JPH04366901A - Element having carbon film - Google Patents

Element having carbon film

Info

Publication number
JPH04366901A
JPH04366901A JP3143280A JP14328091A JPH04366901A JP H04366901 A JPH04366901 A JP H04366901A JP 3143280 A JP3143280 A JP 3143280A JP 14328091 A JP14328091 A JP 14328091A JP H04366901 A JPH04366901 A JP H04366901A
Authority
JP
Japan
Prior art keywords
film
carbon film
dyn
substrate
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3143280A
Other languages
Japanese (ja)
Inventor
Yasushi Taniguchi
靖 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3143280A priority Critical patent/JPH04366901A/en
Publication of JPH04366901A publication Critical patent/JPH04366901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To substantially prevent the peeling and cracking of the multi-layered films of the element constituted by forming the multi-layered films having at least either of carbon films of hydrogenated amorphous carbon films and diamond-like carbon films on a base body. CONSTITUTION:The multi-layered films laminated with the hydrogenated amorphous carbon films (a-C:H) and dielectric films (SiO2, ZrO2, KgF2) are formed on the base body (PMMA). The one dielectric film (ZrO2, MgF2) has the tensile stress within a 1X10<3> to 1(X)10<10>dyn/cm<2> range. The hydrogenated amorphous carbon films and the other dielectric film (SiO2) have the compressive stress within a 1X10<8> to 1X10<10>dyn/cm<2> range. The average stress of the multi-layered films is set relatively low in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は炭素膜を有する素子に関
し、例えば、水素化アモルファス炭素膜やダイヤモンド
状炭素膜等を有する多層膜がプラスチック基体上に形成
された素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element having a carbon film, for example, an element in which a multilayer film including a hydrogenated amorphous carbon film, a diamond-like carbon film, etc. is formed on a plastic substrate.

【0002】0002

【従来の技術】プラスチック等の柔らかい基体上に比較
的硬い炭素膜をコーティングして基体の保護を行った素
子が知られており、又、この素子において、炭素膜の基
体への密着性を高める為に基体上に基体側から順に柔ら
かい炭素膜と炭素膜を重ねてコーティングし多層膜とし
たものも知られている。又、炭素膜を反射防止膜(多層
膜)の構成材料に使用した光学素子も知られている。
[Prior Art] Elements are known in which a relatively hard carbon film is coated on a soft base such as plastic to protect the base, and in this element, the adhesion of the carbon film to the base is improved. Therefore, it is also known to coat a substrate with a soft carbon film and a carbon film in order from the substrate side to form a multilayer film. Furthermore, optical elements using carbon films as constituent materials of antireflection films (multilayer films) are also known.

【0003】0003

【発明が解決しようとする課題】これらの従来の素子は
多層膜の内部応力が大きく、この為、多層膜にクラック
が生じたり多層膜が基体から剥離するといった欠陥が生
じ易かった。
[Problems to be Solved by the Invention] In these conventional elements, the internal stress of the multilayer film is large, and as a result, defects such as cracks in the multilayer film or peeling of the multilayer film from the substrate are likely to occur.

【0004】0004

【課題を解決するための手段】本発明は、水素化アモル
ファス炭素膜とダイヤモンド状炭素膜の少なくとも一方
の炭素膜を有する多層膜が基体上に形成された素子にお
いて、前記炭素膜を、1×108dyn/cm2〜1×
1010dyn/cm2の範囲内の圧縮応力を持つもの
とすることにより、上記課題を解決するものである。
Means for Solving the Problems The present invention provides an element in which a multilayer film having at least one of a hydrogenated amorphous carbon film and a diamond-like carbon film is formed on a substrate. 108dyn/cm2~1x
The above problem is solved by having a compressive stress within the range of 1010 dyn/cm2.

【0005】又、本発明は、水素化アモルファス炭素膜
とダイヤモンド状炭素膜の少なくとも一方の炭素膜と誘
電体膜とを積層した多層膜が基体上に形成された素子に
おいて、前記多層膜の平均応力を実質的に減少せしめる
べく、前記炭素膜1×108dyn/cm2〜1×10
10dyn/cm2の範囲内の圧縮応力を持つものとす
ることにより、上記課題を解決するものである。
[0005] The present invention also provides an element in which a multilayer film in which at least one of a hydrogenated amorphous carbon film and a diamond-like carbon film and a dielectric film are laminated is formed on a substrate, the average of the multilayer film being In order to substantially reduce stress, the carbon film 1×108 dyn/cm2 to 1×10
The above problem is solved by having a compressive stress within the range of 10 dyn/cm2.

【0006】本発明のある形態では、前記多層膜が前記
基体側から順に比較的柔らかい水素化アモルファス炭素
膜と硬い第2の水素化アモルファス炭素膜とを備える。
In one embodiment of the present invention, the multilayer film includes, in order from the substrate side, a relatively soft hydrogenated amorphous carbon film and a hard second hydrogenated amorphous carbon film.

【0007】又、本発明のある形態では、前記多層膜が
前記基体側から順に比較的柔らかい第1のダイヤモンド
状炭素膜と硬い第2のダイヤモンド状炭素膜とを備える
Further, in one embodiment of the present invention, the multilayer film includes, in order from the substrate side, a relatively soft first diamond-like carbon film and a hard second diamond-like carbon film.

【0008】又、本発明のある形態では、前記多層膜が
水素化アモルファス炭素膜とダイヤモンド状炭素膜の夫
々を少なくとも一層備える。
[0008] In one aspect of the present invention, the multilayer film includes at least one layer each of a hydrogenated amorphous carbon film and a diamond-like carbon film.

【0009】又、本発明のある形態では、前記多層膜が
干渉膜を成す。
[0009] In one embodiment of the present invention, the multilayer film forms an interference film.

【0010】又、本発明は、前記基体がプラスチックよ
り成るもの、前記基体が金属より成るもの、前記基体が
ガラスより成るもの、を含む。
The present invention also includes the base body made of plastic, the base body made of metal, and the base body made of glass.

【0011】又、本発明のある形態では、前記多層膜の
最も前記基体側の膜が金属より成る。
[0011] Furthermore, in one embodiment of the present invention, the film closest to the substrate of the multilayer film is made of metal.

【0012】又、本発明のある形態では、前記誘電体膜
の少なくとも1つが1×108dyn/cm2〜1×1
010dyn/cm2の範囲内の引っ張り応力を備える
[0012] Furthermore, in one embodiment of the present invention, at least one of the dielectric films has a density of 1×108 dyn/cm2 to 1×1 dyn/cm2.
with a tensile stress in the range of 0.10 dyn/cm2.

【0013】又、本発明のある形態では、前記多層膜が
前記炭素膜と前記誘電体膜の交互層を備える。
[0013] In one aspect of the present invention, the multilayer film includes alternating layers of the carbon film and the dielectric film.

