JPH04370597A - Refresh method of memory circuit - Google Patents

Refresh method of memory circuit

Info

Publication number
JPH04370597A
JPH04370597A JP3173356A JP17335691A JPH04370597A JP H04370597 A JPH04370597 A JP H04370597A JP 3173356 A JP3173356 A JP 3173356A JP 17335691 A JP17335691 A JP 17335691A JP H04370597 A JPH04370597 A JP H04370597A
Authority
JP
Japan
Prior art keywords
refresh
block
elements
dram
refreshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3173356A
Other languages
Japanese (ja)
Inventor
Yasushi Takeda
武田 也寿志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP3173356A priority Critical patent/JPH04370597A/en
Publication of JPH04370597A publication Critical patent/JPH04370597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dram (AREA)

Abstract

PURPOSE:To refresh a memory circuit, which consists of plural DRAM elements, whithout making the configuration of peripheral circuits, such as a memory controlling circuit, complex and without lowering a power supply voltage during a refreshing period. CONSTITUTION:All DRAM elements are divided into plural blocks 11 to 14, each of the blocks consists of an arbitrary number (m) elements and the refreshing operation is sequentially performed for each block with a prescribed delay time between blocks so as to suppress the peak current value during the refreshing period. Furthermore, the refreshing operations of each block are performed within the same refreshing period thus, a simple configuration using delay elements 19 and 20 is realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、X線CT装置における
計測データを格納するメモリ回路などに用いられる複数
のDRAM素子からなるメモリ回路のリフレッシュ方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refreshing a memory circuit comprising a plurality of DRAM elements used in a memory circuit for storing measurement data in an X-ray CT apparatus.

【0002】0002

【従来の技術】DRAM素子を用いてメモリ回路を構成
するとき、その消費電流は、DRAM素子の非動作時に
は1素子当たり2mA程度しか消費しないものが、DR
AM素子の行番地ストローブ(Row Address
 Strobe、以下「RAS」と略称する。)又は列
番地ストローブ(ColumnAddress Str
obe、以下「CAS」と略称する。)信号が立上がる
と、1素子当たり80mAもの電流が、立上がり時10
〜20nsec、パルス幅約50nsecで流れる。 
 複数個のDRAM素子からなるメモリ回路において、
RAS,CAS信号を変化させるとき、特にDRAM素
子特有のリフレッシュ動作を行うとき、従来は一度に全
素子に対してリフレッシュ動作を行っているため、DR
AM素子の全個数をn個とすると、(n×80)mAも
の大電流が瞬時に流れることになる。したがって、これ
が電源電圧の降下につながり、このままでは、メモリ回
路(DRAM素子)に一時的に正常な電圧が印加されず
、誤動作を起こし、その記憶内容が保証されなくなって
しまう。
2. Description of the Related Art When configuring a memory circuit using DRAM elements, the current consumption is only about 2 mA per element when the DRAM element is not in operation;
Row address strobe of AM element
Strobe, hereinafter abbreviated as "RAS". ) or column address strobe (ColumnAddress Str
obe, hereinafter abbreviated as "CAS". ) When the signal rises, a current of 80 mA per element is generated at a rise of 10 mA.
~20 nsec, with a pulse width of about 50 nsec.
In a memory circuit consisting of a plurality of DRAM elements,
When changing the RAS and CAS signals, especially when performing a refresh operation specific to DRAM elements, conventionally the refresh operation is performed on all elements at once, so the DR
If the total number of AM elements is n, a large current of (n×80) mA will instantly flow. Therefore, this leads to a drop in the power supply voltage, and if this continues, a normal voltage will not be temporarily applied to the memory circuit (DRAM element), causing malfunction, and the stored contents will no longer be guaranteed.

