場合は、
多孔性膜の形状として中空糸が、また工業的に多量の濾
過が一定条件で行なわれるには中空糸が好ましい。
In order to increase protein permeability, filtration rate, and filtration capacity, ammonium ammonium regenerated cellulose is used as the material, and the apparent porosity (Prρ) by the density method is 1.
It is preferably 5% or more and 60% or less. Prρ is 6
When it exceeds 0%, the mycoplasma removal rate decreases rapidly. If the amount of solution to be filtered is extremely small,
Hollow fibers are preferred as the shape of the porous membrane, and hollow fibers are preferred for industrially carrying out large-scale filtration under certain conditions.

枦遇対象とする蛋白質含有の水溶液中にはマイコプラズ
マのみでなくウィルスが混入する場合も多い。この場合
には、両者を除去することが肝要である。両者を濾過に
よって除去し、かつ蛋白質の濾過率を高く維持するため
にはさらに特殊な孔構造を与えることが好ましい。すな
わち電子顕微鏡によって観察される膜面に平行な一平面
内での平均孔径2石−および電子顕微鏡法による面内空
孔率Preのいずれもが内壁面から外壁面に向って単調
的に減少し、かつ外壁面での近傍では二ニーロン様ボイ
ドーキャピラリ様の構造を持つ孔で構成されている中空
糸の膜という特徴を付与すればウィルスも除去可能にな
る。ここでニューロン様ボイド−キャビラリ様の構造と
は、直径50〜500n−の孔(これをボイドと呼称)
とこのボイドを中心に多数の直径10〜50nmの細管
状の孔(これをキャピラリと呼称)とで構成された神経
細胞に類僚した形状を持つ孔構造物を基本単位として構
成された孔構造を意味する。この構造の特徴はボイドを
連結するにはキャピラリを介してのみ可能である。この
ような孔の存在は■高分子のモノマーを中空糸を用いて
か過後加熱し、重合する、■重合後薄膜に切断し、電顕
用試料を作製する、■かくして得られた薄片を銅安液中
へ浸漬し中空糸の素材の再生セルロースを溶解除去する
、得られた電顕用試料を高倍率(5万倍以上)でフィー
ルドエミッション型の走査型電子顕微鏡で観察すること
によって確認される(この方法で得られる孔の像を孔の
ネガチブ像と呼称する)。
In many cases, not only mycoplasma but also viruses are mixed into the protein-containing aqueous solution to be treated. In this case, it is important to remove both. In order to remove both by filtration and maintain a high protein filtration rate, it is preferable to provide a more specific pore structure. That is, both the average pore diameter in a plane parallel to the membrane surface observed by an electron microscope and the in-plane porosity Pre by electron microscopy decrease monotonically from the inner wall surface to the outer wall surface. Viruses can also be removed by adding the feature of a hollow fiber membrane consisting of pores with a two-neelon-like void capillary-like structure in the vicinity of the outer wall surface. Here, the neuron-like void-cabillary-like structure is a pore with a diameter of 50 to 500 nm (this is called a void).
A pore structure whose basic unit is a pore structure with a shape similar to a neuron, which is composed of a large number of tubular pores with a diameter of 10 to 50 nm (called capillaries) around this void. means. A feature of this structure is that it is only possible to connect the voids via capillaries. The existence of such pores can be confirmed by: 1) heating the polymeric monomer using a hollow fiber and then polymerizing it; 2) cutting it into a thin film after polymerization to prepare a sample for electron microscopy; The regenerated cellulose of the hollow fiber material is dissolved and removed by immersion in a cheap solution, and the resulting electron microscopy sample is observed at high magnification (more than 50,000 times) using a field emission scanning electron microscope. (The pore image obtained by this method is called a pore negative image.)