【0014】又、本発明は、前記基体がプラスチックよ
り成るもの、前記基体が金属より成るもの、前記基体が
ガラスより成るもの、を含む。又、本発明の素子は、レ
ンズ,ミラー,プリズム,グレーティング等の光学素子
を含む。
The present invention also includes the base body made of plastic, the base body made of metal, and the base body made of glass. Further, the element of the present invention includes optical elements such as lenses, mirrors, prisms, and gratings.

【0015】又、本発明の好ましい形態では、多層膜の
内部応力が絶対値で1×109dyn/cm2以下、程
度になるように設定される。
Further, in a preferred embodiment of the present invention, the internal stress of the multilayer film is set to approximately 1×10 9 dyn/cm 2 or less in absolute value.

【0016】[0016]

【実施例】以下に示す実施例ではプラスチックの表面の
ある面に水素化アモルファスカーボン膜、あるいはダイ
ヤモンド状炭素膜を設けることにより、従来のプラスチ
ック材料の欠点を解決し、ガラスと同等以上の性能を有
するプラスチック光学素子を提供する。
[Example] In the example shown below, by providing a hydrogenated amorphous carbon film or a diamond-like carbon film on a certain surface of the plastic, the drawbacks of conventional plastic materials are solved and the performance is equivalent to or better than that of glass. A plastic optical element is provided.

【0017】例えば、プラスチックの表面に設けられた
反射防止膜、反射膜、干渉フィルタ、偏光膜等の光学薄
膜の少なくとも一層を水素化アモルファスカーボン膜あ
るいはダイヤモンド状炭素膜にする。
For example, at least one layer of an optical thin film such as an antireflection film, a reflective film, an interference filter, a polarizing film, etc. provided on the surface of a plastic is made of a hydrogenated amorphous carbon film or a diamond-like carbon film.

【0018】プラスチック光学素子表面に水素化アモル
ファスカーボン膜もしくはダイヤモンド状炭素膜を形成
する方法としては、プラズマCVD法、ECR−PCV
D法、イオンビーム蒸着法、イオンビーム・スパッタ法
がある。
Methods for forming a hydrogenated amorphous carbon film or a diamond-like carbon film on the surface of a plastic optical element include plasma CVD method and ECR-PCV method.
There are D method, ion beam evaporation method, and ion beam sputtering method.

【0019】図2に水素化アモルファスカーボン膜やダ
イヤモンド状炭素膜や誘電体膜を形成するECR−PC
VD装置の概略図を示す。図中1はプラスチックで例え
ばレンズ、プリズム、ファイバー、光導波路、グレーテ
ィング等の基体であり、ポリアクリル酸エステル樹脂、
ポリカーボネート樹脂、塩化ビニル樹脂、ポリスチレン
樹脂、CR−39などの透明プラスチック材料から成る
。2はプラズマ生成室、3は反応室、4はガス供給系、
5はマイクロ波導波管等のマイクロ波発振器、6は排気
系、7は外部磁場発生用コイル、8は電子銃、9は膜厚
を制御する膜厚監視装置、10は蒸着材料を示す。
FIG. 2 shows ECR-PC for forming a hydrogenated amorphous carbon film, a diamond-like carbon film, and a dielectric film.
A schematic diagram of a VD device is shown. In the figure, numeral 1 is a plastic base for lenses, prisms, fibers, optical waveguides, gratings, etc. Polyacrylic acid ester resin,
It is made of transparent plastic materials such as polycarbonate resin, vinyl chloride resin, polystyrene resin, CR-39, etc. 2 is a plasma generation chamber, 3 is a reaction chamber, 4 is a gas supply system,
5 is a microwave oscillator such as a microwave waveguide, 6 is an exhaust system, 7 is an external magnetic field generating coil, 8 is an electron gun, 9 is a film thickness monitoring device for controlling the film thickness, and 10 is a vapor deposition material.

【0020】各種成膜方法により水素化アモルファスカ
ーボン膜やダイヤモンド状炭素膜を形成するときの原料
ガスとしては、含炭素ガスであるメタン,エタン,プロ
パン,エチレン,ベンゼン,アセチレン等の炭化水素,
四フッ化炭素,塩化メチレン,四塩化炭素,クロロホル
ム,トリクロルエタン等のハロゲン化炭化水素、二酸化
炭素、一酸化炭素などのガスが挙げられる。また、これ
らのガスにN2,H2,O2,H2O不活性ガスなどを
混入したガスを用いてもよい。
[0020] When forming a hydrogenated amorphous carbon film or a diamond-like carbon film by various film forming methods, raw material gases include carbon-containing hydrocarbons such as methane, ethane, propane, ethylene, benzene, and acetylene;
Examples include halogenated hydrocarbons such as carbon tetrafluoride, methylene chloride, carbon tetrachloride, chloroform, and trichloroethane, and gases such as carbon dioxide and carbon monoxide. Further, a gas obtained by mixing these gases with an inert gas such as N2, H2, O2, H2O, etc. may be used.

【0021】図2の装置で、その硬度がビッカース硬度
で、500kg/mm2以上の水素化アモルファスカー
ボン膜が形成ができ、成膜条件を変えることにより、図
1に示すように膜中の水素含有率(濃度)を5〜50a
tom%の範囲で変化させることができる。この水素含
有率を調整することにより水素化アモルファスカーボン
膜の硬度をビッカース硬度で500kg/mm2〜20
00kg/mm2の範囲で制御することができる。又、
この水素含有率を調整することにより水素化アモルファ
スカーボン膜の内部応力を圧縮応力で108dyn/c
m2〜1×1010dyn/cm2の範囲で制御するこ
とが可能である。また、水素含有率5〜50atom%
の範囲での水素化アモルファスカーボン膜の屈折率は1
.48〜1.60の範囲にあり、水素の濃度が高くなる
に従い膜の屈折率は低くなる。更にこの水素化アモルフ
ァスカーボン膜は、表面粗さがRMSで100Å以下と
平滑であり、かつ摩擦係数も0.2と非常に滑らかにす
ることができる。
With the apparatus shown in FIG. 2, a hydrogenated amorphous carbon film with a Vickers hardness of 500 kg/mm2 or more can be formed, and by changing the film forming conditions, hydrogen content in the film can be reduced as shown in FIG. rate (concentration) of 5 to 50a
It can be changed within a range of tom%. By adjusting this hydrogen content, the hardness of the hydrogenated amorphous carbon film can be increased to 500 kg/mm2 to 20 in terms of Vickers hardness.
It can be controlled within a range of 00 kg/mm2. or,
By adjusting this hydrogen content, the internal stress of the hydrogenated amorphous carbon film can be reduced to 108 dyn/c in compressive stress.
It is possible to control within the range of m2 to 1×10 10 dyn/cm 2 . In addition, the hydrogen content is 5 to 50 atom%
The refractive index of hydrogenated amorphous carbon film in the range of 1
.. 48 to 1.60, and as the hydrogen concentration increases, the refractive index of the film decreases. Furthermore, this hydrogenated amorphous carbon film has a smooth surface roughness of 100 Å or less in RMS, and can have a very smooth friction coefficient of 0.2.

