JP4278162B2 - Antireflection film - Google Patents
Antireflection film Download PDFInfo
- Publication number
- JP4278162B2 JP4278162B2 JP2005254125A JP2005254125A JP4278162B2 JP 4278162 B2 JP4278162 B2 JP 4278162B2 JP 2005254125 A JP2005254125 A JP 2005254125A JP 2005254125 A JP2005254125 A JP 2005254125A JP 4278162 B2 JP4278162 B2 JP 4278162B2
- Authority
- JP
- Japan
- Prior art keywords
- atoms
- film
- refractive index
- substituted
- antireflection film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
Description
本発明は、カーブミラー、バックミラー、ゴーグル、窓ガラス、及びパソコン・ワープロ等のディスプレイ、その他商業用ディスプレイ等の各種表面における光の反射防止に適用される低屈折率SiO2 膜が形成された反射防止フィルムに関する。 The present invention, curved mirrors, rearview mirror, goggles, window glasses, and a display such as a personal computer, a word processor, a low refractive index SiO 2 film which is applied to the anti-reflection of light at the various surfaces of the other such commercial display is formed The present invention relates to an antireflection film .
近年、ワープロ、コンピュータ、テレビ等の各種ディスプレイや各種光学レンズ、光学物品、自動車、電車等の窓ガラスの表面における光の反射防止をするために、これらの物品の表面に、反射防止フィルムを貼着することが行われている。 In recent years, in order to prevent light reflection on the surface of various displays such as word processors, computers, televisions, various optical lenses, optical articles, automobiles, trains, etc., an antireflection film has been applied to the surfaces of these articles. It is done to wear.
反射防止膜として、例えば、ガラス上に形成された膜厚0.1μm程度のMgF2 の薄膜の場合を説明する。入射光が薄膜に垂直に入射する場合に、特定の波長をλ0 とし、この波長に対する反射防止膜の屈折率をn0 、反射防止膜の厚みをh、および基板の屈折率をng とすると、反射防止膜が光の反射を100%防止し、光を100%透過するための条件は、次の式(1)および式(2)の関係を満たすことが必要であることは既に知られている(サイエンスライブラリ 物理学=9「光学」70〜72頁、昭和55年,株式会社サイエンス社発行)。 As the antireflection film, for example, a case of an MgF 2 thin film having a thickness of about 0.1 μm formed on glass will be described. When incident light is perpendicularly incident on the thin film, the specific wavelength is λ 0 , the refractive index of the antireflection film for this wavelength is n 0 , the thickness of the antireflection film is h, and the refractive index of the substrate is ng . Then, it is already known that the condition for the antireflection film to prevent light reflection by 100% and to transmit light by 100% needs to satisfy the relationship of the following expressions (1) and (2). (Science Library Physics = 9 “Optics”, pages 70-72, published by Science Co., Ltd. in 1980).
ガラスの屈折率ng =約1.5であり、MgF2 膜の屈折率n0 =1.38、入射光の波長λ0 =5500Å(基準)と既に知られているので、これらの値を前記式(2)に代入すると、反射防止膜の厚みhは約0.1μm前後の光学薄膜が最適であると計算される。したがって、従来このような厚みの光学薄膜が反射防止膜に使用されていた。このような光学薄膜の形成には、真空蒸着処理、スパッタリング処理、イオンプレーティング、プラズマCVD等の真空処理が適していることが知られている。 Since the refractive index ng of glass is about 1.5, the refractive index n 0 of the MgF 2 film is 1.38, and the wavelength of incident light λ 0 is 5500 mm (reference), these values are Substituting into the above formula (2), it is calculated that an optical thin film having an antireflection film thickness h of about 0.1 μm is optimal. Therefore, conventionally, an optical thin film having such a thickness has been used as an antireflection film. It is known that vacuum processing such as vacuum deposition processing, sputtering processing, ion plating, and plasma CVD is suitable for forming such an optical thin film.
また、前記式(1)によれば、光の反射を100%防止するためには、上層膜の屈折率がその下層膜の屈折率の約平方根の値になるような材料を選択すればよいことが分かり、従来、このような原理を利用して、上層膜の屈折率をその下層膜の屈折率よりも低い値とすること、即ち、基板上に高屈折率層、低屈折率層の順に薄膜を設けることにより光の反射防止が行われていた。 In addition, according to the above formula (1), in order to prevent light reflection by 100%, a material in which the refractive index of the upper layer film is approximately the square root of the refractive index of the lower layer film may be selected. Thus, conventionally, using such a principle, the refractive index of the upper layer film is set lower than the refractive index of the lower layer film, that is, the high refractive index layer and the low refractive index layer on the substrate. In order to prevent reflection of light, a thin film was sequentially provided.
