JPH04368101A - Rare earth permanent magnet - Google Patents
Rare earth permanent magnetInfo
- Publication number
- JPH04368101A JPH04368101A JP3170713A JP17071391A JPH04368101A JP H04368101 A JPH04368101 A JP H04368101A JP 3170713 A JP3170713 A JP 3170713A JP 17071391 A JP17071391 A JP 17071391A JP H04368101 A JPH04368101 A JP H04368101A
- Authority
- JP
- Japan
- Prior art keywords
- value
- permanent magnet
- rare earth
- earth permanent
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 29
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 26
- 238000001816 cooling Methods 0.000 claims abstract description 31
- 238000011282 treatment Methods 0.000 claims abstract description 27
- 230000005415 magnetization Effects 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 abstract description 19
- 239000006104 solid solution Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 8
- 238000005336 cracking Methods 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010583 slow cooling Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、一体物として一体に
成形されて単一体で300g以上の重量を有するともに
一般式R(Co1−x−y−cFexCuyMc)zで
示される、例えばSm2(Co1−x−y−cFexC
uyZrc)17系永久磁石に関するものである。[Industrial Application Field] The present invention is directed to the use of Sm2(Co1 -x-y-cFexC
uyZrc) 17 series permanent magnet.
【0002】0002
【従来の技術】例えば電子加速器、ウィグラー等の能力
をより大きくするためには、より大型の永久磁石が必要
となり、その方法としては従来から複数個のブロック磁
石を接着剤で接合して大きな形状にして使用するという
手法が採られていた。しかしその場合、接着剤が各ブロ
ック磁石の相互間に介在して磁気的空隙を形成するため
、それに起因して磁束密度が低下し、また全体として磁
気特性が不均一となり、それを使用した装置の性能が低
下してしまうという問題があった。また大型の異方性永
久磁石が自由電子レーザ等に組み込まれたときには、高
真空でかつ紫外線の存在する環境におかれるので、複数
のブロック磁石を接合する為に使用される樹脂接着剤の
高分子構造が紫外線による光化学反応により破壊される
ため劣化することが多いという問題もあり、さらに複数
のブロック磁石を接着剤で接合する作業は、それ自体煩
雑であり、時間コスト上の問題があると共に、均一な品
質のものを供給することが困難であるという問題がある
。[Prior Art] For example, in order to increase the capacity of electron accelerators, wigglers, etc., larger permanent magnets are required, and the conventional method for achieving this is to bond multiple block magnets with adhesive to form large permanent magnets. The method used was to use it as a However, in that case, the adhesive is interposed between the block magnets and forms a magnetic gap, which reduces the magnetic flux density and makes the magnetic properties non-uniform as a whole. There was a problem that the performance of Furthermore, when large anisotropic permanent magnets are incorporated into free electron lasers, etc., they are placed in an environment of high vacuum and ultraviolet rays, so the resin adhesive used to bond multiple block magnets has a high temperature. There is also the problem that the molecular structure is often destroyed by photochemical reactions caused by ultraviolet rays, resulting in deterioration.Furthermore, the work of joining multiple block magnets with adhesive is itself complicated, which poses problems in terms of time and cost. However, there is a problem in that it is difficult to supply products of uniform quality.
【0003】このような従来の問題を解消することを目
的として、本発明者は先の出願(特開平2−21410
5号)で、一体に成形されて磁気的空隙を生じない一体
物の大重量異方性永久磁石を提案した。この永久磁石は
単一体で300g以上となる大きな形状に一体物で形成
されるので、磁気特性が全体的に均一となり、自由電子
レーザーの挿入装置(ウイグラー及び/又はアンデュレ
ータ)等に使用した場合、良好な性能を得ることができ
、接着剤を用いる場合の問題を解消することができると
いう極めて優れた利点を有している。[0003]With the aim of solving such conventional problems, the present inventor has filed an earlier application (Japanese Patent Laid-Open No. 2-21410).
No. 5), we proposed a large-weight anisotropic permanent magnet that is integrally molded and does not create a magnetic gap. Since this permanent magnet is formed into a large single piece with a weight of over 300g, the magnetic properties are uniform throughout, and when used in free electron laser insertion devices (wigglers and/or undulators), etc. It has the extremely excellent advantage of being able to obtain good performance and solving the problems that occur when using adhesives.
【0004】0004
【発明が解決しようとする課題】しかし、以上の本発明
者の提案にかかる大重量異方性永久磁石については、更
に次のような改善余地があった。すなわち、Sm2Co
17系永久磁石を作製する場合、磁気特性の均一化を図
り、また制御された保磁力を得ることを目的として11
00℃〜1200℃程度の高温に一定時間保持し、その
後急冷若しくは制御冷却を行う溶体化処理が一般に行わ
れている。[Problems to be Solved by the Invention] However, the large-weight anisotropic permanent magnet proposed by the present inventors has room for further improvement as described below. That is, Sm2Co
When producing 17 series permanent magnets, 11
Solution treatment is generally performed in which the material is held at a high temperature of about 00° C. to 1200° C. for a certain period of time, and then rapidly cooled or controlled cooling is performed.
【0005】このような溶体化処理後の制御冷却につい
ては、本出願人が小磁石のエネルギー積(BH)max
の向上を目的として、既に特開平2−263937によ
り開示するところである。一方、かかる溶体化処理を大
型の特に永久磁石で行う場合には、冷却時に表面温度と
内部温度に過剰な格差が生じ、冷却に伴う収縮量の差に
より発生する内部応力に起因して、割れや変形が発生す
るという固有の問題が有る。このように冷却時における
割れや変形の発生を防止するためには、表面温度と内部
温度に過剰な差が生じないような冷却速度で徐冷する必
要がある。しかしこのように徐冷した場合、溶体化処理
で均一化した組織を維持したまま所定の温度まで冷却す
ることはできず、その冷却過程でSm2Co17を基地
としてSmCo5が析出するという2相分離の進行を許
容せざるを得ない。この場合SmCo5がセル状に析出
することにより、係るセル状SmCo5によって保磁力
は高められるが、残留磁束密度(Br)が低下し、さら
に着磁性が悪化するという問題があった。Regarding such controlled cooling after solution treatment, the present applicant has developed the energy product (BH) max of a small magnet.