【0003】そこで、従来はDRAM素子1個につき、
1個の割合でデカップリング・コンデンサを設け、この
コンデンサに蓄えられている電荷により前記大電流をま
かなうようにしていた。ところで、近年、X線CT装置
においては、連続して10〜20回ものスキャンを行う
ようになってきた。このとき、計測データを一時的にメ
モリに蓄える必要があり、そのためには40Mバイト以
上ものデータを蓄えるメモリ基板が必要となる。
Therefore, conventionally, for each DRAM element,
A decoupling capacitor is provided at a ratio of one decoupling capacitor, and the large current is covered by the charge stored in this capacitor. Incidentally, in recent years, X-ray CT apparatuses have come to perform continuous scans as many as 10 to 20 times. At this time, it is necessary to temporarily store the measurement data in a memory, which requires a memory board that can store 40 Mbytes or more of data.

【0004】一方、近年の基板技術の向上により、基板
上のDRAM素子実装密度は高くなってきている。すな
わち、基板の多層化、パターンの細線化などにより、搭
載できるDRAM素子数も増え、またDRAM素子のジ
ップパッケージの採用により、搭載可能なDRAM素子
の数もA3サイズ程度の大きさの基板で130個以上に
ものぼり、前記X線CT装置における要求を満足し得る
メモリ基板を作ることができるようになってきた。前記
仕様のもとにメモリ基板を作るとき、DRAM素子のジ
ップパッケージの採用により、DRAM素子近辺へのデ
カップリング・コンデンサを個別(1対1)に設けるこ
とは困難になってきており、2個のDRAM素子につい
て1個のデカップリング・コンデンサを設けているのが
現状である。
On the other hand, with recent improvements in substrate technology, the mounting density of DRAM elements on a substrate has become higher. In other words, the number of DRAM elements that can be mounted has increased due to multi-layered boards and thinner patterns, and the adoption of zip packages for DRAM elements has increased the number of DRAM elements that can be mounted to 130 on a board about the size of an A3 sheet. It has now become possible to produce a memory substrate that can satisfy the requirements of the X-ray CT apparatus. When making a memory board based on the above specifications, due to the adoption of zip packages for DRAM elements, it has become difficult to provide individual (one-to-one) decoupling capacitors near the DRAM elements, so two decoupling capacitors are required. Currently, one decoupling capacitor is provided for each DRAM element.

【0005】このような状況の下で、全DRAM素子を
同一リフレッシュ期間内において同時にリフレッシュ動
作させると、リフレッシュによる電流の消費が前記デカ
ップリング・コンデンサによっては充分まかないきれず
、電源電圧の降下を引き起し、メモリ回路(DRAM素
子)の記憶内容が保障されなくなった。そこで全DRA
M素子を、適宜数で1ブロックにまとめて複数のブロッ
クに分け、リフレッシュ動作を、ブロック毎に、リフレ
ッシュ期間を分けて順次行うことにより、同時にリフレ
ッシュ動作するDRAM素子の個数を減らす方法が採ら
れていた。
Under such circumstances, if all DRAM elements are refreshed at the same time within the same refresh period, the current consumption due to refreshing cannot be sufficiently covered by the decoupling capacitor, which causes a drop in the power supply voltage. The contents of the memory circuit (DRAM element) are no longer guaranteed. So all DRA
A method is adopted in which an appropriate number of DRAM elements are grouped into one block and divided into a plurality of blocks, and the refresh operation is sequentially performed for each block with separate refresh periods, thereby reducing the number of DRAM elements that are refreshed at the same time. was.

【0006】[0006]

【発明が解決しようとする課題】しかしこのような従来
技術では、リフレッシュ動作するDRAM素子をリフレ
ッシュ期間を分けて順次選択するなど、メモリコントロ
ールするための周辺回路の構成が複雑化し、回路規模の
増大を招くという問題点があった。
[Problems to be Solved by the Invention] However, in such conventional technology, the configuration of peripheral circuits for memory control becomes complicated, such as sequentially selecting DRAM elements to be refreshed during separate refresh periods, resulting in an increase in circuit scale. There was a problem in that it invited

【0007】本発明の目的は、周辺回路の構成を複雑化
させることなく、かつ電源電圧の降下を引き起こすこと
なく、DRAM素子をリフレッシュ動作させることがで
きるメモリ回路のリフレッシュ方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a memory circuit refresh method that can refresh a DRAM element without complicating the configuration of peripheral circuits or causing a drop in power supply voltage. .