従来、SiO2 膜は一般に低屈折率の膜として知られていることから反射防止膜等によく用いられているが、種々の層構成とした反射防止膜において、さらに低い低屈折率膜が要望されている。 Conventionally, SiO 2 film is generally used as an antireflection film because it is generally known as a film having a low refractive index. However, a lower low refractive index film is desired among antireflection films having various layer structures. Has been.
そこで本発明は、SiO2 膜とするための原料を用い、しかもその屈折率が本来のSiO2 膜よりも低い屈折率のSiO2 膜を形成した反射防止フィルムを提供することを目的とする。 The present invention uses a material for a SiO 2 film, moreover an object to provide an antireflection film whose refractive index is SiO 2 film was formed of lower refractive index than the original SiO 2 film.
本発明は、基材上にITO層と、Si原子及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換された原料を用いたCVD法により形成された低屈折率SiO 2 膜が順次積層されてなる反射防止フィルムであって、前記Si原子及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換された原料は、HMDSO、TMDSO、オクタメチルシクロテトラシロキサン、TEOS、MTMOS、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシランのH原子の一部または全部がF原子に置換されたものから選ばれた1種以上の化合物を含むことを特徴とする反射防止フィルムである。 The present invention was formed by a CVD method using an ITO layer and a raw material in which part or all of H atoms of an alkyl group having 1 to 4 Si atoms and carbon atoms were substituted with F atoms on a substrate . An antireflective film in which low refractive index SiO 2 films are sequentially laminated, wherein the Si atoms and carbon atoms are partially or entirely substituted with F atoms by 1 to 4 alkyl atoms. , HMDSO, TMDSO, octamethylcyclotetrasiloxane, TEOS, MTMOS, methyl silane, dimethyl silane, trimethyl silane, diethyl silane, propyl silane, and phenyl silane with some or all of the H atoms replaced by F atoms An antireflection film comprising one or more compounds .
SiO2 成膜原料に炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されてなる低屈折率要素が導入されて成膜されることにより、SiO2 膜自体の屈折率よりもさらに低い屈折率の膜となる。本発明の低屈折率要素が導入されたSiO2 膜は本来のSiO2 膜よりも低屈折率であるので、反射防止膜の上層膜として有用である。 By low refractive index elements carbon atoms in the SiO 2 film forming material is a part or the whole of the H atoms of 1 to 4 alkyl groups comprising substituted in F atoms are deposited is introduced, SiO 2 film The film has a refractive index lower than its own refractive index. Since the SiO 2 film into which the low refractive index element of the present invention is introduced has a lower refractive index than the original SiO 2 film, it is useful as an upper layer film of the antireflection film.
Si原子、及び炭素原子が1〜4のアルキル基のH原子の一部または全部がF原子に置き変わったものを原料とすることにより、SiO2 膜に導入されるF原子はC原子と結合し、加水分解されることがなく、低屈折率効果が長期間維持される。 By using Si atoms and those in which some or all of the H atoms of the alkyl group having 1 to 4 carbon atoms are replaced with F atoms, the F atoms introduced into the SiO 2 film are bonded to the C atoms. However, the low refractive index effect is maintained for a long time without being hydrolyzed.
本発明の低屈折率SiO2 膜の製造方法は、Si原子及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されているものを含むガス、及びO原子を含むガスを原料ガスとし、CVD法により基材上に薄膜を形成することを特徴とする。 The method for producing a low refractive index SiO 2 film according to the present invention includes a gas containing an Si atom and a carbon atom having 1 to 4 alkyl groups partially or entirely substituted with F atoms, and O A gas containing atoms is used as a raw material gas, and a thin film is formed on a substrate by a CVD method.