This has already been disclosed in Japanese Patent Application Laid-Open No. 2-263937 for the purpose of improving the performance. On the other hand, when such solution treatment is performed using large-sized permanent magnets, an excessive difference occurs between the surface temperature and the internal temperature during cooling, and cracks may occur due to internal stress caused by the difference in the amount of shrinkage caused by cooling. There is an inherent problem that deformation occurs. In order to prevent the occurrence of cracks and deformation during cooling, it is necessary to perform slow cooling at a cooling rate that does not create an excessive difference between the surface temperature and the internal temperature. However, when slow cooling is performed in this way, it is not possible to cool down to a predetermined temperature while maintaining the homogeneous structure obtained by solution treatment, and during the cooling process, two-phase separation occurs in which SmCo5 precipitates from Sm2Co17 as a base. I have no choice but to tolerate it. In this case, when SmCo5 is precipitated in a cellular shape, the coercive force is increased by the cellular SmCo5, but there is a problem in that the residual magnetic flux density (Br) is lowered and the magnetizability is further deteriorated.
【0006】この着磁性の問題は、着磁性の良好なSm
Co5永久磁石やNd−Fe−B永久磁石では生じない
が、着磁性の悪いSm2Co17系磁石では商品性に係
わる重大な問題となる。更に、この着磁性の問題は通常
の大きさの磁石では生じないが、本発明者が先に提案し
た300g以上の大きさを有する永久磁石では重大な問
題となる。すなわちこの大きさでかつ着磁性の不良な磁
石に着磁する場合には、極めて大きな電流を着磁コイル
に長時間流さなければならず、そのような大電流を長時
間供給することに耐えられる着磁設備は、一般の永久磁
石ユーザーの有するものではなく、また、そのように長
時間電流を供給することは、電力コスト及び時間コスト
の面から考えても極めて不利となる。また、着磁後の永
久磁石をユーザーに供給しようとしても、このような大
磁石で既に着磁されたものは、その運搬の際に極めて大
きな危険が生じ、現実的でない。[0006] This problem of magnetization is caused by Sm
This does not occur with Co5 permanent magnets or Nd-Fe-B permanent magnets, but it becomes a serious problem with respect to marketability in Sm2Co17-based magnets, which have poor magnetization. Further, although this problem of magnetization does not occur with magnets of normal size, it becomes a serious problem with permanent magnets having a size of 300 g or more, which were previously proposed by the present inventor. In other words, in order to magnetize a magnet of this size and with poor magnetization properties, an extremely large current must be passed through the magnetizing coil for a long period of time, and it is difficult to withstand supplying such a large current for a long period of time. Magnetizing equipment is not something that general permanent magnet users have, and supplying current for such a long time is extremely disadvantageous in terms of power cost and time cost. Furthermore, even if it is attempted to supply a magnetized permanent magnet to a user, such a large magnet that has already been magnetized poses an extremely large risk during transportation, which is impractical.
【0007】すなわちこの発明は、一体物で成形されて
単一体で300g以上の重量を有する一般式R(Co1
−x−y−cFexCuyMc)zで示される、例えば
Sm2(Co1−x−y−cFexCuyZrc)17
系永久磁石についての以上の従来の問題を解消し、最適
の成分に調整しかつ最適の熱処理を施すことによって、
変形や割れがなくかつ現実の使用に困難がない程度の着
磁性を備えるとともに、良好な磁気特性を与えられた希
土類永久磁石を提供することを目的とする。That is, the present invention provides a general formula R(Co1
-x-y-cFexCuyMc)z, for example, Sm2(Co1-x-y-cFexCuyZrc)17
By solving the above-mentioned conventional problems with permanent magnets, adjusting the composition to the optimum composition, and applying the optimum heat treatment,
It is an object of the present invention to provide a rare earth permanent magnet that is free from deformation or cracking, has a magnetization property that is not difficult to use in actual use, and has good magnetic properties.
【0008】[0008]
【課題を解決するための手段】すなわちこの発明によれ
ば、単一体で300g以上の重量を有するとともに一般
式R(Co1−x−y−cFexCuyMc)z(ただ
しRは希土類元素の少なくとも一種または2種以上の組
み合わせ、MはTi、Zr、Hf、Nbの少なくとも一
種)で示される組成を有する希土類永久磁石において、
前記z値を7.0〜7.8とし、前記x値を0.18〜
0.29、y値0.03〜0.15未満、c値0.00
5〜0.05とする希土類永久磁石が提供される。[Means for Solving the Problems] That is, according to the present invention, a single body has a weight of 300 g or more and has a general formula R(Co1-x-y-cFexCuyMc)z (where R is at least one of rare earth elements or two In a rare earth permanent magnet having a composition represented by a combination of at least one species, where M is at least one of Ti, Zr, Hf, and Nb,
The z value is 7.0 to 7.8, and the x value is 0.18 to 7.8.
0.29, y value 0.03 to less than 0.15, c value 0.00
5 to 0.05 is provided.
【0009】またこの発明によれば、単一体で300g
以上の重量を有するとともに一般式R(Co1−x−y
−cFexCuyMc)zで示される組成を有する希土
類永久磁石において、溶体化処理後の冷却を0.3〜2
.0℃/minの速度で行うことによって得られる希土
類永久磁石が提供される。さらにこの発明によれば、単
一体で300g以上の重量を有するとともに一般式R(
Co1−x−y−cFexCuyMc)zで示される組
成を有する希土類永久磁石において、前記z値が7.0
〜7.8であり、前記x値が0.18〜0.29、y値
0.03〜0.15未満、c値0.005〜0.05で
あり、さらに溶体化処理後の冷却を、0.3〜1.3℃
/minの速度で行って得られる希土類永久磁石が提供
される。[0009] Furthermore, according to the present invention, a single body weighs 300g.
or more, and has the general formula R(Co1-x-y
-cFexCuyMc)z In a rare earth permanent magnet having a composition shown by z, cooling after solution treatment is performed by 0.3 to 2
.. A rare earth permanent magnet is provided which is obtained by performing at a rate of 0° C./min. Further, according to the present invention, it has a weight of 300 g or more as a single unit, and has the general formula R (
In a rare earth permanent magnet having a composition represented by Co1-x-y-cFexCuyMc)z, the z value is 7.0.