【0008】[0008]

【課題を解決するための手段】上記目的は、複数のDR
AM素子からなるメモリ回路のリフレッシュ方法におい
て、全DRAM素子を、適宜数で1ブロックにまとめて
複数のブロックに分け、リフレッシュ動作を、同一リフ
レッシュ期間内にて、各ブロック間に所定の遅延時間を
与えて順次行うことにより達成される。
[Means for solving the problem] The above purpose is to
In a refresh method for a memory circuit consisting of AM elements, all DRAM elements are grouped into one block in an appropriate number and divided into multiple blocks, and the refresh operation is performed within the same refresh period with a predetermined delay time between each block. This is achieved by giving and performing sequentially.

【0009】[0009]

【作用】全DRAM素子を、適宜数で1ブロックにまと
めて複数のブロックに分け、リフレッシュ動作を、各ブ
ロック間に所定の遅延時間(例えば20〜40nsec
)を与えて順次行うことにより、同時にリフレッシュ動
作を行うDRAM素子数が減少し、リフレッシュ動作時
のピーク電流値は低下,分散され、電源電圧の降下が防
止される。また上記リフレッシュ動作は、メモリ回路の
同一リフレッシュ期間内にて順次行われるので、周辺回
路の構成を複雑化させることはない。
[Operation] All DRAM elements are grouped into one block in an appropriate number and divided into a plurality of blocks, and the refresh operation is performed with a predetermined delay time (for example, 20 to 40 nsec) between each block.
), the number of DRAM elements that perform the refresh operation simultaneously is reduced, the peak current value during the refresh operation is reduced and dispersed, and a drop in the power supply voltage is prevented. Further, since the refresh operations described above are performed sequentially within the same refresh period of the memory circuit, the configuration of the peripheral circuits does not become complicated.

【0010】0010

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は、本発明によるメモリ回路のリフレッシュ
方法が適用されたメモリ回路構成例を示すブロック図で
ある。この図1においては、1ブロックm個(mの最大
値はデカップリング・コンデンサの最大容量に依存し、
前記X線CT装置の場合、例えば30〜50個となる。 )のDRAM素子からなる4ブロック構成(DRAM素
子ブロック11〜14)のメモリ回路を例示する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example of a memory circuit configuration to which a memory circuit refresh method according to the present invention is applied. In this figure, one block has m blocks (the maximum value of m depends on the maximum capacity of the decoupling capacitor,
In the case of the X-ray CT apparatus, the number is, for example, 30 to 50. ) A memory circuit having a four-block configuration (DRAM element blocks 11 to 14) consisting of DRAM elements is illustrated.

【0011】図1中、RAS1〜RAS4はブロック1
1〜14のRAS入力線を、CAS1〜CAS4は同じ
くCAS入力線を、各々示す。これらRAS1〜RAS
4及びCAS1〜CAS4には、ブロック11〜14毎
に固有のRAS,CAS信号が供給される。例えば、R
AS1にはブロック11のm個のDRAM素子において
共通のRAS信号が供給される。
In FIG. 1, RAS1 to RAS4 are block 1.
RAS input lines 1 to 14 are shown, and CAS1 to CAS4 are CAS input lines, respectively. These RAS1~RAS
4 and CAS1 to CAS4 are supplied with unique RAS and CAS signals for each block 11 to 14. For example, R
A RAS signal common to the m DRAM elements of the block 11 is supplied to AS1.