本発明の低屈折率SiO2 膜の製造方法のさらに限定した方法は、(1)Si原子及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されているものを含む有機化合物の揮発ガス、及びO原子を含むガスとからなる混合ガスを10-3〜1mmHg(Torr)の真空条件に維持された真空チャンバー内に導入して、グロー放電によりプラズマ流とし、(2)前記プラズマ流を該真空チャンバー内に配置された基材上に接触させることにより、基材上に薄膜を形成することを特徴とする。 A further limited method for producing a low refractive index SiO 2 film of the present invention is as follows: (1) A part or all of H atoms of an alkyl group having 1 to 4 Si atoms and carbon atoms are substituted with F atoms. A mixed gas composed of a volatile gas of an organic compound containing a gas and a gas containing O atoms is introduced into a vacuum chamber maintained at a vacuum condition of 10 −3 to 1 mmHg (Torr), and a plasma flow is generated by glow discharge. (2) A thin film is formed on the substrate by bringing the plasma flow into contact with the substrate disposed in the vacuum chamber.
本発明のCVD法により形成される膜は、Si原子及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されているものを含む有機化合物の揮発ガス、及びO原子を含むガスとからなる混合ガスを使用して形成されているので、形成されたCVD膜は、Si原子が酸化された実質的に無機質のSiO2 膜であって、該SiO2 膜中に炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されているもの、即ち、低屈折率要素が導入された膜となり、低屈折率要素を含むガスを使用しない膜に比べて、本来のSiO2 膜よりも低屈折率の膜となる。また、得られた低屈折率膜は、高硬度で付着強度の高い膜となる。 The film formed by the CVD method of the present invention is a volatile gas of an organic compound containing one in which Si atoms and carbon atoms are partially or wholly substituted with F atoms of 1 to 4 alkyl groups, In addition, the formed CVD film is a substantially inorganic SiO 2 film in which Si atoms are oxidized, and the SiO 2 film In which part or all of H atoms of an alkyl group having 1 to 4 carbon atoms are substituted with F atoms, that is, a film having a low refractive index element introduced therein, and a gas containing a low refractive index element Compared to a film that does not use, the film has a lower refractive index than the original SiO 2 film. The obtained low refractive index film is a film having high hardness and high adhesion strength.
本発明の炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されてなる低屈折率要素が導入された低屈折率SiO2 膜は、該低屈折率要素が導入されていないSiO2 膜よりも低屈折率となる。 The low refractive index SiO 2 film into which a low refractive index element in which part or all of H atoms of an alkyl group having 1 to 4 carbon atoms are substituted with F atoms is introduced is the low refractive index element. The refractive index is lower than that of the SiO 2 film in which no is introduced.
図1は本発明の低屈折率SiO2 膜を製造するためのプラズマCVD装置の構成例を模式的に示したものである。図1において1は、その内部を所望の真空度に設定することができる真空チャンバーである。該真空チャンバー1内に、ウェッブ2の巻出し及び巻取りを行うことができ、ウェッブ2の正走行及び逆走行機能が付与された一対のロール3、4を含む巻出巻取機構が配置されている。ロール3及びロール4の間を走行するウェッブ2の面に対してプラズマCVD処理を行うためのプラズマゾーン5が配置されている。該プラズマゾーン5には、混合原料ガスを噴出する部分と平板電極6と、ウェッブ2を安定して走行させることができ且つアースされている成膜ドラム7が含まれる。前記平板電極6としては、不活性ガスを噴出させることでプラズマを生成するガス噴出電極を用いることができる。
FIG. 1 schematically shows a configuration example of a plasma CVD apparatus for producing a low refractive index SiO 2 film of the present invention. In FIG. 1, reference numeral 1 denotes a vacuum chamber in which the inside can be set to a desired degree of vacuum. In the vacuum chamber 1, an unwinding and winding mechanism including a pair of
本発明のCVD法により低屈折率SiO2 膜を形成するための原料には、Si原子及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されているものを含むガス、及びO原子を含むガスが使用される。 In the raw material for forming a low refractive index SiO 2 film by the CVD method of the present invention, part or all of H atoms of an alkyl group having 1 to 4 Si atoms and carbon atoms are substituted with F atoms. A gas containing one and a gas containing O atoms are used.