~7.8, the x value is 0.18 to 0.29, the y value is 0.03 to less than 0.15, the c value is 0.005 to 0.05, and further cooling after solution treatment is performed. ,0.3~1.3℃
A rare earth permanent magnet obtained by performing the process at a speed of /min is provided.
【0010】以下にこの発明の内容をさらに詳細に説明
する。この発明の希土類永久磁石は、特に、単一体で3
00g以上の重量を有するという特徴を有する。ここで
単一体であるとは、複数の磁石を接着剤で接合して一体
となす場合を除くものである。300g以上としたのは
、300g未満では、従来採用されてきた溶体化処理時
に用いられる急冷処理が亀裂の発生を伴うことなくある
程度可能となるためである。[0010] The contents of the present invention will be explained in more detail below. In particular, the rare earth permanent magnet of this invention has three
It is characterized by having a weight of 00g or more. Here, being a single body excludes the case where a plurality of magnets are bonded together with an adhesive to form a single body. The reason why the weight is set at 300 g or more is that if the weight is less than 300 g, the quenching treatment used in the conventional solution treatment can be performed to some extent without causing cracks.
【0011】この発明の対象となる希土類永久磁石は、
一般式R(Co1−x−y−cFexCuyMc)zで
示される組成を有するSm2Co17系永久磁石である
。これはこのSm2Co17系永久磁石は、例えば放射
線の存在する環境における用途に対して、放射線照射に
起因する磁束密度の低下の懸念が少なく、磁束量の安定
化のため着磁後50℃ないし120℃程度で加熱冷却し
た際に非可逆減磁率が小さく、キューリー温度も高いと
いう利点を有する一方、このSm2Co17系永久磁石
は、着磁性が悪いという問題が有し、このような着磁性
の問題は前述した特開平2−263937号に示される
ような小磁石もしくは通常の大きさの磁石では、顕著な
問題とはならないが、この発明の永久磁石のように単体
で300g以上の重量を有する永久磁石の場合、極めて
重大な問題となるからである。[0011] The rare earth permanent magnet that is the object of this invention is:
It is a Sm2Co17-based permanent magnet having a composition represented by the general formula R(Co1-x-y-cFexCuyMc)z. This is because this Sm2Co17-based permanent magnet is used in environments where radiation is present, for example, and there is less concern about a decrease in magnetic flux density due to radiation exposure, and in order to stabilize the amount of magnetic flux, the temperature is 50°C to 120°C after magnetization. While this Sm2Co17-based permanent magnet has the advantage of having a small irreversible demagnetization rate and a high Curie temperature when heated and cooled at a certain temperature, it has the problem of poor magnetization. This is not a serious problem with small magnets or normal size magnets as shown in JP-A No. 2-263937, but with a permanent magnet that weighs more than 300 g alone, such as the permanent magnet of the present invention, This is because it becomes an extremely serious problem.
【0012】さて、この発明の希土類永久磁石は、前述
するように単一体で300g以上の重量を有するので、
その熱処理過程での割れを防止するという課題を克服し
かつ着磁性が良好でかつその他の磁気特性も良好にする
という課題を達成するために、特有の成分調整及び熱処
理が必要となる。この観点からこの発明の希土類永久磁
石の組成を示す一般式R(Co1−x−y−cFexC
uyMc)zにおけるz,x,y,c等は次のように決
定される。
希土類元素Rの総量に対する他元素の総量の比を示すz
値はこの発明では、7.0〜7.8に調整される。7.
0未満では、得られる永久磁石の保磁力が充分でなく、
7.8を越える場合も同様に保磁力が不十分となる。し
かし、好ましくはZ値は7.2〜7.6とするのが良く
、最も好ましくは7.30〜7.55とするのが良い。
すなわち7.2未満の場合または7.6を越える場合は
、ウィグラ用等の磁石に用いる場合に求められる磁気特
性を満足せず、さらに7.30未満の場合または7.5
5を越える場合では、割れを防止するようにして熱処理
時の冷却を行う際に、先の溶体化処理時に採用した徐冷
処理に伴う2相分離の制御が不十分となることから、得
られる組織において、1/5相及び2/17のセル構造
が不均一となり、その結果として良好な着磁性を得るこ
とはできない。Now, since the rare earth permanent magnet of the present invention has a weight of 300 g or more as a single piece as described above,
In order to overcome the problem of preventing cracking during the heat treatment process and to achieve the goals of achieving good magnetization and other magnetic properties, specific component adjustment and heat treatment are required. From this point of view, the general formula R (Co1-x-y-cFexC
z, x, y, c, etc. in uyMc)z are determined as follows. z indicating the ratio of the total amount of other elements to the total amount of rare earth element R
The value is adjusted to 7.0-7.8 in this invention. 7.
If it is less than 0, the coercive force of the obtained permanent magnet is not sufficient,
Similarly, if it exceeds 7.8, the coercive force will be insufficient. However, preferably the Z value is between 7.2 and 7.6, most preferably between 7.30 and 7.55. In other words, if it is less than 7.2 or more than 7.6, it does not satisfy the magnetic properties required for use in magnets such as wigglers, and if it is less than 7.30 or more than 7.5.
If it exceeds 5, when cooling is performed during heat treatment to prevent cracking, the control of two-phase separation accompanying the slow cooling treatment adopted during the previous solution treatment will be insufficient. In the structure, the 1/5 phase and 2/17 cell structures become nonuniform, and as a result, good magnetization cannot be obtained.