【0022】一方、図2の装置で得られるダイヤモンド
状炭素膜は完全なダイヤモンド結晶体ではなくダイヤモ
ンド微結晶を含むアモルファスの膜であり、この炭素膜
の屈折率は1.8〜2.4である。又、この炭素膜の機
械的性質は、硬度がビッカース硬度で3000〜600
0kg/mm2、応力が109〜1011dyn/cm
2の圧縮応力を有する。
On the other hand, the diamond-like carbon film obtained with the apparatus shown in FIG. 2 is not a complete diamond crystal but an amorphous film containing diamond microcrystals, and the refractive index of this carbon film is 1.8 to 2.4. be. In addition, the mechanical properties of this carbon film have a hardness of 3000 to 600 on the Vickers scale.
0kg/mm2, stress 109~1011dyn/cm
It has a compressive stress of 2.

【0023】この水素化アモルファスカーボン膜(以下
「a−C:H膜」と記す。)とダイヤモンド状炭素膜(
以下「DLC膜」と記す。)をプラスチック光学素子の
基体に形成してやることにより、第一にいずれかの膜も
ガス及び水分の不透過性が高いためプラスチックの吸水
性による膨潤という問題を解決することができる。第二
に膜硬度が高いことからガラスの表面硬度と同等以上の
硬度が得られ、通常のガラス光学素子と同じように取扱
っても傷が入るということがない。第三にプラスチック
基体上に反射防止膜、反射膜、フィルター等の光学薄膜
を形成する場合、基体が非常に柔らかいこと基体の吸水
性に伴う膨潤等により、誘電体多層膜にクラックが発生
したり、膜剥離を起こしてしまう。
This hydrogenated amorphous carbon film (hereinafter referred to as "a-C:H film") and the diamond-like carbon film (
Hereinafter, it will be referred to as "DLC film". ) is formed on the substrate of a plastic optical element, firstly, both films have high gas and moisture impermeability, so the problem of swelling due to water absorption of plastic can be solved. Second, because the film has high hardness, it has a hardness that is equal to or higher than the surface hardness of glass, and it does not get scratched even when handled like a normal glass optical element. Thirdly, when forming optical thin films such as antireflection films, reflective films, and filters on plastic substrates, the substrate is extremely soft, and cracks may occur in the dielectric multilayer film due to swelling due to water absorption of the substrate. , causing film peeling.

【0024】誘電体薄膜の応力は、一般的に引っ張り応
力のものがほとんどであり、その応力の大きさは108
〜1010dyn/cm2の範囲にある。
Generally speaking, most of the stress in dielectric thin films is tensile stress, and the magnitude of this stress is 108
It is in the range of ~1010 dyn/cm2.

【0025】多層膜の平均応力はThe average stress of the multilayer film is

【0026】[0026]

【外1】 で表される。ここで、Siは第i層の内部応力、tiは
第i層の幾何学的膜厚を示す。この式より、多層膜の平
均応力を小さくするためには、引張り応力を有する材料
と、圧縮応力を有する材料を適当に組み合せて多層膜を
形成すればいいことがわかる。そこで、本実施例では、
108〜1010dyn/cm2の圧縮応力を有するa
−C:H膜やDLC膜と、誘電体膜との組合せにより、
内部応力の小さい多層膜を実現させた。この結果、膜剥
離やクラック等の生じない又は生じにくい多層膜が得ら
れる。a−C:H膜、DLC膜の各々の屈折率と応力は
、光学素子が所望の光学性能を達成する構成においては
、かつ、膜全体の応力が小さくなるよう、他の誘電体膜
との関係や両者の関係において決定される。
It is expressed as [Example 1]. Here, Si represents the internal stress of the i-th layer, and ti represents the geometric thickness of the i-th layer. From this equation, it can be seen that in order to reduce the average stress of the multilayer film, the multilayer film should be formed by appropriately combining materials having tensile stress and materials having compressive stress. Therefore, in this example,
a with a compressive stress of 108 to 1010 dyn/cm2
-C: By combining H film, DLC film, and dielectric film,
A multilayer film with low internal stress was realized. As a result, a multilayer film that does not or is unlikely to cause peeling or cracking can be obtained. The refractive index and stress of each of the a-C:H film and the DLC film should be adjusted in relation to other dielectric films so that the optical element achieves the desired optical performance and the stress of the entire film is small. It is determined by the relationship and the relationship between the two.

【0027】なお、基体はプラスチックに限定されるも
のではなく、光学ガラス,金属等であってもかまわない
[0027] The substrate is not limited to plastic, and may be made of optical glass, metal, or the like.

【0028】[0028]

【実施例】図2に示す装置内にポリアクリル酸エステル
製の基板を設置した後、排気系により1×10−6to
rrまで排気し、第1表に示す構成でPMMA基板上に
反射防止膜を成膜した。通常の誘電体は電子銃による真
空蒸着により成膜された。図6に本実施例の素子の模式
図を示す。水素化アモルファスカーボン膜はガス供給系
によりCH425sccm,H225sccmを流し、
装置内圧力を1×10−3torrとする。ここに2.
45GHzのマイクロ波を導入し、外部磁場をマイクロ
波導入位置で2000Gaussとし、反応室側に向か
い徐々に磁場強度が小さくなる磁場分布を有する発散磁
界としてECRプラズマを形成する。ECR条件を満足
する875Gaussは、ほぼプラズマ生成室と反応室
の境界とした。こうして得られた水素化アモルファスカ
ーボン膜は、その表面硬度がビッカース硬度で1000
kg/mm2、可視領域では透過率が高く吸収が400
nmで1%以下の屈折率1.54の膜である。
[Example] After installing a polyacrylic acid ester substrate in the apparatus shown in Fig. 2, 1 x 10-6 to
The atmosphere was evacuated to rr, and an antireflection film was formed on the PMMA substrate with the configuration shown in Table 1. Conventional dielectrics were deposited by vacuum deposition using an electron gun. FIG. 6 shows a schematic diagram of the element of this example. The hydrogenated amorphous carbon film was supplied with CH425sccm and H225sccm by the gas supply system.
The pressure inside the apparatus is set to 1×10 −3 torr. Here 2.
A 45 GHz microwave is introduced, an external magnetic field is set to 2000 Gauss at the microwave introduction position, and an ECR plasma is formed as a diverging magnetic field having a magnetic field distribution whose magnetic field strength gradually decreases toward the reaction chamber side. 875 Gauss, which satisfies the ECR conditions, was set almost at the boundary between the plasma generation chamber and the reaction chamber. The hydrogenated amorphous carbon film thus obtained has a surface hardness of 1000 on Vickers hardness.
kg/mm2, high transmittance and absorption in the visible region of 400
It is a film with a refractive index of 1.54 and 1% or less in nm.