Si原料及び炭素原子が1〜4個のアルキル基を含む原料は、低屈折率膜の主原料である。炭素原子が1〜4個のアルキル基、特にメチル基、エチル基は本来のSiO2 膜の屈折率よりも、屈折率を低下させる目的で導入される。Si原料及び炭素原子が1〜4個のアルキル基を含む原料は、真空チャンバー内に導入される際にはガス化される。本発明において、ガス化原料のアルキル基の炭素原子数を1〜4個と限定した理由は、炭素原子数が5個以上のアルキル基を有する原料だと、CVDの際に蒸気となり難く、低屈折率膜を形成することが困難となるからである。 The Si raw material and the raw material containing an alkyl group having 1 to 4 carbon atoms are main raw materials for the low refractive index film. Alkyl groups having 1 to 4 carbon atoms, particularly methyl groups and ethyl groups, are introduced for the purpose of lowering the refractive index than that of the original SiO 2 film. The Si raw material and the raw material containing an alkyl group having 1 to 4 carbon atoms are gasified when introduced into the vacuum chamber. In the present invention, the reason why the number of carbon atoms in the alkyl group of the gasification raw material is limited to 1 to 4 is that if it is a raw material having an alkyl group having 5 or more carbon atoms, it is difficult to become vapor during CVD, and low This is because it becomes difficult to form a refractive index film.
本発明では、上記主原料としてのSi原子及び炭素原子が1〜4個のアルキル基を含む原料において、炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されたものを含む原料が使用されることにより、F原子が安定にC原子に結合し、低屈折率効果を安定に維持する特性を有する。 In the present invention, in the raw material containing the Si atom and the alkyl group having 1 to 4 carbon atoms as the main material, part or all of the H atoms of the alkyl group having 1 to 4 carbon atoms are substituted with F atoms. By using the raw material including the above-mentioned one, the F atom is stably bonded to the C atom, and the low refractive index effect is stably maintained.
このようなガス化可能なSi原料及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換されたものを含む原料には、HMDSO、TMDSO、オクタメチルシクロテトラシロキサン、TEOS、MTMOS、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシランのH原子の一部または全部がF原子に置換されたものが挙げられる。 Examples of such raw materials that can be gasified include raw materials including HMDSO, TMDSO, octamethylcyclotetratetrafluorocarbon, and raw materials including those in which some or all of H atoms of 1 to 4 carbon atoms are substituted with F atoms. Examples include siloxane, TEOS, MTMOS, methyl silane, dimethyl silane, trimethyl silane, diethyl silane, propyl silane, and phenyl silane in which part or all of the H atoms are substituted with F atoms.
O原子を含むガスは、Si原料を酸化させてSiO2 とするために使用される。
上記の各ガスからなる混合ガスには、望ましい性質を付与する目的でさらに他のガス状物質を添加してもよい。
上記Si原料ガスを含む混合ガスを真空チャンバーへ導入する流量(SLM)比は、1:0.1〜20が望ましい。
プラズマCVDを行う際には真空チャンバー内は10-3〜1mmHg(Torr)の圧力に維持することが望ましい。
A gas containing O atoms is used to oxidize the Si raw material into SiO 2 .
Other gaseous substances may be added to the mixed gas composed of the above gases for the purpose of imparting desirable properties.
The flow rate (SLM) ratio for introducing the mixed gas containing the Si source gas into the vacuum chamber is preferably 1: 0.1 to 20.
When performing plasma CVD, it is desirable to maintain the inside of a vacuum chamber at a pressure of 10 −3 to 1 mmHg (Torr).
本発明の低屈折率SiO2 膜が形成された製品の好ましい形態として反射防止フィルムを例にして以下に説明する。基材としてポリエチレンテレフタレート(PET)基材を用いる(東レ株式会社製、商品名:ルミラーT−60、厚さ:100μm)。該PET基材上にITO層、SiO2 層、ITO層、SiO2 層の順に、膜厚をそれぞれ、125Å、250Å、1000Å、800Åとなるように順次積層する。ITO層の形成方法はどのような手段でも構わないが、一般的にはスパッタ法が適用できる。ITO層の代わりにTiO2 層などの高屈折率材料を用いることも可能である。その場合、SiO2 層の下層の屈折率がSiO2 層の屈折率よりも高いほど反射防止の効果が付与され、反射防止フィルムとしての性能が向上する。しかも、ITO層を用いた場合には、フィルムの導電性が付与されるため、電磁波シールド性及び帯電防止性が発揮される。さらにその上に、表面のはっ水性を高くして指紋などの汚れが付かないようにする防汚コートの目的でフッ素系樹脂を100Å以下の膜厚でウェットコートしてもよい。 As a preferred form of the product having the low refractive index SiO 2 film of the present invention, an antireflection film will be described below as an example. A polyethylene terephthalate (PET) substrate is used as the substrate (manufactured by Toray Industries, Inc., trade name: Lumirror T-60, thickness: 100 μm). The ITO layer, the SiO 2 layer, the ITO layer, and the SiO 2 layer are sequentially laminated on the PET substrate so that the film thicknesses are 125 mm, 250 mm, 1000 mm, and 800 mm, respectively. Any method may be used for forming the ITO layer, but sputtering is generally applicable. It is also possible to use a high refractive index material such as a TiO 2 layer instead of the ITO layer. In that case, as the refractive index of the lower layer of the SiO 2 layer is higher than the refractive index of the SiO 2 layer, an antireflection effect is given, and the performance as an antireflection film is improved. In addition, when an ITO layer is used, the film is imparted with electrical conductivity, and thus exhibits electromagnetic shielding properties and antistatic properties. Furthermore, a fluorine-based resin may be wet-coated with a film thickness of 100 mm or less for the purpose of an anti-fouling coating that increases the water repellency of the surface and prevents dirt such as fingerprints.