【0013】この発明の希土類永久磁石において、Fe
は飽和磁化及び残留磁束密度Brを増加させてエネルギ
ー積((BH)max)を増加する効果がある。このF
eの成分比を示すx値がこの発明では0.18〜0.2
9に調整される。x値が0.18未満ではエネルギー積
((BH)max)が低く、逆にx値が0.29を越え
ると熱処理時において保磁力の制御が著しく困難となり
好ましくない。しかしこの発明においてx値は好ましく
は0.20〜0.27とするのが良く、最も好ましくは
0.21〜0.26とするのが良い。x値が0.20未
満ではエネルギー積((BH)max)が不十分であり
、逆にx値が0.27を越えると保磁力の制御に難点を
生じることになる。さらにx値が0.21未満では、単
一体で300g以上の重量をもたせたものを熱処理する
際に、割れ・変形を防止するために徐冷する過程で、組
織が不均一となり、その結果として良好な着磁性を得る
ことはできず、逆にx値が0.26を越えると保磁力の
制御に難点を生じることとなる。[0013] In the rare earth permanent magnet of the present invention, Fe
has the effect of increasing the energy product ((BH)max) by increasing the saturation magnetization and residual magnetic flux density Br. This F
In this invention, the x value indicating the component ratio of e is 0.18 to 0.2.
Adjusted to 9. If the x value is less than 0.18, the energy product ((BH)max) will be low, whereas if the x value exceeds 0.29, it will become extremely difficult to control the coercive force during heat treatment, which is not preferable. However, in this invention, the x value is preferably 0.20 to 0.27, most preferably 0.21 to 0.26. If the x value is less than 0.20, the energy product ((BH)max) is insufficient, and if the x value exceeds 0.27, it will be difficult to control the coercive force. Furthermore, if the x value is less than 0.21, the structure will become non-uniform during the slow cooling process to prevent cracking and deformation during heat treatment of a single unit weighing 300 g or more. Good magnetization cannot be obtained, and conversely, if the x value exceeds 0.26, it will be difficult to control the coercive force.
【0014】この発明の希土類永久磁石において、Cu
は2相分離反応を起こさせるために必要な元素であり、
iHcを増加させる効果がある。このCuの成分比を示
すyは0.03以上0.15未満とするのがよい。yが
0.03未満では組織中におけるSmCo5セルの析出
が不十分となり、実用永久磁石として充分なiHcが得
られず、またyが0.15を越えると飽和磁化が低下し
てBrが低下するとと藻に着磁性の悪化を生じる。[0014] In the rare earth permanent magnet of the present invention, Cu
is an element necessary to cause a two-phase separation reaction,
It has the effect of increasing iHc. It is preferable that y, which indicates the component ratio of Cu, be 0.03 or more and less than 0.15. If y is less than 0.03, the precipitation of SmCo5 cells in the structure will be insufficient, and sufficient iHc for a practical permanent magnet will not be obtained, and if y exceeds 0.15, the saturation magnetization will decrease and Br will decrease. This causes deterioration in the magnetizability of the algae.
【0015】この発明ではMとしてTi、Zr、Hf、
Nbの少なくとも1種を添加することにより、保磁力i
Hcを増加させることができる。このM量を示すcは、
0.005以上0.05未満とするのが良い。cが0.
005未満では保磁力iHcを向上する効果は不十分で
あり、また0.05を越えると着磁性の悪化を招き、好
ましくない。In this invention, M includes Ti, Zr, Hf,
By adding at least one type of Nb, the coercive force i
Hc can be increased. c, which indicates the amount of M, is
It is preferable to set it to 0.005 or more and less than 0.05. c is 0.
If it is less than 0.05, the effect of improving the coercive force iHc is insufficient, and if it exceeds 0.05, the magnetizability deteriorates, which is not preferable.
【0016】さらに、この発明では、製造工程中の溶体
化処理後の冷却を制御し、それにより実用永久磁石とし
て充分な保磁力(iHc)を得ると共に、300g以上
の大重量永久磁石であっても容易に着磁することができ
る着磁性を得る。図19にR2Co17系磁石の一般的
な製造工程を示す。Furthermore, in the present invention, cooling after solution treatment during the manufacturing process is controlled, thereby obtaining a sufficient coercive force (iHc) as a practical permanent magnet, and a large weight permanent magnet of 300 g or more. It also provides magnetizability that allows easy magnetization. FIG. 19 shows a general manufacturing process for R2Co17 magnets.
【0017】すなわち、目標組成となるように希土類R
、Co、Cu、Fe、Zrの各元素を調合し、次いでこ
の混合物を溶解してインゴットを得る。このインゴット
を粗粉砕、微粉砕して原料粉とする。この原料粉を5〜
15kOe程度の磁場中でプレス成形し、成形物を11
50〜1230℃の温度で1〜2時間程度焼結する。
その後、磁気特性や機械的特性の均一化を目的として1
100〜1200℃で1時間以上溶体化処理を行い、そ
の後冷却する。That is, the rare earth R
, Co, Cu, Fe, and Zr are mixed, and then this mixture is melted to obtain an ingot. This ingot is coarsely crushed and finely crushed to obtain raw material powder. This raw material powder is 5~
Press molding is performed in a magnetic field of approximately 15 kOe, and the molded product is
Sintering is performed at a temperature of 50 to 1230°C for about 1 to 2 hours. After that, 1
Solution treatment is performed at 100 to 1200° C. for 1 hour or more, and then cooled.
【0018】この発明の希土類永久磁石は単一体で30
0g以上の重量を有することから、以上の第18図に示
す製造過程における溶体化処理後の冷却における冷却速
度が問題となる。すなわち冷却速度が過大な場合、冷却
過程で割れ・変形等が生じ、一方適正な冷却速度での冷
却を行わない場合、保磁力、着磁性等につき実用的な磁
気特性が得られないこととなる。以上の観点からこの発
明では、溶体化処理後の冷却速度を0.3〜2.0℃/
secで制御冷却する。[0018] The rare earth permanent magnet of the present invention has a magnet size of 30
Since it has a weight of 0 g or more, the cooling rate during cooling after the solution treatment in the manufacturing process shown in FIG. 18 becomes a problem. In other words, if the cooling rate is too high, cracks and deformation will occur during the cooling process, while if cooling is not performed at an appropriate cooling rate, practical magnetic properties such as coercive force and magnetizability will not be obtained. . In view of the above, in this invention, the cooling rate after solution treatment is set at 0.3 to 2.0°C/
Controlled cooling is performed in seconds.
