JPH0436719A - Reflection factor variable mirror - Google Patents
Reflection factor variable mirrorInfo
- Publication number
- JPH0436719A JPH0436719A JP14414390A JP14414390A JPH0436719A JP H0436719 A JPH0436719 A JP H0436719A JP 14414390 A JP14414390 A JP 14414390A JP 14414390 A JP14414390 A JP 14414390A JP H0436719 A JPH0436719 A JP H0436719A
- Authority
- JP
- Japan
- Prior art keywords
- film
- transparent
- electro
- metallic
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000011347 resin Substances 0.000 claims abstract description 6
- 229920005989 resin Polymers 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 2
- 230000005693 optoelectronics Effects 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 31
- 239000010409 thin film Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 2
- 230000009290 primary effect Effects 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000382 optic material Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は防眩効果を有する自動車用のミラーに関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an automobile mirror having an anti-glare effect.
(従来技術)
本発明に係る従来技術としては実開昭64−34603
号の公報がある。(Prior art) As a prior art related to the present invention, Utility Model Application Publication No. 64-34603
There is a public notice of issue.
このものは高屈折率膜と金属膜との組合わせによる防眩
ミラーで、透明基板の裏面に屈折率が2゜2〜2.4の
範囲にあるTiO□の膜上に500Å以上の膜厚を有す
る金属膜を成形したものである。This is an anti-glare mirror made of a combination of a high refractive index film and a metal film, with a film thickness of 500 Å or more on a TiO□ film with a refractive index in the range of 2°2 to 2.4 on the back side of a transparent substrate. It is a molded metal film having a
又その他のものとしては液晶を使用したもの、及びエレ
クトロミック素子を使用したものがある。Other types include those using liquid crystals and those using electromic elements.
(発明が解説しようとする諜H)
しかし前記防眩ミラーは人の視感の最も大きくなる5
50 nm付近の光反射率を他の波長帯よりも低域せし
めて防眩効果を得るもので、反射率は固定であるのであ
る程度反射率を確保しないと防眩効果が不必要な時に暗
くなり、安全性が損なわれる危険があり、充分な防眩性
を付与することはできない。(Intelligence that the invention attempts to explain) However, the anti-glare mirror has the greatest visual sense of the human body.
The anti-glare effect is obtained by reducing the light reflectance around 50 nm to a lower range than other wavelength bands.Since the reflectance is fixed, unless a certain level of reflectance is secured, the anti-glare effect will become dark when unnecessary. However, there is a risk that safety will be impaired, and sufficient anti-glare properties cannot be provided.
又液晶を用いたものは、ミラーの防眩性はアップするこ
とは出来るが、液晶が紫外線に弱いために耐候性に乏し
く、又液晶の厚みを極めて薄い厚さでしかも均一に構成
する必要があり、曲面形状に製作することは極めて困難
であった。In addition, although it is possible to improve the anti-glare properties of mirrors using liquid crystal, the liquid crystal is susceptible to ultraviolet rays, resulting in poor weather resistance, and the thickness of the liquid crystal must be extremely thin and uniform. Therefore, it was extremely difficult to manufacture it into a curved shape.
更に反射率が可変の方法としてはエレクトロミックス素
子を用いる方法もあるがエレクトロミックス現象は化学
反応を利用しているために寿命が短(反応速度が温度に
大きく影響するという問題点がある。Furthermore, as a method of varying the reflectance, there is a method using an electromix element, but since the electromix phenomenon uses a chemical reaction, the lifetime is short (there is a problem that the reaction rate greatly affects the temperature).
本発明は電気的に反射率を制御する反射率可変ミラーに
於いて応答速度が速(、かつ曲面にも使用できる電気制
御による反射率可変ミラーを技術的課題とするものであ
る。The technical object of the present invention is to provide a variable reflectance mirror that electrically controls the reflectance and has a fast response speed (and can be used even on curved surfaces).