【0029】このようにして得られた反射防止膜の分光
特性を図3に示す。次にSiO2膜、MgF2膜、Zr
O2膜、a−C:H膜の内部応力を円板法により測定し
たところSiO2膜とa−C:H膜は圧縮応力で、それ
ぞれ1×108,5×109dyn/cm2であった。 MgF2,ZrO2は引張り応力でそれぞれ4×109
,1×109dyn/cm2であった。前述の式より、
この反射防止膜の平均応力を評価すると1.8×108
dyn/cm2の圧縮応力となり、非常に小さな応力に
することができる。このプラスチック光学素子(レンズ
)について耐摩耗性、耐候性をMIL規格に従い評価し
たところ、プラスチック光学素子の表面に傷が入ること
もなく、また吸水により膜の剥離、光学素子の変形等は
認められなかった。
The spectral characteristics of the antireflection film thus obtained are shown in FIG. Next, SiO2 film, MgF2 film, Zr
When the internal stress of the O2 film and the a-C:H film was measured by the disk method, the compressive stress of the SiO2 film and the a-C:H film was 1 x 108 and 5 x 109 dyn/cm2, respectively. MgF2 and ZrO2 each have a tensile stress of 4 x 109
, 1×109 dyn/cm2. From the above formula,
The average stress of this anti-reflection film was evaluated as 1.8×108
This results in a compressive stress of dyn/cm2, which can be reduced to a very small stress. When the abrasion resistance and weather resistance of this plastic optical element (lens) were evaluated according to the MIL standard, there were no scratches on the surface of the plastic optical element, and no peeling of the film or deformation of the optical element due to water absorption was observed. There wasn't.

【0030】[0030]

【表1】[Table 1]

【0031】(実施例2)図2の装置を用い、プラスチ
ック基板に電子銃を用いてAgを2000Å成膜した後
、Ag膜上に実施例1と同条件により水素化アモルファ
スカーボン膜を250Å形成した。2000ÅのAg膜
の内部応力を評価したところ4×108dyn/cm2
の引張り応力であり、この上に形成したa−C:H膜の
内部応力は2×109dyn/cm2の圧縮応力であっ
た。この結果、膜全体の平均的な応力は1.3×108
dyn/cm2の引張り応力にすることができた。この
プラスチックミラーを実施例1と同様に耐摩耗性、耐候
性等を評価したところ実施例1と同等の結果が得られた
。このプラスチックミラーの模式図を図7に示す。
(Example 2) Using the apparatus shown in FIG. 2, after forming an Ag film of 2000 Å on a plastic substrate using an electron gun, a hydrogenated amorphous carbon film of 250 Å was formed on the Ag film under the same conditions as in Example 1. did. When the internal stress of a 2000 Å Ag film was evaluated, it was 4 x 108 dyn/cm2.
The internal stress of the a-C:H film formed thereon was a compressive stress of 2×10 9 dyn/cm 2 . As a result, the average stress of the entire film is 1.3×108
It was possible to achieve a tensile stress of dyn/cm2. When this plastic mirror was evaluated for wear resistance, weather resistance, etc. in the same manner as in Example 1, results equivalent to those in Example 1 were obtained. A schematic diagram of this plastic mirror is shown in FIG.

【0032】(実施例3)第2表に示す構成で合成樹脂
上に反射防止膜を形成した。第4層のダイヤモンド状炭
素膜は電子銃によりグラファイトを蒸着すると同時にE
CRプラズマ源によりHプラズマを形成し基体にアシス
ト照射することにより形成した。このとき、ECRプラ
ズマ室にH2を25sccm流し、圧力を1×10−4
torrとした後、2.45GHzのマイクロ波を導入
し外部磁場により室出口を875GaussとしてEC
Rプラズマを形成した。このとき本実施例では図示しな
いが、プラズマ室出口に引出し電極を設けることにより
イオンビームを取出して用いてもよい。この条件で得ら
れる膜はいわゆるダイヤイモンド状炭素膜で、屈折率は
2.0、硬度は3000kg/mm2であった。得られ
た反射防止膜の分光特性を図4に示す。
(Example 3) An antireflection film was formed on a synthetic resin with the structure shown in Table 2. The fourth layer of diamond-like carbon film is deposited with graphite using an electron gun, and at the same time
It was formed by forming H plasma using a CR plasma source and assisting irradiation onto the substrate. At this time, 25 sccm of H2 was flowed into the ECR plasma chamber, and the pressure was increased to 1 x 10-4.
After setting the torr, 2.45 GHz microwave was introduced and the chamber outlet was set to 875 Gauss using an external magnetic field.
R plasma was formed. At this time, although not shown in this embodiment, the ion beam may be extracted and used by providing an extraction electrode at the exit of the plasma chamber. The film obtained under these conditions was a so-called diamond-like carbon film, with a refractive index of 2.0 and a hardness of 3000 kg/mm2. The spectral characteristics of the obtained antireflection film are shown in FIG.

【0033】[0033]

【表2】[Table 2]

【0034】なお、a−C:H膜は実施例1と同じ成膜
条件において、基板位置を実施例1の場合より空洞共振
器の出口(プラズマ吹き出し口)から、100mm多く
離す以外は、同じにして成膜した。ここで、a−C:H
膜とDLC膜の応力を単独に評価したところ、それぞれ
3×109,1×1010dyn/cm2の圧縮応力で
あった。従って膜全体の応力を3.8×108dyn/
cm2の圧縮応力にすることができた。このプラスチッ
ク光学素子(レンズ)について実施例1と同様に耐摩耗
性,耐候性を評価したところ、実施例1と同等の結果が
得られた。この素子の模式図を図8に示す。
The a-C:H film was formed under the same film forming conditions as in Example 1, except that the substrate position was moved 100 mm farther from the outlet of the cavity resonator (plasma outlet) than in Example 1. The film was formed using the following method. Here, a-C:H
When the stress of the film and the DLC film were evaluated individually, the compressive stress was 3×10 9 and 1×10 10 dyn/cm 2 , respectively. Therefore, the stress of the entire film is 3.8×108dyn/
It was possible to reduce the compressive stress to cm2. When this plastic optical element (lens) was evaluated for wear resistance and weather resistance in the same manner as in Example 1, results equivalent to those in Example 1 were obtained. A schematic diagram of this element is shown in FIG.