本発明で示された孔構造、特に好ましい孔構造の特徴を
持つ中空糸は紡糸時に(a)凝固前にミクロ相分離を発
生させ(b)該分離で発生した粒子(高分子濃厚相が粒
子となる場合が大部分である)を成長させ、(c)該分
離を膜の表裏面(中空糸の場合は内壁面、外壁面)に沿
って同時に発生させ、この相分離を膜厚方向(壁厚方向
)に進行させる。
Hollow fibers having the pore structure shown in the present invention, particularly preferable pore structure characteristics, are capable of (a) generating microphase separation before coagulation during spinning, and (b) particles generated by the separation (the polymer-rich phase becomes particles). (c) This phase separation occurs simultaneously along the front and back surfaces of the membrane (inner wall surface and outer wall surface in the case of hollow fibers), and this phase separation occurs in the membrane thickness direction ( advance in the wall thickness direction).

(a)〜(c)を好適に実行するには厳密に原液および
凝固液組成および温度が制御され、かつ中空糸の紡糸の
際には糸長方向に張力が働くのを極力おさえる必要があ
る。
In order to suitably carry out (a) to (c), it is necessary to strictly control the composition and temperature of the stock solution and coagulation solution, and to suppress the tension in the fiber length direction as much as possible when spinning hollow fibers. .

銅安法再生セルロース中空糸を例にして本発明の中空糸
の製法を説明する。セルロース濃度3〜9%の範囲内で
あらかじめ設定した溶液を調製する。紡糸原液から未溶
解成分および気泡を除去し、さらにより精密に炉遇しミ
クロ相分離時の核になる成分を極力除去する。紡糸原液
は15〜30°Cの設定された温度に厳密に制御(通常
±0.4°C以内)されている。環状紡出口の外側紡出
口より紡糸原液を吐出させる。環状紡出口の中央紡出口
よりは厳密に温度と組成が制御された凝固剤(中空剤と
略称する)を吐出する。吐出された原液はわずかな距離
、気体中を通過後ただちに凝固浴を通過する。この際の
凝固浴には中空剤と類似の成分で構成される溶液を採用
する。ただし凝固浴の液組成と液温度とは厳密に制御さ
れていることが必要である。中空剤と凝固浴中の液体に
より、紡糸された原液中でミクロ相分離が発生する。ミ
クロ相分離の後、凝固/再生/水洗/乾燥後の最終の中
空糸内部の再生セルロース粒子の直径は50〜1100
0nの範囲内ニアル。
The method for producing hollow fibers of the present invention will be explained using ammonium ammonium regenerated cellulose hollow fibers as an example. A preset solution with a cellulose concentration in the range of 3-9% is prepared. Undissolved components and air bubbles are removed from the spinning dope, and the components that become the core during microphase separation are removed as much as possible through more precise furnace treatment. The temperature of the spinning stock solution is strictly controlled at a set temperature of 15 to 30°C (usually within ±0.4°C). The spinning dope is discharged from the outer spinning opening of the annular spinning opening. A coagulating agent (abbreviated as hollow agent) whose temperature and composition are strictly controlled is discharged from the central spinning opening of the annular spinning opening. The discharged stock solution passes through the gas for a short distance and immediately passes through the coagulation bath. In this case, a solution composed of components similar to those of the hollow agent is used in the coagulation bath. However, the liquid composition and temperature of the coagulation bath must be strictly controlled. Microphase separation occurs in the spun stock solution due to the hollow agent and the liquid in the coagulation bath. After microphase separation, the diameter of the regenerated cellulose particles inside the final hollow fiber after coagulation/regeneration/water washing/drying is 50-1100.
Niall within the range of 0n.