【0012】RAS1〜RAS4及びCAS1〜CAS
4には、マルチプレクサ15,16によって、通常動作
時のRAS,CAS信号とリフレッシュ動作時のRAS
,CAS信号とが選択的に供給される。通常動作時のR
AS,CAS信号は、メモリ読書き動作時のメモリコン
トロール回路17,18によって作り出される。リフレ
ッシュ動作時におけるRAS信号は、RAS1に始まり
、遅延素子、ここでは遅延線19によって順次、所定時
間、ここでは40nsecずつ遅れてRAS2,RAS
3,RAS4と、作り出されている。CAS信号も同様
に、CAS1に始まり、遅延線20によって順次、40
nsecずつ遅れてCAS2,CAS3,CAS4と、
作り出されている。
[0012] RAS1 to RAS4 and CAS1 to CAS
4, the RAS and CAS signals during normal operation and the RAS during refresh operation are connected by multiplexers 15 and 16.
, CAS signals are selectively supplied. R during normal operation
The AS and CAS signals are generated by memory control circuits 17 and 18 during memory read/write operations. During the refresh operation, the RAS signal starts from RAS1, and is sequentially delayed by a delay element, here the delay line 19, by a predetermined time, here 40 nsec, and then sent to RAS2 and RAS.
3, RAS4 is created. Similarly, the CAS signal starts at CAS1 and is sequentially transmitted by delay line 20 to 40
CAS2, CAS3, CAS4 with a delay of nsec,
It is created.

【0013】21はリフレッシュ動作のためのメモリコ
ントロール回路で、通常動作(メモリ読書き動作)とリ
フレッシュ動作の選択信号22をマルチプレクサ15,
16に与え、通常動作時にはメモリコントロール回路1
7,18からの、リフレッシュ動作時には当該メモリコ
ントロール回路21からの、RAS,CAS信号をブロ
ック11〜14に与えるようにする。図示構成のメモリ
回路のリフレッシュ動作について、以下に述べる。ここ
では、リフレッシュ用アドレスカウンタを必要としない
、すなわち、リフレッシュ用のアドレスを外部からDR
AM素子へ供給しなくともよい、CAS  befor
e  RAS(CBR)モードによるリフレッシュ動作
の説明を行う。
Reference numeral 21 denotes a memory control circuit for refresh operation, and a selection signal 22 for normal operation (memory read/write operation) and refresh operation is sent to a multiplexer 15,
16, and the memory control circuit 1 during normal operation.
The RAS and CAS signals from the memory control circuit 21 are applied to the blocks 11 to 14 during the refresh operation. A refresh operation of the memory circuit having the illustrated configuration will be described below. Here, a refresh address counter is not required, that is, the refresh address is externally DR.
CAS before, which does not need to be supplied to the AM element
e Refresh operation in RAS (CBR) mode will be explained.

【0014】図2は、CBRモードによるリフレッシュ
動作時のRAS,CAS信号波形を示す。図示するよう
に、CAS1〜CAS4信号は、RAS1〜RAS4信
号の供給前にLレベルになっている。またRAS,CA
S信号は、各々40nsecの遅延時間を伴って供給さ
れるため、メモリブロック11〜14は各々40nse
cの遅延を伴って順次リフレッシュ動作されることにな
る。したがって、リフレッシュ時に流れる電流は、DR
AM素子1個当たり80mAとすると、(4m×80)
mAものピーク電流が一時に流れるのではなく、(m×
80)mAのピーク値に抑えられつつ、40nsec遅
延を伴って順次流れることになる。これにより、リフレ
ッシュ動作時に流れる電流のピーク値はDRAM素子の
全個数をnとすると、m/nに抑えられ、全体として消
費される電流値が分散され、リフレッシュ動作時におけ
る瞬間的な電源電圧の降下は低く抑えられることになる
FIG. 2 shows RAS and CAS signal waveforms during refresh operation in CBR mode. As shown in the figure, the CAS1 to CAS4 signals are at L level before the RAS1 to RAS4 signals are supplied. Also RAS, CA
Since the S signals are each supplied with a delay time of 40 nsec, the memory blocks 11 to 14 are each supplied with a delay time of 40 nsec.
The refresh operation is performed sequentially with a delay of c. Therefore, the current flowing during refresh is DR
Assuming 80mA per AM element, (4m x 80)
Instead of a peak current of mA flowing all at once, (m×
80) The current flows sequentially with a delay of 40 nsec while being suppressed to a peak value of mA. As a result, the peak value of the current flowing during the refresh operation is suppressed to m/n, where n is the total number of DRAM elements, the current value consumed as a whole is dispersed, and the instantaneous power supply voltage during the refresh operation is reduced. The descent will be kept low.