【0035】(実施例4,5)第3表に示す構成で、2
種類のフィルターA,Bを形成した。第3表には低屈折
材料としてa−C:H膜を用いたフィルターAと高屈折
率材料として、DLC膜を用いたフィルターBと比較例
のフィルターが示してある。各フィルターA,Bのa−
C:H膜、DLC膜はそれぞれ実施例3と同条件で形成
した。また、ZrO2膜やMgF2膜は電子銃による真
空蒸着法で形成した。各膜の応力を単独に評価したとこ
ろ、ZrO2膜,MgF2膜はそれぞれ1×109dy
n/cm2,4×109dyn/cm2の引張り応力で
あり、a−C:H膜,DLC膜は、それぞれ3×109
dyn/cm2,1×1010dyn/cm2の圧縮応
力であった。これによりフィルターA,Bそれぞれの多
層膜の平均応力を求めると、6.9×108dyn/c
m2の圧縮応力、6.9×108dyn/cm2,1.
5×109dyn/cm2の引張り応力となった。比較
例1のフィルターについては成膜後、膜剥離が生じたが
、サンプルA,Bについては、膜剥離やクラック等の発
生もなく、実施例1と同様の耐摩耗性,耐候性が得られ
た。
(Examples 4 and 5) With the configuration shown in Table 3, 2
Types of filters A and B were formed. Table 3 shows Filter A using an a-C:H film as a low refractive index material, Filter B using a DLC film as a high refractive index material, and a comparative filter. a- of each filter A, B
The C:H film and the DLC film were each formed under the same conditions as in Example 3. Further, the ZrO2 film and the MgF2 film were formed by vacuum evaporation using an electron gun. When the stress of each film was evaluated independently, the stress of ZrO2 film and MgF2 film was 1×109dy.
tensile stress of n/cm2, 4 x 109 dyn/cm2, and the a-C:H film and DLC film each have a tensile stress of 3 x 109 dyn/cm2.
The compressive stress was dyn/cm2, 1×1010 dyn/cm2. From this, the average stress of the multilayer films of filters A and B is found to be 6.9 x 108 dyn/c.
Compressive stress in m2, 6.9 x 108 dyn/cm2, 1.
The tensile stress was 5 x 109 dyn/cm2. For the filter of Comparative Example 1, film peeling occurred after film formation, but for Samples A and B, there was no film peeling or cracking, and the same abrasion resistance and weather resistance as in Example 1 were obtained. Ta.

【0036】フィルターA,Bの模式図を図9に示す。 同図において、Hで示すのが高屈折率膜、Lで示すのが
低屈折率膜である。
A schematic diagram of filters A and B is shown in FIG. In the figure, H indicates a high refractive index film, and L indicates a low refractive index film.

【0037】[0037]

【表3】 既に述べた通り、水素化アモルファスカーボン膜は水素
含有率(濃度)を変えることにより、膜の内部応力を1
08dyn/cm2〜1010dyn/cm2の圧縮応
力の範囲で変化させることができる。更に、光学的には
屈折率を1.48〜1.60の範囲で変えることができ
る。 一般に水素(濃度)含有率が高くなるにつれて屈折率は
低下する。この膜の表面粗さはRMSで100Å以下で
平滑であり、かつ摩擦係数も0.2と非常に滑らかであ
る。
[Table 3] As already mentioned, by changing the hydrogen content (concentration) of the hydrogenated amorphous carbon film, the internal stress of the film can be reduced by 1.
The compressive stress can be varied within the range of 08 dyn/cm2 to 1010 dyn/cm2. Furthermore, optically, the refractive index can be changed within the range of 1.48 to 1.60. Generally, as the hydrogen (concentration) content increases, the refractive index decreases. The surface roughness of this film is smooth with an RMS of 100 Å or less, and the coefficient of friction is 0.2, which is very smooth.

【0038】この水素化アモルファスカーボン膜(以下
a−C:H膜)はガス及び水分等の不透過性が高いため
、プラスチックの吸水性による膨潤という問題が解決で
きるだけでなく、膜硬度が高く平滑であるために、耐摩
耗性が高くプラスチックでは傷が入るような取扱に対し
ても傷の発生や膜の剥離といった問題が生じない。しか
しながら、柔らかいプラスチック基板に硬度の高いa−
C:H膜を直接形成すると、硬度の高い膜は内部応力が
大きいために、基体との密着性が必ずしもかんばしくな
い場合がある。そこでa−C:H膜の水素含有率を膜厚
方向において勾配を持たせることにより、この問題を解
決することができる。すなわちプラスチック基板側を水
素含有率の高い、膜硬度か低硬度で、かつ内部応力の小
さいa−C:H膜とし、膜表面側を水素含有率の少ない
高硬度のa−C:H膜とすることにより、基板と膜との
歪みや変形を水素含有率の高いa−C:H膜で吸収・緩
和することにより、膜の機械的強度を改善することがで
きる。また多層膜の一層として水素含有率を変えること
により、屈折率の分布を意図的に変え、いわゆる不均質
膜として光学特性の改善を図ることができる。なお、基
体がプラスチックに限定されるものではなく光学ガラス
,金属等であっても同様である。
This hydrogenated amorphous carbon film (hereinafter referred to as aC:H film) has high impermeability to gases and moisture, so it not only solves the problem of swelling due to the water absorption of plastics, but also has a high hardness and smooth surface. Therefore, plastic has high abrasion resistance and does not cause problems such as scratches or peeling of the film even when handled in a manner that can cause scratches. However, a soft plastic substrate with high hardness
If a C:H film is directly formed, the adhesion to the substrate may not always be strong because a hard film has a large internal stress. Therefore, this problem can be solved by making the hydrogen content of the aC:H film have a gradient in the film thickness direction. That is, the plastic substrate side is an a-C:H film with high hydrogen content, film hardness or low hardness, and low internal stress, and the film surface side is a high-hardness a-C:H film with low hydrogen content. By doing so, the mechanical strength of the film can be improved by absorbing and relaxing distortion and deformation between the substrate and the film by the a-C:H film having a high hydrogen content. Furthermore, by changing the hydrogen content in one layer of the multilayer film, the refractive index distribution can be intentionally changed, and the optical properties can be improved as a so-called heterogeneous film. Note that the substrate is not limited to plastic, and the same applies even if it is optical glass, metal, or the like.

【0039】(実施例6)図2に示す装置内にポリアク
リル酸エステル製の基板を設置した後、排気系により1
×10−6torrまで排気し、次にガス供給系により
CH410sccm,H240sccmを流し、装置内
圧力を5×10−2torrとする。ここに2.45G
Hzのマイクロ波を導入し、外部磁場をマイクロ波導入
位置で1800Gaussとし、反応室側に向かい磁場
を小さくする発散磁界とする。ECR(マイクロ波電子
サイクロトロン共鳴)条件を満足する875Gauss
は、ほぼプラズマ生成室と反応室の境界とした。
(Example 6) After installing a polyacrylic acid ester substrate in the apparatus shown in FIG.
The system was evacuated to x10-6 torr, and then CH410 sccm and H240 sccm were flowed through the gas supply system to bring the internal pressure to 5 x10-2 torr. 2.45G here
A microwave of Hz is introduced, and an external magnetic field is set to 1800 Gauss at the microwave introduction position, and a diverging magnetic field is made to decrease the magnetic field toward the reaction chamber side. 875 Gauss that satisfies ECR (microwave electron cyclotron resonance) conditions
is approximately the boundary between the plasma generation chamber and the reaction chamber.

【0040】基板温度は室温とし、基板にはバイアスを
印加せずに膜圧2000Åの第1のa−C:H膜を成膜
した。その後、CH410sccm、圧力を5×10−
4torr、基板バイアスを−500Vとし、総膜厚2
500Åとなるように第2のa−C:H膜成膜した。
[0040] The substrate temperature was set to room temperature, and a first aC:H film was formed with a film thickness of 2000 Å without applying a bias to the substrate. Then CH410sccm, pressure 5x10-
4 torr, substrate bias -500V, total film thickness 2
A second aC:H film was formed to a thickness of 500 Å.

【0041】この場合、基板上に直接成膜したa−C:
H膜は水素含有率が高いため、この上に形成されたa−
C:H膜よりも軟らかく、硬度の低いPMMA基板と硬
度の高いa−C:H膜との密着性や膜の内部応力を緩和
する働きをする。ガラス基板もしくはSi基板を用い、
円板法により膜の応力をそれぞれの成膜条件において測
定したところ、基板バイアスを印加しない第1a−C:
H膜は圧縮応力で7×108dyn/cm2であり、バ
イアスを印加して成膜した第2a−C:H膜は2×10
9dyn/cm2圧縮応力であった。又、平均応力は9
.6×108dyn/cm2であった。また、得られた
プラスチック光学素子(レンズ)を評価したところ、ビ
ッカーズ硬度が1500kg/mm2、吸水率が極めて
小さく機械的・化学的安定性に優れた性能を優していた
。この素子の模式図を図10に示す。
In this case, a-C deposited directly on the substrate:
Since the H film has a high hydrogen content, the a-
It is softer than the C:H film and functions to reduce the adhesion between the less hard PMMA substrate and the more hard aC:H film and the internal stress of the film. Using a glass substrate or Si substrate,
When the stress of the film was measured under each film formation condition using the disk method, it was found that 1a-C without applying substrate bias:
The H film has a compressive stress of 7×108 dyn/cm2, and the second a-C:H film formed by applying a bias has a compressive stress of 2×10 dyn/cm2.
The compressive stress was 9 dyn/cm2. Also, the average stress is 9
.. It was 6×108 dyn/cm2. Furthermore, when the obtained plastic optical element (lens) was evaluated, it was found to have a Vickers hardness of 1500 kg/mm2, a very low water absorption rate, and excellent mechanical and chemical stability. A schematic diagram of this element is shown in FIG.

【0042】(実施例7)実施例6と同じ装置を用いて
PMMA基板上に実施例6と同様の第1のα−C:H膜
を形成した。その後、このα−C:H膜上にダイヤモン
ド状炭素膜を100Å成膜した。
(Example 7) Using the same apparatus as in Example 6, a first α-C:H film similar to that in Example 6 was formed on a PMMA substrate. Thereafter, a diamond-like carbon film of 100 Å was formed on this α-C:H film.

【0043】ダイヤモンド状炭素膜は、電子銃によりグ
ラファイトを蒸着すると同様にECRプラズマ源により
水素プラズマを形成し、基体にアシスト照射することに
より形成した。このときECRプラズマ室にH2を25
sccm流し、圧力を1×10−4torrとした後、
2.45GHzのマイクロ波を導入し、外部磁場により
プラズマ室出口を875GaussとしてECR−プラ
ズマを形成した。
The diamond-like carbon film was formed by forming hydrogen plasma using an ECR plasma source and irradiating the substrate with the hydrogen plasma in the same manner as graphite is deposited using an electron gun. At this time, 25 liters of H2 was added to the ECR plasma chamber.
After flowing sccm and setting the pressure to 1 x 10-4 torr,
A microwave of 2.45 GHz was introduced, and an ECR-plasma was formed using an external magnetic field with the plasma chamber outlet set to 875 Gauss.

【0044】こうして得られたプラスチック光学素子(
レンズ)は、その表面硬度がビッカース硬度で、200
0kg/mm2以外は実施例6と同等の性能が得られた
。又、本実施例のa−C:H膜及びダイヤモンド状カー
ボン膜も1×108dyn/cm2〜1×1010dy
n/cm2の範囲内の圧縮応力を示す。a−C:H膜の
内部応力は実施例6と同様に7×109dyn/cm2
の圧縮応力であった。ダイヤモンド状炭素膜の内部応力
は7×109dyn/cm2の圧縮応力であった。この
ときの平均応力は1×109dyn/cm2である。こ
の素子の模式図を図11に示す。
The plastic optical element thus obtained (
The surface hardness of the lens is Vickers hardness, which is 200.
Performance equivalent to that of Example 6 was obtained except for 0 kg/mm2. In addition, the a-C:H film and the diamond-like carbon film of this example also have a density of 1 x 108 dyn/cm2 to 1 x 1010 dy.
Indicates compressive stress in the range n/cm2. The internal stress of the a-C:H film is 7×109 dyn/cm2 as in Example 6.
The compressive stress was The internal stress of the diamond-like carbon film was a compressive stress of 7×10 9 dyn/cm 2 . The average stress at this time was 1×10 9 dyn/cm 2 . A schematic diagram of this element is shown in FIG.

【0045】(実施例8)表4の膜構成でPMMA基板
上に反射防止膜を形成した、図2に示す装置内にPMM
A基板を設置した後、排気系により1×10−6tor
rまで排気し、表4の構成で成膜した。通常の誘電体は
電子銃により真空蒸着法で形成した。a−C:H膜はガ
ス供給系によりCH425sccm,H225sccm
を流し、装置内圧力を1×10−3torrとした後、
2.45GHzのマイクロ波を導入し、外部磁場をマイ
クロ波導入位置で2000Gaussとし反応室側に向
かい徐々に磁場強度が小さくなる磁場分布を有する発散
磁界としてECRプラズマを形成した。ECR条件を満
足する875Gaussはほぼプラズマ生成室と反応室
の境界とした。このとき基板バイアス0Vで成膜を開始
し、膜厚がなくなるに従い、バイアスを大きく最終的に
は−200Vを印加した。この結果屈折率が1.54〜
1.60に変化した不均質膜を形成することができた。 こうして得た反射防止膜の反射率の分光特性を図9に示
す。また、実施例6と同時の評価により同等の結果が得
られたまた、本実施例のa−C:H膜も1×108kg
/cm2〜1×1010kg/cm2の範囲内の圧縮応
力を示す。
(Example 8) An antireflection film was formed on a PMMA substrate with the film configuration shown in Table 4. A PMM was installed in the apparatus shown in FIG.
After installing the A board, 1×10-6 tor is generated by the exhaust system.
The atmosphere was evacuated to r, and a film was formed with the configuration shown in Table 4. The usual dielectric material was formed by vacuum evaporation using an electron gun. a-C:H film is CH425sccm, H225sccm depending on the gas supply system
After setting the pressure inside the device to 1 x 10-3 torr,
A microwave of 2.45 GHz was introduced, an external magnetic field was set to 2000 Gauss at the microwave introduction position, and an ECR plasma was formed as a divergent magnetic field having a magnetic field distribution whose magnetic field intensity gradually decreased toward the reaction chamber side. 875 Gauss, which satisfies the ECR conditions, was placed almost at the boundary between the plasma generation chamber and the reaction chamber. At this time, film formation was started with a substrate bias of 0 V, and as the film thickness decreased, the bias was increased and finally -200 V was applied. As a result, the refractive index is 1.54~
It was possible to form a heterogeneous film with a value of 1.60. The spectral characteristics of the reflectance of the antireflection film thus obtained are shown in FIG. In addition, similar results were obtained by simultaneous evaluation with Example 6. Also, the a-C:H film of this example was also
/cm2 to 1 x 1010 kg/cm2.

【0046】図12に本実施例の素子の模式図を示す。FIG. 12 shows a schematic diagram of the device of this example.

【0047】[0047]

【表4】[Table 4]

【0048】本実施例の各々の膜の内部応力は実施例1
と同様にSiO2,a−C:H膜は圧縮応力でそれぞれ
1×108dyn/cm2,2×109dyn/cm2
であり、MgF2,ZrO2ma膜はそれぞれ4×10
9dyn/cm2、1×109dyn/cm2の引張り
応力を有していた。この反射防止膜の平均の応力は8.
1×108dyn/cm2の引張り能力であった。
The internal stress of each film in this example is as in Example 1.
Similarly, SiO2 and a-C:H films have compressive stress of 1 x 108 dyn/cm2 and 2 x 109 dyn/cm2, respectively.
, and the MgF2 and ZrO2ma films each have a thickness of 4×10
It had a tensile stress of 9 dyn/cm2 and 1 x 109 dyn/cm2. The average stress of this anti-reflection film is 8.
The tensile capacity was 1 x 108 dyn/cm2.

【0049】[0049]

【発明の効果】以上、本発明に寄れば、多層膜の平均内
部応力を小さくすることがでるので、多層膜のクラック
や剥離が生じにくい、炭素膜を有する素子を提供できる
。又、本発明では多層膜の平均内部応力を1×109d
yn/cm2以下とすることにより、この効果を高めて
いる。
As described above, according to the present invention, it is possible to reduce the average internal stress of the multilayer film, so that it is possible to provide an element having a carbon film in which the multilayer film is less likely to crack or peel. In addition, in the present invention, the average internal stress of the multilayer film is 1×109d.
This effect is enhanced by setting it to yn/cm2 or less.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】水素化アモルファスカーボン膜の水素含有率と
ビッカース硬さの間の関係を示す図。
FIG. 1 is a diagram showing the relationship between hydrogen content and Vickers hardness of a hydrogenated amorphous carbon film.

【図2】成膜用のECR−PCVD装置の概略図。FIG. 2 is a schematic diagram of an ECR-PCVD apparatus for film formation.

【図3】本発明の第1の実施例の素子の反射防止膜の反
射率の分光特性を示す図。
FIG. 3 is a diagram showing the spectral characteristics of the reflectance of the antireflection film of the element of the first example of the present invention.

【図4】本発明の第2実施例の素子の反射防止膜の反射
率の分光特性を示す図。
FIG. 4 is a diagram showing the spectral characteristics of the reflectance of the antireflection film of the device according to the second example of the present invention.

【図5】本発明の第1実施例の素子の模式図。FIG. 5 is a schematic diagram of a device according to a first embodiment of the present invention.

【図6】本発明の第2の実施例の素子の模式図。FIG. 6 is a schematic diagram of a device according to a second embodiment of the present invention.

【図7】本発明の第3実施例の素子の模式図。FIG. 7 is a schematic diagram of a device according to a third embodiment of the present invention.

【図8】本発明の第4,5実施例の素子の模式図。FIG. 8 is a schematic diagram of elements of fourth and fifth embodiments of the present invention.

【図9】本発明の第8実施例の素子の反射防止膜の反射
率の分光特性を示す図。
FIG. 9 is a diagram showing the spectral characteristics of the reflectance of the antireflection film of the element of the eighth example of the present invention.

【図10】本発明の第6実施例の素子の模式図。FIG. 10 is a schematic diagram of a device according to a sixth embodiment of the present invention.

【図11】本発明の第7実施例の素子の模式図。FIG. 11 is a schematic diagram of a device according to a seventh embodiment of the present invention.

【図12】本発明の第8実施例の素子の模式図。FIG. 12 is a schematic diagram of a device according to an eighth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  基板 2  プラズマ生成室 3  反応室 4  ガス供給室 5  マイクロ波導波管 6  排気系 7  外部磁場印加器 8  電子銃 9  光学式膜厚監視装置 10  蒸着材料 H  高屈折率層 L  低屈折率層 DLC  ダイヤモンド状炭素膜 1 Board 2 Plasma generation chamber 3 Reaction chamber 4 Gas supply room 5 Microwave waveguide 6 Exhaust system 7 External magnetic field applicator 8 Electron gun 9 Optical film thickness monitoring device 10 Vapor deposition material H High refractive index layer L Low refractive index layer DLC Diamond-like carbon film