(課題を解決するための手段)
前記課題を解決するために講じた技術的手段は次のよう
である。すなわち、
ガラスまたは透明樹脂板の裏面に透明導電膜と、−次電
気光効果を有する強誘電体及び金属反射膜を構成し、前
記透明導電膜と前記金属反射膜の間に電圧を印加するこ
とにより光反射率を可変する反射率可変ミラーで、前記
電気光効果を有する強誘電体の材料としてPLZT (
Pbx、、La+−X)(Zr、Ti)O,、LiNb
0.、LiTa0、、PZTPb・ (Zr、Ti)O
s 、Zn0KDP (HK! POs )、ADP
(NH4H! PO4)又はそれらの混合物を使用した
ものである。(Means for solving the problem) The technical means taken to solve the above problem are as follows. That is, a transparent conductive film and a ferroelectric material and a metal reflective film having a -order electro-optic effect are formed on the back surface of a glass or transparent resin plate, and a voltage is applied between the transparent conductive film and the metal reflective film. This is a variable reflectance mirror that changes the light reflectance by using PLZT (
Pbx,,La+-X)(Zr,Ti)O,,LiNb
0. , LiTa0, , PZTPb・(Zr,Ti)O
s, Zn0KDP (HK! POs), ADP
(NH4H! PO4) or a mixture thereof.
(作用)
前記構成のミラーに於いて、表面のガラスと金属反射膜
との間に通電により磁界を発生させた場合の反射光の使
用を第1図に示す。(Function) FIG. 1 shows the use of reflected light when a magnetic field is generated by energizing between the glass surface and the metal reflective film in the mirror configured as described above.
図に於いて、入射光a、金属反射膜にて反射する反射光
をbとし、ガラス表面よりの反射光をCとすれば、第2
図に示すように入射光aはao とa”の2つのX、Y
方向のベクトルに分解され、−次電気光効果を有する強
誘電体3を通過するときに面内の屈折率の差により、あ
る方向例へばY方向の光a°が 回転しbo となる。In the figure, if the incident light a, the reflected light reflected by the metal reflective film is b, and the reflected light from the glass surface is C, then the second
As shown in the figure, the incident light a is composed of two X and Y ao and a''.
When the light is decomposed into directional vectors and passes through the ferroelectric material 3 having a -order electro-optic effect, the light a° in the Y direction is rotated to a certain example direction due to the difference in the refractive index within the plane, and becomes bo.
また金属反射膜よりの反射光は前記b゛とaの水手方向
のベクトルa″との合成によりbが結成される。Further, the reflected light from the metal reflective film is formed into b by the combination of b' and a vector a'' in the water direction of a.
次に前記反射光b゛が再び強誘電体を通過することによ
り 回転してb′はC′となり、この結果入射光aのX
方向のベクトルa”と前記C゛との差a”−c’ =c
がガラス表面の反射光となる。Next, the reflected light b' passes through the ferroelectric material again and rotates so that b' becomes C', and as a result, the X of the incident light a
Difference between the vector a'' in the direction and the above C''a''-c' = c
becomes the reflected light from the glass surface.
これにより前記強誘電体を使用した場合反射率は非防眩
時に比較して、電圧を印加しない場合は約50%、通電
をした場合には約20%となるものである。As a result, when the ferroelectric material is used, the reflectance is about 50% when no voltage is applied and about 20% when electricity is applied, compared to the non-dazzle condition.
(実施例) 以下実施例について説明する。(Example) Examples will be described below.
第1図は本実施例であるミラーの一部の断面図で、1は
ガラス又は透明樹脂基板で、2はAf等の金属薄膜又は
ITOの透明電極膜で電気光学−次効果をもつ物質であ
り、3はPZTPb・ (Zr、Ti)O,、PLZT
(Pbx、La+−x )Os、ZnO,LiNb0
z又はLiTa0.KDP (HK、PO,)、ADP
CNH4Hz po。Figure 1 is a cross-sectional view of a part of the mirror according to this embodiment, where 1 is a glass or transparent resin substrate, and 2 is a thin metal film such as Af or a transparent electrode film such as ITO, which is a material with an electro-optic effect. Yes, 3 is PZTPb・(Zr,Ti)O,, PLZT
(Pbx, La+-x)Os, ZnO, LiNb0
z or LiTa0. KDP (HK, PO,), ADP
CNH4Hz po.
)などの−次電気光学材料を0.3〜数μmの厚さに成
膜し更に、金属電極兼反射膜4を成膜するものである。) is formed into a film having a thickness of 0.3 to several μm, and then a metal electrode/reflection film 4 is formed.
前記成膜はスパッタ法で行ったが蒸着法、イオンブレー
ティング法でも良い。The film formation described above was performed by sputtering, but vapor deposition or ion blating may also be used.
前記透明樹脂板lと一次電気光学材料よりなる成12の
両電極間の間に直流電圧5をかけることにより生じた電
界により前記透明電極膜2の屈折率が変化するものであ
る。The refractive index of the transparent electrode film 2 is changed by an electric field generated by applying a DC voltage 5 between the transparent resin plate 1 and the electrode 12 made of a primary electro-optic material.
第3図に直流電圧10Vを印加した場合の状況を示し、
透明樹脂基板1に入射したベクトルAで示す光6は一部
透明基板上でBに示すように反射し、透明電極膜2内で
2つの直交する方向の屈折率差により偏光を生じ、光強
度は弱められて反射面へ到着することをCで示す。金属
反射膜4で反射後も透明電極膜2を通過時にさらに光強
度が弱わめられてガラス面から反射する時の反射光をベ
クトルEで示す。Figure 3 shows the situation when a DC voltage of 10V is applied,
The light 6 shown by the vector A that is incident on the transparent resin substrate 1 is partially reflected on the transparent substrate as shown by B, and polarization occurs in the transparent electrode film 2 due to the difference in refractive index in two orthogonal directions, and the light intensity increases. C indicates that the light reaches the reflecting surface after being weakened. Even after being reflected by the metal reflective film 4, the light intensity is further weakened when passing through the transparent electrode film 2 and reflected from the glass surface, and the reflected light is indicated by a vector E.
このように反射光は電界の強度により偏光度は変化し、
出射光強度は入射光強度に対し、O〜1まで任意に調節
できるものであるが、実用的には0、5〜0.2の範囲
である。In this way, the degree of polarization of reflected light changes depending on the strength of the electric field,
The intensity of the emitted light can be arbitrarily adjusted from 0 to 1 with respect to the intensity of the incident light, but it is practically in the range of 0.5 to 0.2.
このように電圧により光反射率が任意に調節出来るもの
である。In this way, the light reflectance can be adjusted arbitrarily by adjusting the voltage.
又ミラーが曲面の構成であっても前記各種薄膜の形状は
スパッター等にて容易に形成できる。Further, even if the mirror has a curved surface configuration, the shapes of the various thin films described above can be easily formed by sputtering or the like.
(発明の効果)
本発明は次の効果を有する。すなわち、(1)反射率が
可変であり任意に設定できる。(Effects of the Invention) The present invention has the following effects. That is, (1) the reflectance is variable and can be set arbitrarily.
(2)液晶方法では不可能な平面又は球面などの面の形
状にこだわらず形状できる。(2) It is possible to form any surface, such as a flat or spherical surface, which is not possible with the liquid crystal method.
(3)エレクトロクロミック方式に比較して応答が速い
。(3) Faster response compared to electrochromic methods.
(4)駆動電圧がIOV前後の低い電圧で作動する。(4) Operates at a low driving voltage around IOV.
(5)耐久性が耐候性に冨むものである。(5) Durability is rich in weather resistance.
第1図は本実施例のミラーの一部の拡大断面図である。
第2図は本実施例の入射光と反射光のベクトルによる説
明図、第3図は本実施例に通電した場合の反射光の説明
図。
1・・・ガラス基板、2・・・透明導電膜、3・・・強
誘電体、4・・・金属反射膜、5・、。
電源。
lfl
第1図
第2図FIG. 1 is an enlarged sectional view of a portion of the mirror of this embodiment. FIG. 2 is an explanatory diagram of vectors of incident light and reflected light in this embodiment, and FIG. 3 is an explanatory diagram of reflected light when electricity is applied to this embodiment. DESCRIPTION OF SYMBOLS 1...Glass substrate, 2...Transparent conductive film, 3...Ferroelectric material, 4...Metal reflective film, 5... power supply. lfl Figure 1 Figure 2
Claims (2)
電気光効果を有する強誘電体と金属反射膜を構成し、前
記透明導電膜と前記金属反射膜の間に電圧を印加するこ
とにより光反射率を可変とする反射率可変ミラー。(1) A transparent conductive film on the back side of the glass or transparent resin plate,
A variable reflectance mirror comprising a ferroelectric material having an electro-optical effect and a metal reflective film, and having a variable light reflectance by applying a voltage between the transparent conductive film and the metal reflective film.
T(Pb_x、La_1_−_x)(Zr、Ti)O_
3、LiNbO_3、LiTaO_3、PZTPb・(
Zr、Ti)O_3、ZnOKDP(HK_2PO_4
)、ADP(NH_4H_2PO_4)又はそれらの混
合物を使用した請求項1記載の反射率可変ミラー。(2) PLZ as a ferroelectric material with electro-optic effect
T(Pb_x, La_1_-_x)(Zr, Ti)O_
3, LiNbO_3, LiTaO_3, PZTPb・(
Zr, Ti)O_3, ZnOKDP(HK_2PO_4
), ADP (NH_4H_2PO_4) or a mixture thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14414390A JPH0436719A (en) | 1990-05-31 | 1990-05-31 | Reflection factor variable mirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14414390A JPH0436719A (en) | 1990-05-31 | 1990-05-31 | Reflection factor variable mirror |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0436719A true JPH0436719A (en) | 1992-02-06 |
Family
ID=15355227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14414390A Pending JPH0436719A (en) | 1990-05-31 | 1990-05-31 | Reflection factor variable mirror |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0436719A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19601539A1 (en) * | 1995-01-17 | 1996-07-18 | Murakami Kaimeido Kk | Multifunctional rearview mirror system |
JP2005338489A (en) * | 2004-05-27 | 2005-12-08 | Nec Viewtechnology Ltd | Projection type display device |
-
1990
- 1990-05-31 JP JP14414390A patent/JPH0436719A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19601539A1 (en) * | 1995-01-17 | 1996-07-18 | Murakami Kaimeido Kk | Multifunctional rearview mirror system |
DE19601539C2 (en) * | 1995-01-17 | 2001-12-13 | Murakami Kaimeido Kk | Multifunctional rearview mirror system |
JP2005338489A (en) * | 2004-05-27 | 2005-12-08 | Nec Viewtechnology Ltd | Projection type display device |
JP4669668B2 (en) * | 2004-05-27 | 2011-04-13 | Necディスプレイソリューションズ株式会社 | Projection display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1130783A (en) | Liquid crystal display element | |
JPS6275619A (en) | Glare-proof mirror | |
CN107092147A (en) | A kind of reflective automatically controlled adjustable Terahertz liquid crystal wave plate and preparation method thereof | |
US5734772A (en) | Inverted domain structure in ferroelectric crystals with polarization in the crystal plane | |
JPS5987436A (en) | Optical valve | |
JPH0534656A (en) | Focal length variable liquid crystal lens | |
JPH0436719A (en) | Reflection factor variable mirror | |
JPH049925A (en) | Optical writing type liquid crystal display element | |
JPH08510334A (en) | Optical device | |
JPH083584B2 (en) | Liquid crystal optical shutter | |
JPH0444002A (en) | Variable reflective index mirror | |
JPS63249820A (en) | Optical deflector of liquid crystal | |
Berezhno | Electro-optical modulators and shutters | |
JPS58193523A (en) | Liquid crystal display device | |
JP2617964B2 (en) | Electro-optic element | |
Cudney et al. | Electrically controlled wavefront modulators made with domain-engineered LiNbO3 wafers | |
JPS5875118A (en) | Liquid crystal display element | |
JPS5876813A (en) | Liquid crystal display element | |
JPH01253978A (en) | Transparent electrode for laser optics | |
JPH0318829A (en) | Space optical modulation element | |
JPS60230122A (en) | Nonglaring mirror for automobile | |
JPH0440411A (en) | Liquid crystal display element | |
JPH0497135A (en) | Liquid crystal light valve | |
JPS60225829A (en) | Antidazzle mirror for automobile | |
JPH04178625A (en) | Reflection type liquid crystal electrooptical device |