多層構造を持つ本発明の膜を用いて溶液中に混入したマ
イコプラズマを効率良く濾過除去するには、を過の際の
膜間差圧を出来るだけ小さくする必要がある。すべての
マイコプラズマを99.99%以上の除去率で除去する
には膜間差圧は1気圧以内でなくてはならない。膜間差
圧が1気圧を越えると、濾過量がある一定量を越えた時
点よりマイコプラズマのわずかな炉出が始まる。また濾
過対象が動物の血漿あるいは血清、塩の水溶液あるいは
蛋白質あるいはアミノ酸を含有する水溶液の場合、濾過
方法として事実上垂直濾過(デッドエンド濾過方式)が
望ましい。垂直濾過により短時間にかつ多量の濾過が可
能である。
In order to efficiently filter and remove mycoplasma mixed into a solution using the membrane of the present invention having a multilayer structure, it is necessary to reduce the pressure difference between the membranes as much as possible during filtration. In order to remove all mycoplasma with a removal rate of 99.99% or more, the transmembrane pressure must be within 1 atmosphere. When the transmembrane pressure difference exceeds 1 atm, a small amount of mycoplasma begins to be released from the furnace when the amount of filtration exceeds a certain amount. Further, when the object to be filtered is animal plasma or serum, an aqueous salt solution, or an aqueous solution containing proteins or amino acids, vertical filtration (dead-end filtration method) is practically preferable as the filtration method. Vertical filtration allows filtration of a large amount in a short time.

以下に本発明で測定される種々の物性値の測定方法をま
とめて示す。
Below, methods for measuring various physical property values measured in the present invention will be summarized.

蛋白質濃度:アルブミンの場合は紫外線吸収スペクトル
の波長280nmの透過率を測定し、予め定めた検量線
を用いて算出する。濾過前後の溶液中の総蛋白質は、ビ
ュウレット試薬による呈色反応を540nmでの吸光度
の測定で求める。
Protein concentration: In the case of albumin, the transmittance at a wavelength of 280 nm in the ultraviolet absorption spectrum is measured and calculated using a predetermined calibration curve. The total protein in the solution before and after filtration is determined by measuring the absorbance at 540 nm using a color reaction using Biuret's reagent.

アルブミン透過率二人血清アルブミンを5重量%の濃度
で純水中に溶解する。得られた溶液を用いて膜間差圧2
00++oaHgで膜の有効濾過面積1Mあたり、1.
Olの濾過をした際、濾過前、及び炉液のアルブミン濃
度(それぞれC8およびcr)より次式で透過率を算出
する。
Albumin permeability Two serum albumin is dissolved in pure water at a concentration of 5% by weight. Using the obtained solution, the transmembrane pressure difference 2
At 00++ oaHg, the effective filtration area of the membrane is 1M.
When Ol is filtered, the transmittance is calculated from the albumin concentration (C8 and cr, respectively) before filtration and in the furnace solution using the following formula.

透過率(χ)= (c、/co)xtoo (χ)(2
)高分子多孔膜の構造:再生セルロース多孔膜を樹脂(
たとえば、アクリル樹脂)で包埋後、ウルトラミクロト
ーム(スウェーデンLKB社製Ult−ra tome
 m 8800型)に装着したダイヤモンドナイフを用
いて表面(中空糸の場合外壁面)から膜厚方向にそって
厚さ0.5〜1μmの試料を順に切りだす。その試料切
片を溶媒(例えばクロロホルム)で脱包埋後、それぞれ
の切片の電子顕微鏡写真を撮る。それぞれの切片の写真
より注目する一層内での凡手径分布関数N (r)が測
定される。ここでN (r)は注目する層の14あたり
、凡手径がr〜r+drに存在する孔の数をN(r)d
rと表示されるとし て定義された凡手径頻度分布関数である。平均孔径2′
i?および面内空孔率Preはそれぞれ次式で与えられ
る。
Transmittance (χ) = (c, /co) xtoo (χ) (2
) Structure of porous polymer membrane: Regenerated cellulose porous membrane is made of resin (
For example, after embedding in acrylic resin), the
Samples with a thickness of 0.5 to 1 μm are sequentially cut out along the film thickness direction from the surface (outer wall surface in the case of hollow fibers) using a diamond knife attached to a model (Model M8800). After deembedding the sample section with a solvent (for example, chloroform), an electron micrograph of each section is taken. From the photograph of each section, the average diameter distribution function N (r) within the layer of interest is measured. Here, N(r) is the number of holes that exist in the layer of interest with a rough diameter of r to r+dr.N(r)d
It is a general diameter frequency distribution function defined as denoted by r. Average pore diameter 2'
i? and in-plane porosity Pre are given by the following equations, respectively.

2 r@ =5:’2rN(r)dr/ 5r2N(r
)dr (3)Pre(%表示)= (πS r ”N
 (r) d r) X100 (4)水濾過速度法に
よる平均孔径(2rt  ;nm単位):純水をあらか
じめ平均孔径0.2μ閣のフィルターを用いてが遇し、
微粒子を除去した純水を作る。
2 r@ =5:'2rN(r)dr/ 5r2N(r
) dr (3) Pre (% display) = (πS r ”N
(r) d r)
Create pure water from which fine particles are removed.

この純水を20℃で膜間差圧(ΔP)200■Hgの一
定圧力に保持して濾過速度Jvを測定する。
The pure water was maintained at a constant pressure of 200 μHg at a transmembrane pressure difference (ΔP) of 20° C., and the filtration rate Jv was measured.

ただし、Jvの単位は(M1/分)である。測定に使用
した高分子多孔膜の有効濾過面積をA (Cij)とし
、見かけ密度法で得られた該多孔膜の空孔率をPreと
すると、2丘は次式で与えられる。
However, the unit of Jv is (M1/min). When the effective filtration area of the porous polymer membrane used in the measurement is A (Cij), and the porosity of the porous membrane obtained by the apparent density method is Pre, the two hills are given by the following equation.

2 rf =2.o (Jv・d−η/ΔP・A・Pr
e)”” (5)ここで、dは膜厚(μ−単位)、ηは
純水の粘度(センチポイズ単位)。Preは水膨潤時の
見かけ密度ρ、、セルロースの密度ρ、=1.561 
g/dを用いて、次式で算出される。
2 rf =2. o (Jv・d−η/ΔP・A・Pr
e)"" (5) where d is the film thickness (in μ-units) and η is the viscosity of pure water (in centipoise). Pre is the apparent density ρ when swollen with water, and the density ρ of cellulose = 1.561
It is calculated using the following formula using g/d.

Pre(χ)−(1−ρ、、/ρp)xlOO(6)マ
イコプラズマの定量法:寒天培地上のコロニ形成能を指
標とするCFU法で測定した。
Pre(χ)-(1-ρ,,/ρp)xlOO(6) Mycoplasma quantification method: Measured by the CFU method using the ability to form colonies on an agar medium as an index.

〔実施例〕〔Example〕

実施例1 セルロースリンターを精製しこれを公知の方法で調製し
た銅アンモニア溶液(銅アンモニア/水の重量比が3.
7/6.3 /90.1)中に4.9重量%で溶解し2
回濾過後脱泡し紡糸原液とした。この紡糸原液を25.
0±0.4°Cに制御しつつ紡口直前に多重メツシュフ
ィルターを設置し、環状紡出口の外側紡出口(外径2.
5mmφ、内径1.5 mmφ)より2.3d/分で吐
出させた。−力水/アセトン/アンモニアの重量比10
0.0151.410.91で厳密に組成が制御された
溶液(中空剤)を採用し、これを25.0±0.4°C
に温度制御しつつ中央紡出口(外径0.4圓φ)より4
.2m/分で吐出させた。
Example 1 A copper ammonia solution (the weight ratio of cupric ammonia/water was 3.5.
7/6.3/90.1) dissolved at 4.9% by weight in 2
After multiple filtration, the mixture was defoamed to obtain a spinning stock solution. Add this spinning dope to 25.
While controlling the temperature at 0±0.4°C, a multiple mesh filter was installed just before the spinneret, and the outer spinning outlet of the annular spinning outlet (outside diameter 2.5°C) was installed.
5 mmφ, inner diameter 1.5 mmφ) at a rate of 2.3 d/min. - Power water/acetone/ammonia weight ratio 10
We adopted a solution (hollow agent) whose composition was strictly controlled at 0.0151.410.91, and heated it at 25.0±0.4°C.
4 from the central spinning port (outer diameter 0.4 mm) while controlling the temperature
.. It was discharged at a rate of 2 m/min.

吐出された糸状物を約5Mの距離を空中走行後、水/ア
セトン/アンモニア(重量比100.0/60.0/1
.0 )の組成で厳密に制御された25.0±0.4°
Cの混合溶液中に導き該溶液中で5.Ota1分の速度
で巻き取った。この際糸長方向への張力が働かないよう
に凝固浴の形状および凝固浴中の凝固液の流れ等が制御
されている。吐出直後の透明青色状の繊維状物は次第に
ミクロ相分離を生起し、引き続いて凝固が起こり、繊維
としての構造が形成された。その後、25.0±0.4
℃で2重量%の硫酸水溶液で収縮率5%で設定された定
長下で再生し、その後水洗した。得られた中空糸中の水
をメタツルで置換後、20.0°Cで真空乾燥した。か
くして得られた中空糸の外径は380μ預、膜厚(壁厚
)は42μM、内径は295μmであった。該中空糸の
内外壁面の走査型電子顕微鏡観察によれば、両壁面はい
ずれもネットワーク構造をとり、また該ネットワークが
堆積した構造を示す。また該中空糸のネガチイブ像では
外壁面の近傍ではニューロン様ボイド−キャビラリ様の
構造を持つ孔で構成されている。2■よびPreは内壁
面から外壁面に向って単調に減少している。ただし、最
内外層のみは2GとPreは特に大きい値となる。粒子
直径2S、は0.14μm 、 21tは72 r++
++、 P reは43%であった。アルブミンの透過
率は、99.5%以上であった。この中空糸を250本
束ねて有効を過面積0.02 nfの円筒状の泥適用モ
ジュールを組み立て、マイコプラズマ除去用フィルター
モジュールとした。マイコプラズマMycoplasm
aoraleを5.lX10’ CFU/dの濃度で含
有する液をリン酸緩衝食塩水で2倍に希釈して濾過に供
する原液を調製した。サンプル液500dを200mm
Hgの加圧下で垂直濾過した。濾過は1回のみとした。
After the discharged filament was airborne for a distance of approximately 5M, water/acetone/ammonia (weight ratio 100.0/60.0/1
.. 0) strictly controlled composition of 25.0±0.4°
5. into a mixed solution of C; It was wound up at a speed of 1 minute. At this time, the shape of the coagulation bath, the flow of the coagulation liquid in the coagulation bath, etc. are controlled so that no tension is exerted in the yarn length direction. Immediately after being discharged, the transparent blue-colored fibrous material gradually underwent microphase separation, followed by coagulation, and a fibrous structure was formed. After that, 25.0±0.4
It was regenerated at a constant length set at a shrinkage rate of 5% with a 2% by weight aqueous sulfuric acid solution at ℃, and then washed with water. After replacing the water in the obtained hollow fibers with Metatsuru, the fibers were vacuum dried at 20.0°C. The thus obtained hollow fiber had an outer diameter of 380 μm, a membrane thickness (wall thickness) of 42 μM, and an inner diameter of 295 μm. According to scanning electron microscopy observation of the inner and outer wall surfaces of the hollow fiber, both wall surfaces have a network structure and a structure in which the network is deposited. Further, in the negative image of the hollow fiber, the vicinity of the outer wall surface is composed of pores having a neuron-like void-cabinary-like structure. 2 and Pre decrease monotonically from the inner wall surface to the outer wall surface. However, only the outermost layer has a particularly large value of 2G and Pre. Particle diameter 2S is 0.14 μm, 21t is 72 r++
++, P re was 43%. The albumin transmittance was 99.5% or more. A cylindrical mud application module with an effective overarea of 0.02 nf was assembled by bundling 250 of these hollow fibers to form a mycoplasma removal filter module. Mycoplasma
aorale 5. A stock solution to be subjected to filtration was prepared by diluting a solution containing 1×10′ CFU/d twice with phosphate buffered saline. Sample liquid 500d to 200mm
Vertical filtration under Hg pressure. Filtration was performed only once.

なお800閣Hgの加圧下での垂直濾過および200d
/分の流速で循環させながらの濾過ち実施した。なおポ
リビニリデンジフロライド製公称孔径0.1回mの膜を
用いて200mmHgの圧力で垂直濾過を比較例として
実施した。炉液をそれぞれの所定の濾過量において50
μ!とり、検定用シャーレに接種し、コロニー形成法に
よってマイコプラズマを定量した。結果を第1表にまと
めて示す。
In addition, vertical filtration under a pressure of 800 Hg and 200 d
Filtration was carried out while circulating at a flow rate of /min. As a comparative example, vertical filtration was carried out at a pressure of 200 mmHg using a polyvinylidene difluoride membrane with a nominal pore size of 0.1 times m. 50% of the furnace liquid at each predetermined filtration rate.
μ! The cells were then inoculated into test dishes, and mycoplasma was quantified by colony formation method. The results are summarized in Table 1.

第   1   表 *1 垂直濾過 200肛Hg (濾過圧)*2 垂直
濾過 800肛Hg *3 垂直濾過 200mm)Ig *4 垂直濾過 200mnHg *5 銅安法再生セルロース *6 ボリビニリデンジフロライド 実施例2 細胞培養用標準培地(MEM)溶液に、胎児牛血清を重
量ヘースで10%加え、この混合液に■マイコプラズマ
Acholeplasma laidlawiiを2.
4XIO7CFU/dの濃度になるように添加し、ある
いは■エイズ原因ウィルスHIVを5.5X10’ P
FU(プラークフォーミングユニット)/dになるよう
に添加した。これらの溶液801dを、実施例1と同様
の多孔膜および濾過条件下で枦遇した。炉液中のマイコ
プラズマ濃度および蛋白質の回収率をまとめると第2表
が得られた。
Table 1 *1 Vertical filtration 200 anal Hg (filtration pressure) *2 Vertical filtration 800 anal Hg *3 Vertical filtration 200 mm) Ig *4 Vertical filtration 200 mnHg *5 Ammonium ammonium method regenerated cellulose *6 Borivinylidene difluoride Example 2 Add 10% fetal bovine serum by weight to the standard medium for cell culture (MEM) solution, and add 2.
Add AIDS-causing virus HIV to a concentration of 4XIO7CFU/d, or add 5.5X10'P of AIDS-causing virus HIV.
It was added so that it became FU (plaque forming unit)/d. These solutions 801d were subjected to the same porous membrane and filtration conditions as in Example 1. Table 2 was obtained by summarizing the mycoplasma concentration in the furnace fluid and the protein recovery rate.

(以下余白) 第 表 * 1 *2 *3 *4 *5 *6 〔効 果] 垂直濾過 200−8g (濾過圧) 垂直濾過 800−8g 垂直濾過 200■Hg 垂直濾過 200■Hg 銅安法再生セルロース ポリビニリデンジフロライド 本発明により動物の血漿、血清あるいは細胞培養用培地
溶液、その他溶液に混入したマイコプラズマを高い除去
率たとえば99.999%以上で除去出来るとともに溶
液が蛋白質を含有している場合には、蛋白質の透過率が
80%以上でかつ回収率がり過後緩衝溶液等で洗浄が遇
することにより、90%以上が可能となる。また濾過速
度が大きく、濾過速度の経時的な減少が少ないために、
経時的な変質の恐れがある蛋白質等からのマイコプラズ
マの除去に適している。さらにウィルスの混入の恐れが
ある場合にもマイコプラズマのみでなくウィルスも同時
に除去が可能になる。
(Left below) Table * 1 *2 *3 *4 *5 *6 [Effect] Vertical filtration 200-8g (filtration pressure) Vertical filtration 800-8g Vertical filtration 200■Hg Vertical filtration 200■Hg Ammonium copper method regeneration Cellulose polyvinylidene difluoride According to the present invention, mycoplasma mixed in animal plasma, serum, cell culture medium solution, and other solutions can be removed with a high removal rate, for example, 99.999% or more, and when the solution contains protein. This can be achieved by achieving a protein transmittance of 80% or higher and a recovery rate of 90% or higher by washing with a buffer solution or the like. In addition, since the filtration rate is high and the decrease in filtration rate over time is small,
Suitable for removing mycoplasma from proteins that may deteriorate over time. Furthermore, even if there is a risk of virus contamination, it becomes possible to remove not only mycoplasma but also viruses at the same time.

Claims (1)

【特許請求の範囲】 1、水濾過速度法による平均孔径2@r_f@が30n
m以上100nm以下で膜厚dが20μm以上で下記式
の範囲にあり、かつ実質的に多段濾過機能を有する多層
構造膜で近似出来る孔構造を有するマイコプラズマ除去
用多孔性再生セルロース膜。 (1000/7)(2@r_f@)+10≦d≦(15
000/7)(2@r_f@)−14(ただし単位はμ
m)2、特許請求の範囲第1項記載の再生セルロース膜
において、見掛け密度法による空孔率 (Prρ)が15%以上60%以下であり、膜を構成す
る物質が銅安法再生セルロースであることを特徴とする
蛋白質を含有する水溶液よりマイコプラズマを除去する
多孔性再生セルロース膜。 3、電子顕微鏡法による平均孔径2@r_e@および同
法による空孔率Preのいずれもが内壁面から外壁面に
向って単調に減少しかつ外壁面の近傍ではニューロン様
ボイド−キャビラリ様の構造を持つ孔で構成されている
中空糸の膜であることを特徴とする特許請求の範囲第1
および/又は第2項記載のマイコプラズマを除去する、
およびウィルスも同時に除去する多孔性再生セルロース
膜。 4、特許請求の範囲第1および/又は、第2および/又
は、第3項記載の多孔膜を用い、膜間差圧が1気圧以下
で限外濾過をすることによって水溶液に混在するマイコ
プラズマを除去するマイコプラズマ除去方法。 5、濾過対象とする水溶液が動物の血漿もしくは血清、
塩の水溶液又は蛋白質もしくはアミノ酸を含有する水溶
液であり、濾過方法として事実上垂直濾過であることを
特徴とする特許請求の範囲第4項記載のマイコプラズマ
除去方法。
[Claims] 1. Average pore diameter 2@r_f@ is 30n by water filtration rate method
A porous regenerated cellulose membrane for removing mycoplasma, which has a membrane thickness d of m or more and 100 nm or less, a membrane thickness d of 20 μm or more, which is within the range of the following formula, and which has a pore structure that can be approximated by a multilayer structure membrane having substantially a multistage filtration function. (1000/7) (2@r_f@)+10≦d≦(15
000/7) (2@r_f@)-14 (unit: μ
m) 2. In the regenerated cellulose membrane according to claim 1, the porosity (Prρ) measured by the apparent density method is 15% or more and 60% or less, and the substance constituting the membrane is made of ammonium chloride regenerated cellulose. A porous regenerated cellulose membrane for removing mycoplasma from an aqueous solution containing proteins, characterized by: 3. Both the average pore diameter 2@r_e@ by electron microscopy and the porosity Pre by the same method decrease monotonically from the inner wall surface to the outer wall surface, and there is a neuron-like void-cabillary-like structure near the outer wall surface. Claim 1 characterized in that it is a hollow fiber membrane composed of pores with
and/or removing the mycoplasma described in paragraph 2;
and a porous regenerated cellulose membrane that also removes viruses. 4. Mycoplasma mixed in an aqueous solution can be removed by ultrafiltration using the porous membrane according to the first and/or second and/or third claims at a transmembrane pressure of 1 atm or less. How to remove mycoplasma. 5. The aqueous solution to be filtered is animal plasma or serum,
5. The mycoplasma removal method according to claim 4, wherein the method is an aqueous solution of a salt or an aqueous solution containing proteins or amino acids, and the filtration method is essentially vertical filtration.
JP2213290A 1990-02-02 1990-02-02 Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma Pending JPH03228671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213290A JPH03228671A (en) 1990-02-02 1990-02-02 Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213290A JPH03228671A (en) 1990-02-02 1990-02-02 Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma

Publications (1)

Publication Number Publication Date
JPH03228671A true JPH03228671A (en) 1991-10-09

Family

ID=12074365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213290A Pending JPH03228671A (en) 1990-02-02 1990-02-02 Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma

Country Status (1)

Country Link
JP (1) JPH03228671A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035180A1 (en) * 2002-10-18 2004-04-29 Asahi Kasei Pharma Corporation Microporous hydrophilic membrane
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
US9174174B2 (en) 2008-09-19 2015-11-03 Toray Industries, Inc. Separation membrane and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
WO2004035180A1 (en) * 2002-10-18 2004-04-29 Asahi Kasei Pharma Corporation Microporous hydrophilic membrane
JPWO2004035180A1 (en) * 2002-10-18 2006-02-09 旭化成ファーマ株式会社 Hydrophilic microporous membrane
AU2003301399B2 (en) * 2002-10-18 2006-07-06 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
JP4699207B2 (en) * 2002-10-18 2011-06-08 旭化成メディカル株式会社 Hydrophilic microporous membrane
US9174174B2 (en) 2008-09-19 2015-11-03 Toray Industries, Inc. Separation membrane and method for producing the same

Similar Documents

Publication Publication Date Title
RU2113273C1 (en) Polysulfone-based hollow-fiber membrane and method of manufacturing thereof
JP5754654B2 (en) Porous hollow fiber membrane for protein-containing liquid treatment
US6099734A (en) Apparatus, membranes and methods for removing organic compounds from a biological fluid
US6908553B1 (en) Composite membrane with particulate matter substantially immobilized therein
JPH01148305A (en) High molecular porous hollow yarn and process for removing virus utilizing the same
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
JP2000140589A (en) Porous polysulfone film
AU672856B2 (en) High flux hollow fiber membrane
JP6291970B2 (en) Protein adsorbing material, method for producing the same, blood purifier
GB2086798A (en) Microporous cellulose membrane
JP2804055B2 (en) Preparation method of non-infectious substance containing virus antigen or antibody
JPH03228671A (en) Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma
JP2832835B2 (en) Virus removal method
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP2003010654A (en) Method for producing hollow yarn membrane
JPH03196819A (en) Method for removing mycoplasma
JP2000135421A (en) Polysulfone-base blood purifying membrane
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPH04371221A (en) Production of cuprammonium regenerated cellulose porous hollow fiber membrane
JPH01254204A (en) Method for removing virus
JPS63130103A (en) Polyacrylonitrile-base semipermeable membrane and manufacturing thereof
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JPH01192368A (en) Viral disease medical treatment system
JPS63161972A (en) Regenerated cellulose porous membrane for separating and concentrating aids virus
JPH10337445A (en) Virus removing method