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】  水素化アモルファス炭素膜とダイヤモ
ンド状炭素膜の少なくとも一方の炭素膜を有する多層膜
が基体上に形成された素子において、前記炭素膜が、1
×108dyn/cm2〜1×1010dyn/cm2
の範囲内の圧縮応力を備えることを特徴とする炭素膜を
有する素子。
1. An element in which a multilayer film having at least one of a hydrogenated amorphous carbon film and a diamond-like carbon film is formed on a substrate, wherein the carbon film is
×108dyn/cm2~1×1010dyn/cm2
An element having a carbon film characterized by having a compressive stress within the range of .
【請求項2】  前記多層膜が前記基体側から順に比較
的柔らかい水素化アモルファス炭素膜と硬い第2の水素
化アモルファス炭素膜とを備えることを特徴とする請求
項1の炭素膜を有する素子。
2. The element having a carbon film according to claim 1, wherein the multilayer film includes a relatively soft hydrogenated amorphous carbon film and a hard second hydrogenated amorphous carbon film in order from the substrate side.
【請求項3】  前記多層膜の内部応力が絶対値で1×
109dyn/cm2以下に設定されることを特徴とす
る請求項1の炭素膜を有する素子。
3. The internal stress of the multilayer film is 1× in absolute value.
2. An element having a carbon film according to claim 1, wherein the carbon film is set to 109 dyn/cm2 or less.
【請求項4】  前記多層膜が水素化アモルファス炭素
膜とダイヤモンド状炭素膜の夫々を少なくとも一層備え
ることを特徴とする請求項1の炭素膜を有する素子。
4. The element having a carbon film according to claim 1, wherein the multilayer film includes at least one layer each of a hydrogenated amorphous carbon film and a diamond-like carbon film.
【請求項5】  前記多層膜が干渉膜を成すことを特徴
とする請求項1の炭素膜を有する素子。
5. The element having a carbon film according to claim 1, wherein the multilayer film forms an interference film.
【請求項6】  前記基体がプラスチックより成ること
を特徴とする請求項1の炭素膜を有する素子。
6. The element having a carbon film according to claim 1, wherein the base body is made of plastic.
【請求項7】  前記基体が金属より成ることを特徴と
する請求項1の炭素膜を有する素子。
7. The element having a carbon film according to claim 1, wherein the base body is made of metal.
【請求項8】  前記基体がガラスより成ることを特徴
とする請求項1の炭素膜を有する素子。
8. The element having a carbon film according to claim 1, wherein the substrate is made of glass.
【請求項9】  前記多層膜の最も前記基体側の膜が金
属より成ることを特徴とする請求項1の炭素膜を有する
素子。
9. The element having a carbon film according to claim 1, wherein the film closest to the substrate in the multilayer film is made of metal.
【請求項10】  水素化アモルファス炭素膜とダイヤ
モンド状炭素膜の少なくとも一方の炭素膜と誘電体膜と
を積層した多層膜が基体上に形成された素子において、
前記多層膜の平均応力を実質的に減少せしめるべく、前
記炭素膜が1×108dyn/cm2〜1×1010d
yn/cm2の範囲内に圧縮応力を備えることを特徴と
する炭素膜を有する素子。
10. An element in which a multilayer film consisting of at least one of a hydrogenated amorphous carbon film and a diamond-like carbon film and a dielectric film is formed on a substrate,
In order to substantially reduce the average stress of the multilayer film, the carbon film has a thickness of 1 x 108 dyn/cm2 to 1 x 1010 d.
An element having a carbon film characterized by having a compressive stress within the range of yn/cm2.
【請求項11】  前記基体がプラスチックより成るこ
とを特徴とする請求項10の炭素膜を有する素子。
11. The element having a carbon film according to claim 10, wherein the substrate is made of plastic.
【請求項12】  前記多層膜の最も前記基体側の膜が
金属より成ることを特徴とする請求項11の炭素膜を有
する素子。
12. The element having a carbon film according to claim 11, wherein the film closest to the substrate in the multilayer film is made of metal.
【請求項13】  前記誘電体膜が、1×108dyn
/cm2〜1×1010dyn/cm2の範囲内の引っ
張り応力を備えることを特徴とする請求項12の炭素膜
を有する素子。
13. The dielectric film has a thickness of 1×108 dyn.
13. The element having a carbon film according to claim 12, characterized in that the element has a tensile stress within the range of /cm2 to 1 x 1010 dyn/cm2.
【請求項14】  前記多層膜が前記炭素膜と前記誘電
体膜の交互層を備えることを特徴とする請求項13の炭
素膜を有する素子。
14. A device having a carbon film according to claim 13, wherein said multilayer film comprises alternating layers of said carbon film and said dielectric film.
JP3143280A 1991-06-14 1991-06-14 Element having carbon film Pending JPH04366901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3143280A JPH04366901A (en) 1991-06-14 1991-06-14 Element having carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3143280A JPH04366901A (en) 1991-06-14 1991-06-14 Element having carbon film

Publications (1)

Publication Number Publication Date
JPH04366901A true JPH04366901A (en) 1992-12-18

Family

ID=15335069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3143280A Pending JPH04366901A (en) 1991-06-14 1991-06-14 Element having carbon film

Country Status (1)

Country Link
JP (1) JPH04366901A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262203A (en) * 1995-03-17 1996-10-11 Lg Electron Inc Reflection preventing layer for display device
EP0859355A1 (en) * 1997-02-13 1998-08-19 Sanyo Electric Co. Ltd Thin film magnetic head
JPWO2016159290A1 (en) * 2015-03-31 2017-08-03 富士フイルム株式会社 Antireflection film and method for manufacturing the same
WO2019049471A1 (en) * 2017-09-06 2019-03-14 日本電産株式会社 Lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262203A (en) * 1995-03-17 1996-10-11 Lg Electron Inc Reflection preventing layer for display device
EP0859355A1 (en) * 1997-02-13 1998-08-19 Sanyo Electric Co. Ltd Thin film magnetic head
US5986857A (en) * 1997-02-13 1999-11-16 Sanyo Electric Co., Ltd. Thin film magnetic head including adhesion enhancing interlayers, and upper and lower gap insulative layers having different hydrogen contents and internal stress states
JPWO2016159290A1 (en) * 2015-03-31 2017-08-03 富士フイルム株式会社 Antireflection film and method for manufacturing the same
US10520648B2 (en) 2015-03-31 2019-12-31 Fujifilm Corporation Antireflection film and method of producing the same
WO2019049471A1 (en) * 2017-09-06 2019-03-14 日本電産株式会社 Lens

Similar Documents

Publication Publication Date Title
US6077569A (en) Highly durable and abrasion-resistant dielectric coatings for lenses
CA1329567C (en) Coated article and method of manufacturing the article
KR100278135B1 (en) Method for manufacturing a reflection reducing coating on a lens and apparatus therefor
JP5135753B2 (en) Optical article
US4388344A (en) Method of repairing surface defects in coated laser mirrors
US5513038A (en) Antireflective film and optical elements having the same
US20020090521A1 (en) Silica layers and antireflection film using same
Lee et al. Optical coatings on polymethyl methacrylate and polycarbonate
US7348041B2 (en) Antireflection film made of a CVD SiO2 film containing a fluoro and/or alkyl modifier
JPH0699807B2 (en) Amorphous carbonaceous thin film deposition method
JP3699877B2 (en)   Manufacturing method of laminated film
JPH04366901A (en) Element having carbon film
JP2003098305A (en) Antireflection film
JP4332310B2 (en) Method for producing titanium oxide layer, titanium oxide layer produced by this method, and antireflection film using titanium oxide
JP2001141903A (en) Antireflection film
JP4278162B2 (en) Antireflection film
US4339471A (en) Method of coating substrates with an abrasive layer
JP2004255635A (en) Transparent laminated film, antireflection film, polarizing plate using the same, and liquid crystal display device
JPH02257101A (en) Plastic optical element
JP2724260B2 (en) Optical member having antireflection film
JPH06184751A (en) Silver composite article with transparent film and its production
JPH05287537A (en) Manufacture of optical structure
KR100927964B1 (en) Manufacturing method of plastic substrate
JPH04264513A (en) Metallic rotary polygon mirror
JPH04217203A (en) Multiple-layer anti-reflection film for optical parts made of synthetic resin and manufacture thereof