【0019】ここで、冷却速度が0.3℃未満では、冷
却速度が過度に遅く得られるSm2Co17系永久磁石
の組織は、Sm2Co17の基地組織に過剰なSmCo
5セルが析出した状態となり、その結果として得られる
大重量永久磁石は、着磁性が悪く極めて実用性の低いも
のとなる。逆に冷却速度が2.0℃を越える場合には、
熱処理過程で永久磁石に割れ、ひびが生じる危険性が増
加する。[0019] If the cooling rate is less than 0.3°C, the structure of the Sm2Co17-based permanent magnet that is obtained with an excessively slow cooling rate is due to excessive SmCo in the Sm2Co17 base structure.
5 cells are precipitated, and the resulting heavy permanent magnet has poor magnetization and is extremely impractical. Conversely, if the cooling rate exceeds 2.0℃,
The risk of permanent magnets breaking and cracking during the heat treatment process increases.
【0020】[0020]
【作用】以上のようにこの発明の希土類永久磁石によれ
ば、300g以上の大重量を有するSmCo系永久磁石
について、その組成の各成分量を最適に調整し、かつ溶
体化後の冷却速度を最適に調整するようにしたことによ
って、Sm2Co17基地組織へのSmCo5セルの析
出を、実用上充分な保磁力を与えることができる程度に
促すと共に、大重量永久磁石において特に重要な問題と
なる着磁性を、充分に実用的な程度とするように、Sm
2Co17基地組織へのSmCo5セルの析出が抑制さ
れる。このようにSm2Co17基地組織へのSmCo
5セルの析出が最適程度に制御されることによって、こ
の発明では300g以上の大重量永久磁石について、良
好な保磁力と、着磁性が得られる。[Function] As described above, according to the rare earth permanent magnet of the present invention, the amount of each component in the composition of a SmCo permanent magnet having a large weight of 300 g or more can be adjusted optimally, and the cooling rate after solutionization can be controlled. Optimal adjustment promotes the precipitation of SmCo5 cells in the Sm2Co17 base structure to the extent that it can provide a practically sufficient coercive force, and also improves magnetization, which is a particularly important issue in heavy permanent magnets. to a sufficiently practical degree, Sm
Precipitation of SmCo5 cells into the 2Co17 matrix structure is suppressed. In this way, SmCo to the Sm2Co17 base tissue
By controlling the precipitation of 5 cells to an optimum degree, the present invention can obtain good coercive force and magnetizability for a heavy permanent magnet of 300 g or more.
【0021】[0021]
【実施例】次にこの発明の一実施例につき説明する。
実施例1
組成配合
表1〜表3に示すように、Feの成分比xを0.20〜
0.25まで0.01づつ変化させ、その各々について
Cuの成分比yが0.055、0.060、0.065
となるようにし、さらにその各々についてz値が6.8
または8.0の組成になるように計算を行って微粉を秤
量して1A、1B〜15A、15Bまでの試料を得た。
これらの試料を混合機により10分間攪はんし組成配合
を行った。組成の配合は1〜15までのAとBとを微粉
砕後、ブレンドすることによりz値を6.8〜8.0ま
で0.1ごとに変化させるようにして行った。[Embodiment] Next, an embodiment of the present invention will be described. Example 1 As shown in Composition Tables 1 to 3, the component ratio x of Fe is 0.20 to
The Cu component ratio y was changed by 0.01 up to 0.25, and the Cu component ratio y was 0.055, 0.060, and 0.065 for each.
and the z value for each of them is 6.8.
Alternatively, calculations were made to obtain a composition of 8.0, and the fine powder was weighed to obtain samples ranging from 1A and 1B to 15A and 15B. These samples were stirred for 10 minutes using a mixer to blend the composition. The composition was blended by finely pulverizing A and B from 1 to 15, and then blending them so that the z value was varied in 0.1 increments from 6.8 to 8.0.
【0022】[0022]
【表1】[Table 1]
【0023】[0023]
【表2】[Table 2]
【0024】[0024]
【表3】[Table 3]
【0025】成形及び焼結
以上により得られた各配合比の試料を用いて、100t
プレスで圧縮成形することにより50×50×60mm
のテストピースの成形体を得た。なお成形にあたっては
10kOeの磁場中で成形し成形体に異方性を与えるよ
うにした。次いで、得られたその成形体に対し、リンド
バーグ炉を用いて真空中にて1195℃で焼結を行い焼
結体を得た。[0025] Molding and sintering Using the samples of each compounding ratio obtained above, 100t
50 x 50 x 60 mm by compression molding with a press
A test piece molded body was obtained. The molding was performed in a magnetic field of 10 kOe to impart anisotropy to the molded product. Next, the obtained molded body was sintered in a vacuum at 1195° C. using a Lindberg furnace to obtain a sintered body.
【0026】溶体化処理
溶体化処理及び熱処理はそれぞれ図1に示すパターンで
行った。溶体化処理は1175℃/hに4.0時間保持
し、その後1.1℃/secで徐冷した。また、その溶
体化処理後の熱処理では、175℃/minで昇温後、
818℃に1.5時間保持し、いったん300℃まで冷
却した後、さらに813℃に10時間保持し、その後徐
冷した。Solution treatment The solution treatment and heat treatment were carried out in the pattern shown in FIG. 1, respectively. The solution treatment was maintained at 1175°C/h for 4.0 hours, and then slowly cooled at 1.1°C/sec. In addition, in the heat treatment after the solution treatment, after heating at 175 ° C / min,
It was held at 818°C for 1.5 hours, once cooled to 300°C, and then held at 813°C for 10 hours, and then slowly cooled.
【0027】結果及び結果の検討
Feの成分比xを0.20、0.21、0.22、0.
23、0.24、0.25に変化させたそれぞれの場合
について、z値を変化させ、さらにその各々の場合につ
いてCuの成分比yを0.055、0.060、0.0
65の各組成に調整した場合の磁気特性を測定した。そ
の結果を図2〜17に示す。各図に示すように、低Fe
側から高Fe側に移るにしたがい磁束密度Brは増加す
る。また、Cu量が増えるに従い、保磁力iHcは増加
しz=7.2〜7.5の領域でピークとなり、更に高z
側になると再び減少する。Results and Discussion of Results The Fe component ratio x was set to 0.20, 0.21, 0.22, 0.20, 0.21, 0.22, 0.
In each case, the z value was changed to 23, 0.24, and 0.25, and the Cu component ratio y was changed to 0.055, 0.060, and 0.0 in each case.
The magnetic properties were measured when each composition was adjusted to 65. The results are shown in Figures 2-17. As shown in each figure, low Fe
The magnetic flux density Br increases as it moves from the high Fe side to the high Fe side. In addition, as the amount of Cu increases, the coercive force iHc increases and reaches a peak in the region of z = 7.2 to 7.5, and further increases at higher z
When it comes to the side, it decreases again.
【0028】図18はFe量及びCu量に対する(BH
)maxの変化をマトリックスとして示す。図18に示
す(BH)maxの値は、全てウィグラ用磁石に必要で
あるBr≧10.4kG、bHc≧8.5kOeの条件
を満足しているものである。この図18に示されるよう
に、低Fe側から高Fe側に移行するに従い、一部の例
外を除き(BH)maxは一般に増加する傾向にある。
また、Cu量の(BH)maxへの依存性は、Fe量に
比べ低いといえる。FIG. 18 shows (BH
) max is shown as a matrix. The values of (BH)max shown in FIG. 18 all satisfy the conditions of Br≧10.4 kG and bHc≧8.5 kOe, which are necessary for a wiggler magnet. As shown in FIG. 18, (BH)max generally tends to increase with some exceptions as it moves from the low Fe side to the high Fe side. Furthermore, it can be said that the dependence of the amount of Cu on (BH)max is lower than that of the amount of Fe.
【0029】実施例2
成形焼結過程は実施例1と同様にして、x=0.20、
z=7.0、とし、溶体化処理後の冷却を1.2℃/s
ecとしてこの発明を実施した永久磁石を作製し、その
磁気特性を測定した。
実施例3
成形焼結過程は実施例1と同様にして、x=0.20、
z=7.8とし、溶体化処理後の冷却を0.8℃/se
cとしてこの発明を実施した永久磁石を作製し、その磁
気特性を測定した。また、比較例として他の条件は各実
施例と同様にし、Feの成分比xを0.17とし、z値
を6.9、7.9とするとともに、溶体化処理後の冷却
を1.4℃/secの冷却速度で行ったサンプルにつき
磁気特性を測定した。実施例及び比較例の磁気特性の測
定結果を対比して表4に示す。さらに特に各場合につい
て残留磁束密度を実施例のとき11000KG近傍に固
定し、保磁力を変化した場合の着磁性の良否についての
評価結果を表5に示す。表5においてBsは外挿した飽
和磁化を示す。Example 2 The shaping and sintering process was carried out in the same manner as in Example 1, with x=0.20,
z = 7.0, and cooling after solution treatment was 1.2°C/s.
A permanent magnet according to the present invention was manufactured as an ec, and its magnetic properties were measured. Example 3 The shaping and sintering process was carried out in the same manner as in Example 1, with x=0.20,
z=7.8 and cooling after solution treatment at 0.8℃/se
A permanent magnet according to the present invention was prepared as part c, and its magnetic properties were measured. As a comparative example, the other conditions were the same as in each example, the Fe component ratio x was 0.17, the z values were 6.9 and 7.9, and the cooling after solution treatment was 1. Magnetic properties were measured for the samples that were cooled at a cooling rate of 4° C./sec. Table 4 shows a comparison of the measurement results of the magnetic properties of Examples and Comparative Examples. Furthermore, in particular, Table 5 shows the evaluation results regarding the quality of magnetization when the residual magnetic flux density was fixed at around 11000 KG in the example and the coercive force was varied in each case. In Table 5, Bs indicates extrapolated saturation magnetization.
【0032】[0032]
【表4】[Table 4]
【0033】[0033]
【表5】[Table 5]
【0034】表4に示されるように、z値が7.0の場
合溶体化処理後の冷却を徐冷とした場合にも熱処理によ
って(BH)max=25.9MGOeを確保できるの
に対し、z値が6.9であるとiHcと共に(BH)m
axも急激に低下する。このように最適なz値を有する
ことから、保磁力、エネルギー積共に実施例が優れてい
ることがわかる。また、z値が7.8の場合、溶体化処
理、熱処理の制御により(BH)maxが26.5MG
Oeを保っているのに対し、z値が7.9になると保磁
力、エネルギー積共に低下することになり、これらの観
点から、実施例が優れていることが分かる。As shown in Table 4, when the z value is 7.0, (BH)max=25.9MGOe can be secured by heat treatment even when cooling after solution treatment is slow cooling. When the z value is 6.9, (BH)m with iHc
ax also drops rapidly. Since it has such an optimal z value, it can be seen that the example is superior in both coercive force and energy product. In addition, when the z value is 7.8, (BH)max is 26.5MG by controlling the solution treatment and heat treatment.
While Oe is maintained, when the z value reaches 7.9, both the coercive force and the energy product decrease, and it can be seen that the example is superior from these viewpoints.
【0035】さらに表5に示されるように、実施例のも
のでは何れも25KOeの通常に用いられる着磁磁場で
着磁されているのに対し、比較例のものでは通常の着磁
磁場では、飽和に近い着磁状態を得ることが困難であり
、90%以上の着磁率を得るためには70KOeの高出
力の特殊で大がかりな着磁設備が必要である。従って、
iHcを最適条件に制御された実施例のものが明らかに
良好な着磁性を示している。Further, as shown in Table 5, all of the examples were magnetized with a commonly used magnetizing magnetic field of 25 KOe, while the comparative examples were magnetized with a normally used magnetizing magnetic field of 25 KOe. It is difficult to obtain a magnetization state close to saturation, and special large-scale magnetization equipment with a high output of 70 KOe is required to obtain a magnetization rate of 90% or more. Therefore,
The examples in which iHc was controlled to the optimum condition clearly showed good magnetization.
【0036】[0036]
【発明の効果】以上のようにこの発明の希土類永久磁石
によれば、単一体で300g以上の重量を有するととも
に一般式R(Co1−x−y−cFexCuyMc)z
で示される組成を有するSm2Co17系永久磁石のz
値を7.0〜7.8とし、x値を0.18〜0.29と
するようにしたので、熱処理の困難な大重量希土類永久
磁石につき、熱処理過程での変形、割れ等を防止して、
かつエネルギー積が28.9MGOeという従来達成で
きなかった良好な磁気特性を得ることができるという優
れた効果が奏される。特にこの発明の希土類永久磁石に
よれば以上に加えて溶体化処理後の冷却を0.3〜2.