上記反射防止フィルムにおいて、基材上のハードコート層上に最初に形成するITO層とSiO2 層を有機系材料のウエットコートで置き換えることも可能である。ITOをスパッタリングして成膜するには時間がかかり、それが生産コストを引き上げる要因となっているので、このような成膜手段の代替はコスト面で有利である。上記有機系材料のウエットコート膜上に成膜するITO層はあまり密着性が良くない。このような場合には有機層とITO層の間に接着剤に相当する他の物質を薄く(通常は100Å以下)形成してもよい。 In the antireflection film, the ITO layer and the SiO 2 layer that are initially formed on the hard coat layer on the substrate can be replaced with a wet coat of an organic material. Since it takes time to form a film by sputtering ITO, and this increases the production cost, such an alternative to the film forming means is advantageous in terms of cost. The ITO layer formed on the wet coating film of the organic material has poor adhesion. In such a case, another substance corresponding to the adhesive may be thinly formed (usually 100 mm or less) between the organic layer and the ITO layer.
もし、それほど高い反射防止特性を必要としない場合(低反射性フィルムを得る場合)には、ハードコート層上にSiO2 層のみを形成してもよい。このような層構成は、LCD用の反射防止フィルムにおいてコスト面から多用されている。この場合には、基材として光学特性が優れた、即ち、複屈折を持たないTAC(富士フィルム株式会社製、商品名:フジタック、厚さ:100μm)が用いられる。 If so high antireflection properties are not required (when obtaining a low reflective film), only the SiO 2 layer may be formed on the hard coat layer. Such a layer structure is frequently used in the antireflection film for LCD from the viewpoint of cost. In this case, a TAC (Fuji Film Co., Ltd., trade name: Fujitack, thickness: 100 μm) having excellent optical characteristics, that is, having no birefringence is used as the base material.
プラズマCVD法により本発明の低屈折率SiO2 膜を形成する方法を、次の実施例により示す。 A method for forming the low refractive index SiO 2 film of the present invention by plasma CVD will be described by the following examples.
基材として、PETフィルム(東レ株式会社製、商品名:ルミラーT−60、厚さ:100μm)を用いた。原料ガスとして、O2 、Arを用いた。また、モノマー材料としてHMDSO(ヘキサメチルジシロキサン)のCH3 基のHをFで置換したものを用いた。ガスの流量は、O2 :30sccm、Ar:30sccmとした。Arガスをキャリアーガスとしてモノマー材料をバブリングしてモノマー材料を、40mTorrに圧力が調整されたプラズマCVD装置の真空チャンバー内に供給した。バブリングの温度は室温とした。 As the substrate, a PET film (manufactured by Toray Industries, Inc., trade name: Lumirror T-60, thickness: 100 μm) was used. O 2 and Ar were used as source gases. In addition, a monomer material in which H of CH 3 group of HMDSO (hexamethyldisiloxane) was substituted with F was used. The gas flow rates were O 2 : 30 sccm and Ar: 30 sccm. The monomer material was bubbled using Ar gas as a carrier gas, and the monomer material was supplied into a vacuum chamber of a plasma CVD apparatus whose pressure was adjusted to 40 mTorr. The bubbling temperature was room temperature.