【0015】また上記リフレッシュ動作は、同一リフレ
ッシュ期間内にて順次行うので、リフレッシュ動作する
DRAM素子をリフレッシュ期間を分けて順次選択する
など、メモリコントロールするための周辺回路の構成を
複雑化させることはない。なお上述実施例では、リフレ
ッシュ動作時におけるRAS,CAS信号を遅延する遅
延素子として、遅延線を用いたが、シフトレジスタなど
を用いてもよい。
Furthermore, since the refresh operations described above are performed sequentially within the same refresh period, it is not necessary to complicate the configuration of peripheral circuits for memory control, such as by sequentially selecting DRAM elements to be refreshed during separate refresh periods. do not have. In the above embodiment, a delay line is used as a delay element for delaying the RAS and CAS signals during the refresh operation, but a shift register or the like may also be used.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、全
DRAM素子を、適宜数で1ブロックにまとめて複数の
ブロックに分け、リフレッシュ動作を、各ブロック間に
所定の遅延時間を与えて順次行うようにしたので、同時
にリフレッシュ動作を行うDRAM素子数が減少し、リ
フレッシュ動作時のピーク電流値は低下,分散され、電
源電圧の降下が防止されるという効果がある。また上記
リフレッシュ動作を、同一リフレッシュ期間内にて順次
行うので、周辺回路の構成を複雑化させることがないと
いう効果もある。特に、遅延線などの遅延素子で前記遅
延時間を与えることができ、メモリコントロール回路の
構成を複雑化させることがない。なお、リフレッシュ動
作を行う時間差(遅延時間)は例えば20〜40nse
cと小さいため、リフレッシュ動作に要する全体の時間
の伸びは軽微なものであり、それが及ぼす影響は小さい
As explained above, according to the present invention, all DRAM elements are grouped into one block in an appropriate number and divided into a plurality of blocks, and the refresh operation is performed by giving a predetermined delay time between each block. Since the refresh operations are performed sequentially, the number of DRAM elements that perform refresh operations at the same time is reduced, the peak current value during the refresh operations is reduced and dispersed, and a drop in the power supply voltage is prevented. Furthermore, since the refresh operations described above are performed sequentially within the same refresh period, there is an advantage that the configuration of peripheral circuits is not complicated. In particular, the delay time can be provided by a delay element such as a delay line, without complicating the configuration of the memory control circuit. Note that the time difference (delay time) for performing the refresh operation is, for example, 20 to 40 ns.
c, the overall time required for the refresh operation is only slightly increased, and its influence is small.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法が適用されたメモリ回路構成例を示
すブロック図である。
FIG. 1 is a block diagram showing an example of a memory circuit configuration to which the method of the present invention is applied.

【図2】同上回路におけるリフレッシュ動作時のRAS
,CAS信号波形を示す図である。
[Figure 2] RAS during refresh operation in the same circuit as above
, CAS signal waveform.

【符号の説明】[Explanation of symbols]

11          ブロック(DRAM素子ブロ
ック)12          ブロック(DRAM素
子ブロック)13          ブロック(DR
AM素子ブロック)14          ブロック
(DRAM素子ブロック)RAS1  ローアドレス(
行番地)ストローブ入力線RAS2  ローアドレス(
行番地)ストローブ入力線RAS3  ローアドレス(
行番地)ストローブ入力線RAS4  ローアドレス(
行番地)ストローブ入力線CAS1  コラムアドレス
(列番地)ストローブ入力線CAS2  コラムアドレ
ス(列番地)ストローブ入力線CAS3  コラムアド
レス(列番地)ストローブ入力線CAS4  コラムア
ドレス(列番地)ストローブ入力線15       
   マルチプレクサ16          マルチ
プレクサ19              リフレッシ
ュ動作時のCAS1〜CAS4のための遅延線 20              リフレッシュ動作時
のRAS1〜RAS4のための遅延線 21              リフレッシュ動作の
ためのメモリコントロール回路
11 Block (DRAM element block) 12 Block (DRAM element block) 13 Block (DR
AM element block) 14 Block (DRAM element block) RAS1 Row address (
Row address) Strobe input line RAS2 Row address (
Row address) Strobe input line RAS3 Row address (
Row address) Strobe input line RAS4 Row address (
Row address) strobe input line CAS1 Column address (column address) strobe input line CAS2 Column address (column address) strobe input line CAS3 Column address (column address) strobe input line CAS4 Column address (column address) strobe input line 15
Multiplexer 16 Multiplexer 19 Delay line 20 for CAS1 to CAS4 during refresh operation Delay line 21 for RAS1 to RAS4 during refresh operation Memory control circuit for refresh operation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数のDRAM素子からなるメモリ回路の
リフレッシュ方法において、全DRAM素子を、適宜数
で1ブロックにまとめて複数のブロックに分け、リフレ
ッシュ動作を、同一リフレッシュ期間内にて、各ブロッ
ク間に所定の遅延時間を与えて順次行うことを特徴とす
るメモリ回路のリフレッシュ方法。
1. A method for refreshing a memory circuit consisting of a plurality of DRAM elements, in which all DRAM elements are divided into a plurality of blocks by dividing them into one block in an appropriate number, and a refresh operation is performed on each block within the same refresh period. A method for refreshing a memory circuit, characterized in that refreshing is performed sequentially with a predetermined delay time in between.
JP3173356A 1991-06-19 1991-06-19 Refresh method of memory circuit Pending JPH04370597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173356A JPH04370597A (en) 1991-06-19 1991-06-19 Refresh method of memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173356A JPH04370597A (en) 1991-06-19 1991-06-19 Refresh method of memory circuit

Publications (1)

Publication Number Publication Date
JPH04370597A true JPH04370597A (en) 1992-12-22

Family

ID=15958894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173356A Pending JPH04370597A (en) 1991-06-19 1991-06-19 Refresh method of memory circuit

Country Status (1)

Country Link
JP (1) JPH04370597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472725B1 (en) * 2002-04-01 2005-03-08 주식회사 하이닉스반도체 Semiconductor memory device having refresh mode
KR100475433B1 (en) * 2002-01-25 2005-03-10 삼성전자주식회사 System comprising dynamic random access memory devices and refresh method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475433B1 (en) * 2002-01-25 2005-03-10 삼성전자주식회사 System comprising dynamic random access memory devices and refresh method thereof
KR100472725B1 (en) * 2002-04-01 2005-03-08 주식회사 하이닉스반도체 Semiconductor memory device having refresh mode

Similar Documents

Publication Publication Date Title
KR100936637B1 (en) Dynamic command and/or address mirroring system and method for memory modules
US9824036B2 (en) Memory systems with multiple modules supporting simultaneous access responsive to common memory commands
US4797850A (en) Dynamic random access memory controller with multiple independent control channels
JP2607814B2 (en) Semiconductor memory device
US6724679B2 (en) Semiconductor memory device allowing high density structure or high performance
JP4470186B2 (en) Semiconductor memory device
KR960006017A (en) Semiconductor memory
JPH09180448A (en) Boosted voltage generator of semiconductor memory device
US6078547A (en) Method and structure for controlling operation of a DRAM array
KR19980070330A (en) Variable standby memory circuit
KR100552886B1 (en) Integrated dram with high speed interleaving
US5793694A (en) Semiconductor integrated circuit device having means for peak current reduction
JP2004532496A (en) On-chip circuit for high-speed memory test using low-speed memory tester
KR19980063697A (en) Memory configuration circuit and method
JPH1021684A (en) Synchronous semiconductor memory device
JPH04370597A (en) Refresh method of memory circuit
US6073203A (en) Method for the continuous readout of a data sequence from a memory
JPS59191657A (en) Digital pattern generator
JPH04364295A (en) Dynamic ram control circuit device
KR100237986B1 (en) Method and apparatus for modifying signals received by memory cards
JP2558234B2 (en) Pattern generator
JPS6049421A (en) Generating system of timing pulse
JPH05282858A (en) Semiconductor memory device
JPH06109812A (en) Timing generator
JPS5720979A (en) Memory control system