0℃/secの速度で行うことによって形成するように
したので、熱処理過程での変形、割れ等を防止するのみ
ならず、大重量希土類永久磁石において極めて重要な商
品性能となる着磁性が良好になるという優れた効果が奏
される。Effects of the Invention As described above, the rare earth permanent magnet of the present invention has a weight of 300 g or more as a single body, and has the general formula R(Co1-x-y-cFexCuyMc)z
z of a Sm2Co17-based permanent magnet having the composition shown by
By setting the value to 7.0 to 7.8 and the x value to 0.18 to 0.29, it is possible to prevent deformation, cracking, etc. during the heat treatment process for heavy rare earth permanent magnets that are difficult to heat treat. hand,
Moreover, the excellent effect of being able to obtain good magnetic properties with an energy product of 28.9 MGOe, which has not been achieved in the past, is achieved. In particular, according to the rare earth permanent magnet of the present invention, in addition to the above, cooling after solution treatment is 0.3 to 2.
Since the formation is performed at a speed of 0°C/sec, it not only prevents deformation and cracking during the heat treatment process, but also provides good magnetization, which is an extremely important product performance for large-weight rare earth permanent magnets. This produces an excellent effect.
【図1】Sm(CoBalFexCuyZr0.025
)zの熱処理パターンを示す図である。[Figure 1] Sm(CoBalFexCuyZr0.025
) is a diagram showing a heat treatment pattern of z.
【図2】Sm(CoBalFe0.20Cu0.055
Zr0.025)zのZ値を変化させた場合の磁気特性
の変化を示す図である。[Figure 2] Sm(CoBalFe0.20Cu0.055
It is a figure which shows the change of the magnetic characteristic when Z value of Zr0.025)z is changed.
【図3】Sm(CoBalFe0.20Cu0.060
Zr0.025)zのZ値を変化させた場合の磁気特性
の変化を示す図である。[Figure 3] Sm(CoBalFe0.20Cu0.060
It is a figure which shows the change of the magnetic characteristic when Z value of Zr0.025)z is changed.
【図4】Sm(CoBalFe0.20Cu0.065
Zr0.025)zのZ値を変化させた場合の磁気特性
の変化を示す図である。[Figure 4] Sm(CoBalFe0.20Cu0.065
It is a figure which shows the change of the magnetic characteristic when Z value of Zr0.025)z is changed.
【図5】Sm(CoBalFe0.21Cu0.055
Zr0.025)zのZ値を変化させた場合の磁気特性
の変化を示す図である。[Figure 5] Sm(CoBalFe0.21Cu0.055
It is a figure which shows the change of the magnetic characteristic when Z value of Zr0.025)z is changed.
【図6】Sm(CoBalFe0.21Cu0.060
Zr0.025)zのZ値を変化させた場合の磁気特性
の変化を示す図である。[Fig. 6] Sm(CoBalFe0.21Cu0.060
It is a figure which shows the change of the magnetic characteristic when Z value of Zr0.025)z is changed.
【図7】Sm(CoBalFe0.21Cu0.065
Zr0.025)zのZ値を変化させた場合の磁気特性
の変化を示す図である。[Figure 7] Sm(CoBalFe0.21Cu0.065
It is a figure which shows the change of the magnetic characteristic when Z value of Zr0.025)z is changed.
【図8】Sm(CoBalFe0.22Cu0.055
Zr0.025)zのZ値を変化させた場合の磁気特性
の変化を示す図である。FIG. 8 Sm(CoBalFe0.22Cu0.055
It is a figure which shows the change of the magnetic characteristic when Z value of Zr0.025)z is changed.
【図9】Sm(CoBalFe0.22Cu0.060
Zr0.025)zのZ値を変化させた場合の磁気特性
の変化を示す図である。FIG. 9 Sm(CoBalFe0.22Cu0.060
It is a figure which shows the change of the magnetic characteristic when Z value of Zr0.025)z is changed.
【図10】Sm(CoBalFe0.22Cu0.06
5Zr0.025)zのZ値を変化させた場合の磁気特
性の変化を示す図である。FIG. 10 Sm(CoBalFe0.22Cu0.06
5Zr0.025) is a diagram showing changes in magnetic properties when the Z value of z is changed.
【図11】Sm(CoBalFe0.23Cu0.05
5Zr0.025)zのZ値を変化させた場合の磁気特
性の変化を示す図である。FIG. 11: Sm(CoBalFe0.23Cu0.05
5Zr0.025) is a diagram showing changes in magnetic properties when the Z value of z is changed.
【図12】Sm(CoBalFe0.23Cu0.06
0Zr0.025)zのZ値を変化させた場合の磁気特
性の変化を示す図である。FIG. 12: Sm(CoBalFe0.23Cu0.06
0Zr0.025) is a diagram showing changes in magnetic properties when the Z value of z is changed.
【図13】Sm(CoBalFe0.23Cu0.06
5Zr0.025)zのZ値を変化させた場合の磁気特
性の変化を示す図である。FIG. 13: Sm(CoBalFe0.23Cu0.06
5Zr0.025) is a diagram showing changes in magnetic properties when the Z value of z is changed.
【図14】Sm(CoBalFe0.24Cu0.05
5Zr0.025)zのZ値を変化させた場合の磁気特
性の変化を示す図である。FIG. 14: Sm(CoBalFe0.24Cu0.05
5Zr0.025) is a diagram showing changes in magnetic properties when the Z value of z is changed.
【図15】Sm(CoBalFe0.24Cu0.06
0Zr0.025)zのZ値を変化させた場合の磁気特
性の変化を示す図である。FIG. 15: Sm(CoBalFe0.24Cu0.06
0Zr0.025) is a diagram showing changes in magnetic properties when the Z value of z is changed.
【図16】Sm(CoBalFe0.24Cu0.06
5Zr0.025)zのZ値を変化させた場合の磁気特
性の変化を示す図である。FIG. 16 Sm(CoBalFe0.24Cu0.06
5Zr0.025) is a diagram showing changes in magnetic properties when the Z value of z is changed.
【図17】Sm(CoBalFe0.25Cu0.06
5Zr0.025)zのZ値を変化させた場合の磁気特
性の変化を示す図である。FIG. 17: Sm(CoBalFe0.25Cu0.06
5Zr0.025) is a diagram showing changes in magnetic properties when the Z value of z is changed.
【図18】Fe及びCu量を変化させた場合のエネルギ
ー積(BH)maxの変化を示す図である。FIG. 18 is a diagram showing changes in energy product (BH) max when the amounts of Fe and Cu are changed.
【図19】希土類永久磁石の一般的な熱処理工程を示す
図である。FIG. 19 is a diagram showing a general heat treatment process for rare earth permanent magnets.
Claims (3)
とともに一般式R(Co1−x−y−cFexCuyM
c)z(ただしRは希土類元素の少なくとも一種または
2種以上の組み合わせ、MはTi、Zr、Hf、Nbの
少なくとも一種)で示される組成を有する希土類永久磁
石において、前記z値を7.0〜7.8とし、前記x値
を0.18〜0.29、y値0.03〜0.15未満、
c値0.005〜0.05とすることを特徴とする希土
類永久磁石。Claim 1: A single substance having a weight of 300 g or more and having the general formula R (Co1-x-y-cFexCuyM
c) In a rare earth permanent magnet having a composition represented by z (where R is at least one rare earth element or a combination of two or more, M is at least one of Ti, Zr, Hf, and Nb), the z value is 7.0. ~7.8, the x value is 0.18 to 0.29, the y value is 0.03 to less than 0.15,
A rare earth permanent magnet characterized by having a c value of 0.005 to 0.05.
とともに一般式R(Co1−x−y−cFexCuyM
c)zで示される組成を有する希土類永久磁石において
、溶体化処理後の冷却を0.3〜2.0℃/minの速
度で行うことによって得られることを特徴とする希土類
永久磁石。2. It has a weight of 300 g or more as a single body and has the general formula R (Co1-x-y-cFexCuyM
c) A rare earth permanent magnet having a composition represented by z, which is obtained by cooling after solution treatment at a rate of 0.3 to 2.0° C./min.
とともに一般式R(Co1−x−y−cFexCuyM
c)zで示される組成を有する希土類永久磁石において
、前記z値が7.0〜7.8であり、前記x値が0.1
8〜0.29、y値0.03〜0.15未満、c値0.
005〜0.05とし、さらに溶体化処理後の冷却を、
0.3〜1.3℃/minの速度で行って得られること
を特徴とする希土類永久磁石。3. A single substance having a weight of 300 g or more and having the general formula R (Co1-x-y-cFexCuyM
c) In a rare earth permanent magnet having a composition represented by z, the z value is 7.0 to 7.8, and the x value is 0.1.
8 to 0.29, y value 0.03 to less than 0.15, c value 0.
005 to 0.05, and further cooling after solution treatment,
A rare earth permanent magnet characterized in that it is obtained by performing the magnetization at a rate of 0.3 to 1.3°C/min.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3170713A JPH04368101A (en) | 1991-06-15 | 1991-06-15 | Rare earth permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3170713A JPH04368101A (en) | 1991-06-15 | 1991-06-15 | Rare earth permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04368101A true JPH04368101A (en) | 1992-12-21 |
Family
ID=15910020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3170713A Pending JPH04368101A (en) | 1991-06-15 | 1991-06-15 | Rare earth permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04368101A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014192253A (en) * | 2013-03-26 | 2014-10-06 | Toshiba Corp | Permanent magnet, motor using the same, and power generator |
JPWO2015159882A1 (en) * | 2014-04-16 | 2017-04-13 | 並木精密宝石株式会社 | SmCo rare earth sintered magnet |
JP2017126757A (en) * | 2017-02-03 | 2017-07-20 | 株式会社東芝 | Permanent magnet, motor, power generator, and vehicle |
-
1991
- 1991-06-15 JP JP3170713A patent/JPH04368101A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014192253A (en) * | 2013-03-26 | 2014-10-06 | Toshiba Corp | Permanent magnet, motor using the same, and power generator |
JPWO2015159882A1 (en) * | 2014-04-16 | 2017-04-13 | 並木精密宝石株式会社 | SmCo rare earth sintered magnet |
JP2017126757A (en) * | 2017-02-03 | 2017-07-20 | 株式会社東芝 | Permanent magnet, motor, power generator, and vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0258609B1 (en) | Permanent magnet with good thermal stability | |
US4081297A (en) | RE-Co-Fe-transition metal permanent magnet and method of making it | |
US4135953A (en) | Permanent magnet and method of making it | |
JPS60254708A (en) | Manufacture of permanent magnet | |
WO1980002297A1 (en) | Process for producing permanent magnet alloy | |
CA1318835C (en) | Permanent magnet for accelerating corpuscular beam | |
JPH10106875A (en) | Manufacturing method of rare-earth magnet | |
JPS62136551A (en) | Permanent magnet material | |
JPH04368101A (en) | Rare earth permanent magnet | |
JPH04241402A (en) | Permanent magnet | |
JPH0831626A (en) | Rare earth magnetic powder, permanent magnet thereof, and manufacture of them | |
JPH0354805A (en) | Rare-earth permanent magnet and manufacture thereof | |
JPS6151901A (en) | Manufacture of permanent magnet | |
JPS60257107A (en) | Manufacture of permanent magnet powder and permanent magnet | |
KR20200086181A (en) | METHOD FOR PREPARATION OF Mn BASED PERMANENT MAGNET | |
JPS61225814A (en) | Manufacture of permanent magnet | |
JP3080275B2 (en) | R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same | |
JPH05144621A (en) | Rare earth element-bonded magnet | |
JPS6369205A (en) | Manufacture of alloy powder of rare earth element, iron and boron for resin magnet | |
JPS62136553A (en) | Permanent magnet material | |
JPS62136550A (en) | Permanent magnet material | |
JPS60254707A (en) | Manufacture of permanent magnet | |
JPS62216203A (en) | Manufacture of powder molding magnet | |
JPH04143221A (en) | Production of permanent magnet | |
JPS60255941A (en) | Manufacture of rare earth element-transition metal element-semimetal alloy magnet |