100W、13.56MHZ の電力を上部電極とアース電極の間に印加することによりプラズマを生成した。成膜時間は10分とした。得られたSiO2 膜の屈折率をエリプソメトリーで評価したところ、1.40であった。 100W, to produce a plasma by applying a power of 13.56MH Z between the upper electrode and the ground electrode. The film formation time was 10 minutes. When the refractive index of the obtained SiO 2 film was evaluated by ellipsometry, it was 1.40.
本実施例1と下記の比較例1のSiO2 膜は、両者とも初期の屈折率は1.40であるのに対して、高温高湿下(80℃、95%RH)で3日間放置した結果、本実施例1は屈折率に変化がないのに対し、下記比較例1は屈折率が1.45まで上昇した。したがって、F原子を導入したSiO2 膜において、CF4 を用いるよりも、HMDSOのCH3 基のH原子をF原子で置換したものを用いた方が、耐高温高湿性がある。 Both the SiO 2 films of Example 1 and Comparative Example 1 below had an initial refractive index of 1.40, whereas they were allowed to stand at high temperature and high humidity (80 ° C., 95% RH) for 3 days. As a result, the refractive index of Example 1 did not change, whereas the refractive index of Comparative Example 1 below increased to 1.45. Therefore, in the SiO 2 film into which F atoms are introduced, it is more resistant to high temperature and high humidity when the H atom of the CH 3 group of HMDSO is replaced with F atoms than with CF 4 .
基材として、PETフィルム(東レ株式会社製、商品名:ルミラーT−60、厚さ100μm)を用いた。原料ガスとして、O2 、Ar、CF4 を用いた。また、モノマー材料としてHMDSO(ヘキサラメチルジシロキサン)を用いた。ガスの流量は、O2 :30sccm、Ar:30sccm、CF4 :30sccmとした。Arガスをキャリアーガスとしてモノマー材料をバブリングしてモノマー材料を、40mTorrに圧力が調整されたプラズマCVD装置の真空チャンバー内に供給した。バブリングの温度は室温とした。 A PET film (trade name: Lumirror T-60, thickness 100 μm) manufactured by Toray Industries, Inc. was used as the substrate. O 2 , Ar, and CF 4 were used as source gases. In addition, HMDSO (hexaramethyldisiloxane) was used as the monomer material. The gas flow rates were O 2 : 30 sccm, Ar: 30 sccm, and CF 4 : 30 sccm. The monomer material was bubbled using Ar gas as a carrier gas, and the monomer material was supplied into a vacuum chamber of a plasma CVD apparatus whose pressure was adjusted to 40 mTorr. The bubbling temperature was room temperature.
100W、13.56MHZ の電力を上部電極とアース電極の間に印加することによりプラズマを生成した。成膜時間は10分とした。得られたSiO2 膜の屈折率をエリプソメトリーで評価したところ、F原子を導入したSiO2 膜の屈折率は1.40であった。 100W, to produce a plasma by applying a power of 13.56MH Z between the upper electrode and the ground electrode. The film formation time was 10 minutes. When the refractive index of the obtained SiO 2 film was evaluated by ellipsometry, the refractive index of the SiO 2 film into which F atoms were introduced was 1.40.
カーブミラー、バックミラー、ゴーグル、窓ガラス、及びパソコン・ワープロ等のディスプレイ、その他商業用ディスプレイ等の各種表面における光の反射防止膜に適用される本発明の反射防止フィルムにおける低屈折率SiO2 膜は、加水分解されることがなく、低屈折率効果が長期間維持されるので有用である。 Low refractive index SiO 2 film in the antireflective film of the present invention applied to an antireflective film for light on various surfaces such as curved mirrors, rearview mirrors, goggles, window glass, personal computers and word processors, and other commercial displays Is useful because it is not hydrolyzed and the low refractive index effect is maintained for a long time.
1 真空チャンバー
2 ウェッブ
3、4 ロール
5 プラズマゾーン
6 平板電極
7 成膜ドラム
DESCRIPTION OF SYMBOLS 1
Claims (7)
前記Si原子及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換された原料は、HMDSO、TMDSO、オクタメチルシクロテトラシロキサン、TEOS、MTMOS、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシランのH原子の一部または全部がF原子に置換されたものから選ばれた1種以上の化合物を含むことを特徴とする反射防止フィルム。The raw materials in which part or all of H atoms of the alkyl group having 1 to 4 Si atoms and carbon atoms are substituted with F atoms are HMDSO, TMDSO, octamethylcyclotetrasiloxane, TEOS, MTMOS, methylsilane, and dimethylsilane. An antireflective film comprising one or more compounds selected from those in which some or all of H atoms of trimethylsilane, diethylsilane, propylsilane, and phenylsilane are substituted with F atoms.
前記Si原子及び炭素原子が1〜4個のアルキル基のH原子の一部または全部がF原子に置換された原料は、HMDSO、TMDSO、オクタメチルシクロテトラシロキサン、TEOS、MTMOS、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシランのH原子の一部または全部がF原子に置換されたものから選ばれた1種以上の化合物を含むことを特徴とする反射防止フィルム。The raw materials in which part or all of H atoms of the alkyl group having 1 to 4 Si atoms and carbon atoms are substituted with F atoms are HMDSO, TMDSO, octamethylcyclotetrasiloxane, TEOS, MTMOS, methylsilane, and dimethylsilane. An antireflective film comprising one or more compounds selected from those in which some or all of H atoms of trimethylsilane, diethylsilane, propylsilane, and phenylsilane are substituted with F atoms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005254125A JP4278162B2 (en) | 1996-12-18 | 2005-09-01 | Antireflection film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35414196 | 1996-12-18 | ||
JP2005254125A JP4278162B2 (en) | 1996-12-18 | 2005-09-01 | Antireflection film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31599297A Division JP3773340B2 (en) | 1996-12-18 | 1997-10-31 | Low refractive index SiO2 film and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006072367A JP2006072367A (en) | 2006-03-16 |
JP4278162B2 true JP4278162B2 (en) | 2009-06-10 |
Family
ID=36152984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005254125A Expired - Fee Related JP4278162B2 (en) | 1996-12-18 | 2005-09-01 | Antireflection film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4278162B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6000839B2 (en) | 2012-12-21 | 2016-10-05 | メルクパフォーマンスマテリアルズマニュファクチャリング合同会社 | Composite of silicon oxide nanoparticles and silsesquioxane polymer, method for producing the same, and composite material produced using the composite |
-
2005
- 2005-09-01 JP JP2005254125A patent/JP4278162B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006072367A (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3773340B2 (en) | Low refractive index SiO2 film and manufacturing method thereof | |
US6582823B1 (en) | Wear-resistant polymeric articles and methods of making the same | |
KR100574720B1 (en) | Anti-Reflective Films | |
CA1329567C (en) | Coated article and method of manufacturing the article | |
KR20080011366A (en) | Method of producing optical film and anti-reflection film, optical film, anti-reflection film, polarizing plate and image display device comprising same | |
JP2005096322A (en) | Functional layer transfer film, antifouling layer, and functional layer transfer body | |
JP2000214302A (en) | Antireflection film and its production | |
JP3679074B2 (en) | Transparent laminated film, polarizing plate, liquid crystal display element, and liquid crystal display device | |
JP2004341541A (en) | Optical functional membrane, optical functional film, antiglare- antireflection film, manufacturing method therefor, polarizing plate, and liquid crystal display device | |
JP2005017544A (en) | Antireflection film and image display apparatus | |
JP3375793B2 (en) | Plastic lens with hard coat layer | |
JP2004258394A (en) | Optical functional film, anti-reflection film, polarizing plate, and display device | |
JP4278162B2 (en) | Antireflection film | |
JPH11129382A (en) | Antifouling antireflective laminate and its manufacture | |
JP2006071982A (en) | Ultraviolet ray absorbing antireflection film and image display apparatus | |
JP3732451B2 (en) | Method for producing transparent laminated film, transparent laminated film and antireflection film | |
JP2000221302A (en) | Antireflection film and its production | |
JP3751922B2 (en) | Antireflection film, and display device and liquid crystal display device using the same | |
JP2000338307A (en) | Antireflection film | |
JP2001141903A (en) | Antireflection film | |
JP2000338305A (en) | Antireflection film | |
JP4332310B2 (en) | Method for producing titanium oxide layer, titanium oxide layer produced by this method, and antireflection film using titanium oxide | |
JP2004223769A (en) | Transparent laminated film, antireflection film, polarizing plate using the same and liquid crystal display device | |
JP2004255635A (en) | Transparent laminated film, antireflection film, polarizing plate using the same, and liquid crystal display device | |
JP4023142B2 (en) | Antireflection material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081015 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090305 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090309 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |