WO2019049471A1 - Lens - Google Patents
Lens Download PDFInfo
- Publication number
- WO2019049471A1 WO2019049471A1 PCT/JP2018/023981 JP2018023981W WO2019049471A1 WO 2019049471 A1 WO2019049471 A1 WO 2019049471A1 JP 2018023981 W JP2018023981 W JP 2018023981W WO 2019049471 A1 WO2019049471 A1 WO 2019049471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- lens
- inorganic
- inorganic film
- polymer material
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
Definitions
- the present invention relates to a lens.
- a material of an optical member such as a lens
- a polymeric material having light transparency is known.
- the polymer material has a specific gravity lower than that of an inorganic material such as glass, it is possible to reduce the weight of the entire apparatus including the lens.
- plastic lens having a polymer material as a forming material
- a configuration is known in which a dielectric multilayer film made of an inorganic material is provided on the surface to prevent reflection.
- a hard coat film inorganic film
- the application of the above-mentioned plastic lens is spreading.
- the weight of the device can be reduced, which is preferable.
- an on-vehicle imaging device is exposed to a high temperature environment when installed in a vehicle, and is exposed to a high humidity environment when installed outside a vehicle. Therefore, the plastic lens used for such a device is required to have a durability to withstand a severe use environment such as high temperature and high humidity.
- the inorganic film may be damaged by thermal stress.
- the polymer material constituting the lens has a large water absorption rate as compared with an inorganic material such as glass. Therefore, when the plastic lens absorbs water, stress is applied to the inorganic film due to volumetric expansion of the lens, and the inorganic film may be broken.
- the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a lens exhibiting high durability in a high temperature and high humidity environment without forming an intermediate layer.
- a lens main body containing a polymer material, and an inorganic film formed on the surface of the lens main body, wherein the polymer material has a water absorption rate higher than 0% by mass
- the inorganic film provides a lens having a Vickers hardness of 600 HV or more.
- a lens main body containing a polymer material, and an inorganic film formed on the surface of the lens main body, wherein the polymer material has a water absorption rate of 0.05% by mass
- the inorganic film provides a lens having a Vickers hardness of 600 HV or more.
- a lens main body containing a polymer material and an inorganic film formed on the surface of the lens main body are provided, and the polymer material has a water absorption rate of 0.1 mass%.
- the inorganic film provides a lens having a Vickers hardness of 800 HV or more.
- a lens main body containing a polymer material, and an inorganic film formed on the surface of the lens main body, wherein the polymer material has a water absorption coefficient of 0.15% by mass
- the inorganic film provides a lens having a Vickers hardness of 850 HV or more.
- the present invention it is possible to provide a lens that exhibits high durability in a high temperature and high humidity environment.
- FIG. 1 is a schematic view showing a lens of the embodiment.
- FIG. 2 is a schematic view of the lens 1 when the inorganic film 20 is a dielectric multilayer film.
- FIG. 3 is a scatter diagram showing the results of the example.
- FIG. 1 is a schematic view showing a lens of the present embodiment.
- the lens 1 of the present embodiment includes a lens body 10 and an inorganic film 20.
- the lens 1 shown in the figure is suitably used, for example, as the second and subsequent lenses counted from the object side in a lens optical system in which a plurality of lenses are combined.
- the lens body 10 is a molded body containing a polymer material.
- a thermoplastic resin can be used for the polymeric material which is the formation material of the lens main body 10.
- thermoplastic resins such as polycarbonate (PC), cyclic olefin polymer (COP), cyclic olefin copolymer (COC) and the like can be used.
- the polymer material may be used in combination with various additives such as a stabilizer, an antioxidant, a filler, and a refractive index regulator as long as the light transmittance of the lens body 10 is not impaired.
- the lens body 10 has one surface S1 viewed along the optical axis L of the lens body 10, the other surface S2 opposite to the one surface S1, and one surface S1 extending in the circumferential direction of the lens body 10 And a circumferential surface S3 intersecting and intersecting with the other surface S2.
- One surface S1 includes a concave surface Sa which is visible along the optical axis L and overlaps the optical axis L, and a flat surface Sb which is disposed around the concave surface Sa and is continuous with the concave surface Sa.
- the concave surface Sa is a light transmission surface.
- the concave surface Sa is formed in a circular shape centered on the position of the optical axis L in a field of view when viewing one surface S1 along the optical axis L of the lens body 10.
- the other surface S2 is a convex surface.
- the other surface S2 is a light transmitting surface.
- the lens body 10 is a so-called meniscus lens.
- the lens main body 10 is designed to have a larger curvature of the concave surface Sa than the curvature of the other surface S2, and has negative power.
- the inorganic film 20 is provided on the entire surface of the other surface S2 of the lens body 10.
- examples of the inorganic film 20 include a dielectric multilayer film that functions as an antireflective film, and a hard coat film that functions as a film that prevents the lens body 10 from being scratched.
- FIG. 2 is a schematic view of the lens 1 when the inorganic film 20 is a dielectric multilayer film.
- the inorganic film 20 can be obtained by depositing two inorganic materials having different refractive indexes alternately via a mask. Such an inorganic film 20 provides the lens 1 with an antireflection function.
- the inorganic film 20 is, for example, a laminate in which a first film 21 containing SiO 2 and a second film 22 having a higher refractive index than the first film 21 are alternately stacked.
- the first film 21 contains SiO 2 (refractive index: 1.46) and Al 2 O 3 (refractive index: 1.77).
- the compounding ratio of SiO 2 and Al 2 O 3 in the vapor deposition source may be determined according to the design of the refractive index of the first film 21.
- the second film 22 contains, for example, Ta 2 O 5 (refractive index: 2.16) and TiO 2 (refractive index: 2.49).
- the compounding ratio of Ta 2 O 5 and TiO 2 in the evaporation source may be determined according to the design of the refractive index of the second film 22.
- the inorganic film 20 shown in the figure is shown as having a structure in which the first film 21 and the second film 22 are alternately laminated in a total of seven layers.
- the water absorption rate of the polymer material constituting the lens body 10 is higher than 0% by mass and 0.05% by mass or less.
- the Vickers hardness of the inorganic film 20 is 600 HV or more.
- the water absorption rate of the polymer material constituting the lens body 10 is higher than 0.05% by mass and 0.1% by mass or less.
- the Vickers hardness of the inorganic film 20 is 600 HV or more.
- the Vickers hardness of the inorganic film 20 is preferably 800 HV or more.
- the water absorption rate of the polymer material constituting the lens body 10 is higher than 0.11% by mass and 0.15% by mass or less.
- the Vickers hardness of the inorganic film 20 is 800 HV or more.
- the Vickers hardness of the inorganic film 20 is preferably 900 HV or more.
- the water absorption rate of the polymer material constituting the lens body 10 is higher than 0.15 mass% and 0.2 mass% or less.
- a lens in which the Vickers hardness of the inorganic film 20 is 850 HV or more can be mentioned.
- the water absorption rate of the polymer material is a value measured according to the method defined in JIS K7209.
- the Vickers hardness uses the value which converted the measurement result measured on the following test conditions into Vickers hardness.
- Test force 0.4 mN
- Test force arrival time 10 seconds
- Test force holding time 0 seconds
- Test force unloading time 10 seconds
- Working indenter Vickers indenter
- the water absorption rate of the polymer material depends on the physical properties of the polymer material used. Further, the Vickers hardness of the inorganic film 20 depends on the composition of the inorganic film 20 and the film forming conditions at the time of forming the inorganic film 20.
- the Vickers hardness of the inorganic film 20 can be adjusted as follows.
- the Vickers hardness of the obtained inorganic film becomes high.
- the deposition temperature is relatively lowered compared to the time of manufacturing the above-mentioned inorganic film, the Vickers hardness of the obtained inorganic film tends to be high.
- the assist conditions ion acceleration voltage, ion acceleration current
- the Vickers hardness of the obtained inorganic film tends to be high.
- the lens according to any one of the first to fourth aspects can be used.
- a lens exhibiting high durability in a high temperature and high humidity environment without providing an intermediate layer for buffering stress between the lens body 10 and the inorganic film 20 is provided. can do.
- a dielectric multilayer film (inorganic film) is formed on the surface of a substrate ( ⁇ 3 cm ⁇ 0.1 cm) made of a polymer material to form a test piece, and the obtained test piece The durability under high temperature and high humidity environment was evaluated.
- the obtained test piece is a model sample of a lens in which an inorganic film is formed on a plastic lens.
- Polymeric material 1 COP1 (Tg: 138 ° C., water absorption: ⁇ 0.01% by mass)
- Polymeric material 2 COP2 (Tg: 164 ° C., water absorption: 0.17% by mass)
- Polymeric material 3 COC (COC) Tg: 153 ° C., water absorption: 0.01% by mass
- Polymer material 4 PC 1 (Tg: 145 ° C., water absorption: 0.07% by mass)
- Polymer material 5 PC 2 (Tg: 156 ° C., water absorption: 0.12 mass%)
- COP shows a cyclic olefin polymer
- COC shows a cyclic olefin copolymer
- PC shows a polycarbonate, respectively.
- the polymeric material 1 and the polymeric material 3 are included in the range of “the water absorption coefficient is higher than 0% by mass and 0.05% by mass or less” defined in the present invention.
- the polymeric material 4 is included in the range of “the water absorption coefficient is higher than 0.05% by mass and 0.1% by mass or less” defined in the present invention.
- the polymeric material 5 is included in the range of “the water absorption coefficient is higher than 0.1% by mass and 0.15% by mass or less” defined in the present invention.
- the polymer material 2 is included in the range of “water absorption coefficient is higher than 0.15 mass% and 0.2 mass% or less” defined in the present invention.
- the dielectric multilayer film is formed by depositing a film of a low refractive material (the first film described above) on a substrate, and depositing a film of the high refractive material (the second film described above) and the first film alternately in order It formed.
- a laminated film of 7 layers in total including 4 layers of the first film and 3 layers of the second film was produced as a dielectric multilayer film.
- Each film thickness and total film thickness of the first film and the second film of the manufactured dielectric multilayer film were made constant in each test piece by adjusting the film forming conditions.
- the total film thickness of the dielectric multilayer film was 300 nm.
- condition 1 Deposition temperature-first set temperature
- Condition 2 deposition temperature-first set temperature
- Condition 3 deposition temperature-second Preset temperature
- assist condition-first ion acceleration voltage condition 4 deposition temperature-second preset temperature
- assist condition-second ion acceleration voltage [first preset temperature] ⁇ [second preset temperature] And [first ion acceleration voltage] ⁇ [second ion acceleration voltage].
- the Vickers hardness of the resulting inorganic film tends to be higher than when the film is formed.
- the Vickers hardness of the obtained inorganic film tends to be higher in the case of the second ion acceleration voltage in which the assist condition is relatively stronger than in the case of forming the film at the first ion acceleration voltage.
- the prepared test piece was stored at a temperature of 85 ° C. and a humidity of 85%, and peeling of the inorganic film was observed every 1000 hours for up to 1000 hours. Each test piece was evaluated as follows according to the time to occurrence of peeling of the inorganic film. ⁇ : No film peeling after 1000 hours. ⁇ : Confirming film peeling after 1000 hours. Fair: Peeling of film was confirmed after 500 hours. X: Confirming film peeling after 250 hours.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
A lens according to one embodiment of the present invention is provided with: a lens main body that contains a polymer material; and an inorganic film that is formed on the surface of the lens main body. The polymer material has a water absorption rate of more than 0% by mass but 0.05% by mass or less. The inorganic film has a Vickers hardness of 600 HV or more.
Description
本発明は、レンズに関する。
The present invention relates to a lens.
レンズなどの光学部材の材料として、光透過性を有する高分子材料が知られている。高分子材料を用いると、金型を用いた成形加工により、大量にレンズを成形することが可能である。また、高分子材料は、ガラス等の無機材料よりも低比重であることから、レンズを含む装置全体の軽量化を図ることができる。
As a material of an optical member such as a lens, a polymeric material having light transparency is known. When a polymer material is used, it is possible to mold a large amount of lenses by molding using a mold. Further, since the polymer material has a specific gravity lower than that of an inorganic material such as glass, it is possible to reduce the weight of the entire apparatus including the lens.
このような、高分子材料を形成材料とするレンズ(以下、「プラスチックレンズ」と称することがある)として、反射防止のため表面に無機材料からなる誘電体多層膜を設けた構成が知られている。また、プラスチックレンズとして、レンズ表面の傷つきを抑制するため、レンズの光透過面にハードコート膜(無機膜)を形成した構成が知られている。
As such a lens (hereinafter sometimes referred to as "plastic lens") having a polymer material as a forming material, a configuration is known in which a dielectric multilayer film made of an inorganic material is provided on the surface to prevent reflection. There is. Further, as a plastic lens, there is known a configuration in which a hard coat film (inorganic film) is formed on the light transmission surface of the lens in order to suppress the damage of the lens surface.
近年では、上述のようなプラスチックレンズの用途が広がっている。例えば、車載用の撮像装置にプラスチックレンズを適用すると、装置の軽量化が可能であり好ましい。一方で、車載用の撮像装置は、車内に設置する場合には高温環境に曝されることになり、車外に設置する場合には高湿環境に曝されることになる。そのため、このような装置に用いられるプラスチックレンズには、高温高湿といった過酷な使用環境に耐える耐久性が求められる。
In recent years, the application of the above-mentioned plastic lens is spreading. For example, when a plastic lens is applied to an in-vehicle imaging device, the weight of the device can be reduced, which is preferable. On the other hand, an on-vehicle imaging device is exposed to a high temperature environment when installed in a vehicle, and is exposed to a high humidity environment when installed outside a vehicle. Therefore, the plastic lens used for such a device is required to have a durability to withstand a severe use environment such as high temperature and high humidity.
しかし、レンズを構成する高分子材料と、誘電体多層膜などを構成する無機材料とは、熱膨張率に大きな差がある。そのため、表面に無機膜を有するプラスチックレンズでは、熱応力により、無機膜が破損するおそれがある。
However, there is a large difference in thermal expansion coefficient between the polymer material constituting the lens and the inorganic material constituting the dielectric multilayer film and the like. Therefore, with a plastic lens having an inorganic film on the surface, the inorganic film may be damaged by thermal stress.
また、レンズを構成する高分子材料は、ガラス等の無機材料と比べ吸水率が大きい。そのため、プラスチックレンズが吸水すると、レンズの体積膨張によって無機膜に応力が加わり、無機膜が破損するおそれがある。
Further, the polymer material constituting the lens has a large water absorption rate as compared with an inorganic material such as glass. Therefore, when the plastic lens absorbs water, stress is applied to the inorganic film due to volumetric expansion of the lens, and the inorganic film may be broken.
このような課題に対し、プラスチックレンズと、誘電体多層膜のような無機膜との間に、応力を緩和する中間層を設け、無機膜の破損を抑制する構成のレンズが知られている(例えば、特許文献1参照)。
In order to solve such problems, there is known a lens having a configuration in which an intermediate layer for relieving stress is provided between a plastic lens and an inorganic film such as a dielectric multilayer film to suppress breakage of the inorganic film ( For example, refer to Patent Document 1).
しかしながら、上記構成を採用する場合、レンズの製造工程において、中間層を形成するための設備が必要となる。また、中間層を形成するために工程が増加し、生産効率が低下してしまう。そのため、中間層を設けることなく、無機膜の破損を抑制可能なレンズが求められていた。
However, when the above configuration is adopted, equipment for forming the intermediate layer is required in the lens manufacturing process. In addition, the number of processes for forming the intermediate layer is increased, and the production efficiency is reduced. Therefore, the lens which can suppress the failure | damage of an inorganic membrane was provided without providing an intermediate | middle layer.
本発明はこのような事情に鑑みてなされたものであって、中間層を形成することなく、高温高湿環境において高い耐久性を示すレンズを提供することを目的とする。
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a lens exhibiting high durability in a high temperature and high humidity environment without forming an intermediate layer.
本発明の第1の態様によれば、高分子材料を含むレンズ本体と、前記レンズ本体の表面に形成された無機膜と、を備え、前記高分子材料は、吸水率が0質量%より高く0.05質量%以下であり、前記無機膜は、ビッカース硬度が600HV以上であるレンズが提供される。
According to a first aspect of the present invention, a lens main body containing a polymer material, and an inorganic film formed on the surface of the lens main body, wherein the polymer material has a water absorption rate higher than 0% by mass The inorganic film provides a lens having a Vickers hardness of 600 HV or more.
本発明の第2の態様によれば、高分子材料を含むレンズ本体と、前記レンズ本体の表面に形成された無機膜と、を備え、前記高分子材料は、吸水率が0.05質量%より高く0.1質量%以下であり、前記無機膜は、ビッカース硬度が600HV以上であるレンズが提供される。
According to a second aspect of the present invention, a lens main body containing a polymer material, and an inorganic film formed on the surface of the lens main body, wherein the polymer material has a water absorption rate of 0.05% by mass The inorganic film provides a lens having a Vickers hardness of 600 HV or more.
本発明の第3の態様によれば、高分子材料を含むレンズ本体と、前記レンズ本体の表面に形成された無機膜と、を備え、前記高分子材料は、吸水率が0.1質量%より高く0.15質量%以下であり、前記無機膜は、ビッカース硬度が800HV以上であるレンズが提供される。
According to a third aspect of the present invention, a lens main body containing a polymer material and an inorganic film formed on the surface of the lens main body are provided, and the polymer material has a water absorption rate of 0.1 mass%. The inorganic film provides a lens having a Vickers hardness of 800 HV or more.
本発明の第4の態様によれば、高分子材料を含むレンズ本体と、前記レンズ本体の表面に形成された無機膜と、を備え、前記高分子材料は、吸水率が0.15質量%より高く0.2質量%以下であり、前記無機膜は、ビッカース硬度が850HV以上であるレンズが提供される。
According to a fourth aspect of the present invention, a lens main body containing a polymer material, and an inorganic film formed on the surface of the lens main body, wherein the polymer material has a water absorption coefficient of 0.15% by mass The inorganic film provides a lens having a Vickers hardness of 850 HV or more.
本発明によれば、高温高湿環境において高い耐久性を示すレンズを提供することができる。
According to the present invention, it is possible to provide a lens that exhibits high durability in a high temperature and high humidity environment.
[レンズ] 以下、図1,2を参照しながら、本発明の第1実施形態に係るレンズについて説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
[Lens] Hereinafter, a lens according to a first embodiment of the present invention will be described with reference to FIGS. In addition, in all the following drawings, in order to make a drawing intelligible, the dimension, the ratio, etc. of each component are suitably varied.
図1は、本実施形態のレンズを示す模式図である。図に示すように、本実施形態のレンズ1は、レンズ本体10と、無機膜20と、を備えている。図に示すレンズ1は、例えば複数のレンズを組み合わせたレンズ光学系において、物体側から数えて2番目以降のレンズとして好適に用いられる。
FIG. 1 is a schematic view showing a lens of the present embodiment. As shown in the figure, the lens 1 of the present embodiment includes a lens body 10 and an inorganic film 20. The lens 1 shown in the figure is suitably used, for example, as the second and subsequent lenses counted from the object side in a lens optical system in which a plurality of lenses are combined.
(レンズ本体) レンズ本体10は、高分子材料を含む成形体である。レンズ本体10の形成材料である高分子材料は、熱可塑性樹脂を用いることができる。詳しくは、レンズ本体10の形成材料である高分子材料としては、ポリカーボネート(PC)、環状オレフィンポリマー(COP)、環状オレフィンコポリマー(COC)等の熱可塑性樹脂を用いることができる。
(Lens Body) The lens body 10 is a molded body containing a polymer material. A thermoplastic resin can be used for the polymeric material which is the formation material of the lens main body 10. Specifically, as a polymer material which is a forming material of the lens body 10, thermoplastic resins such as polycarbonate (PC), cyclic olefin polymer (COP), cyclic olefin copolymer (COC) and the like can be used.
また、レンズ本体10の光透過性を損なわない範囲において、高分子材料は、安定剤、酸化防止剤、フィラー、屈折率調整剤等の各種の添加剤と併用されることとしてもよい。
In addition, the polymer material may be used in combination with various additives such as a stabilizer, an antioxidant, a filler, and a refractive index regulator as long as the light transmittance of the lens body 10 is not impaired.
レンズ本体10は、レンズ本体10の光軸Lに沿って視た一方の面S1と、一方の面S1に対向する他方の面S2と、レンズ本体10の周方向に延在し一方の面S1および他方の面S2と交差して交わる周面S3とを有する。
The lens body 10 has one surface S1 viewed along the optical axis L of the lens body 10, the other surface S2 opposite to the one surface S1, and one surface S1 extending in the circumferential direction of the lens body 10 And a circumferential surface S3 intersecting and intersecting with the other surface S2.
一方の面S1は、光軸Lに沿って視て光軸Lと重なる凹面Saと、凹面Saの周囲に配置され凹面Saと連続する平坦面Sbと、を含む。凹面Saは、光透過面である。レンズ本体10の光軸Lに沿って一方の面S1を見た視野において、凹面Saは光軸Lの位置を中心とする円形に形成されている。
One surface S1 includes a concave surface Sa which is visible along the optical axis L and overlaps the optical axis L, and a flat surface Sb which is disposed around the concave surface Sa and is continuous with the concave surface Sa. The concave surface Sa is a light transmission surface. The concave surface Sa is formed in a circular shape centered on the position of the optical axis L in a field of view when viewing one surface S1 along the optical axis L of the lens body 10.
また、レンズ本体10においては、他方の面S2は、凸面となっている。他方の面S2は、光透過面である。
Further, in the lens body 10, the other surface S2 is a convex surface. The other surface S2 is a light transmitting surface.
レンズ本体10は、いわゆるメニスカスレンズである。また、レンズ本体10は、他方の面S2の曲率よりも凹面Saの曲率の方が大きく設計されており、負のパワーを有する。
The lens body 10 is a so-called meniscus lens. The lens main body 10 is designed to have a larger curvature of the concave surface Sa than the curvature of the other surface S2, and has negative power.
(無機膜) 無機膜20は、レンズ本体10の他方の面S2の全面に設けられている。図に示すレンズ1では、無機膜20としては、反射防止膜として機能する誘電体多層膜や、レンズ本体10の傷付きを防止する膜として機能するハードコート膜が挙げられる。
(Inorganic Film) The inorganic film 20 is provided on the entire surface of the other surface S2 of the lens body 10. In the lens 1 shown in the figure, examples of the inorganic film 20 include a dielectric multilayer film that functions as an antireflective film, and a hard coat film that functions as a film that prevents the lens body 10 from being scratched.
図2は、無機膜20が誘電体多層膜である場合のレンズ1の模式図である。無機膜20が誘電体多層膜である場合、無機膜20は、屈折率の異なる2種の無機材料を、マスクを介して交互に蒸着して成膜することにより得られる。このような無機膜20は、レンズ1に反射防止機能を付与する。
FIG. 2 is a schematic view of the lens 1 when the inorganic film 20 is a dielectric multilayer film. When the inorganic film 20 is a dielectric multilayer film, the inorganic film 20 can be obtained by depositing two inorganic materials having different refractive indexes alternately via a mask. Such an inorganic film 20 provides the lens 1 with an antireflection function.
無機膜20は、例えば、SiO2を含む第1膜21と、第1膜21よりも高屈折率である第2膜22とが交互に積層された積層体である。詳しくは、第1膜21は、SiO2(屈折率:1.46)およびAl2O3(屈折率:1.77)を含む。蒸着源におけるSiO2およびAl2O3の配合比は、第1膜21の屈折率の設計に応じて決定するとよい。
The inorganic film 20 is, for example, a laminate in which a first film 21 containing SiO 2 and a second film 22 having a higher refractive index than the first film 21 are alternately stacked. Specifically, the first film 21 contains SiO 2 (refractive index: 1.46) and Al 2 O 3 (refractive index: 1.77). The compounding ratio of SiO 2 and Al 2 O 3 in the vapor deposition source may be determined according to the design of the refractive index of the first film 21.
第2膜22は、例えばTa2O5(屈折率:2.16)およびTiO2(屈折率:2.49)を含む。蒸着源におけるTa2O5およびTiO2の配合比は、第2膜22の屈折率の設計に応じて決定するとよい。
The second film 22 contains, for example, Ta 2 O 5 (refractive index: 2.16) and TiO 2 (refractive index: 2.49). The compounding ratio of Ta 2 O 5 and TiO 2 in the evaporation source may be determined according to the design of the refractive index of the second film 22.
図に示す無機膜20では、第1膜21と第2膜22とが交互に合計7層積層した構造であることとして示している。
The inorganic film 20 shown in the figure is shown as having a structure in which the first film 21 and the second film 22 are alternately laminated in a total of seven layers.
上述のような構成のレンズについて、発明者が種々検討した結果、レンズ本体10を構成する高分子材料の吸水率と、無機膜の硬度とを、それぞれ所定の範囲に規定したレンズであれば高温高湿環境において高い耐久性を示すことを見出し、発明を完成させた。
As a result of various investigations by the inventor of the lens having the above-mentioned configuration, it is high temperature as long as the water absorption of the polymer material constituting the lens main body 10 and the hardness of the inorganic film are respectively defined in predetermined ranges. The inventors have found that they exhibit high durability in a high humidity environment, and completed the invention.
まず、第1の態様のレンズは、レンズ本体10を構成する高分子材料の吸水率が0質量%より高く0.05質量%以下である。このようなレンズにおいて、無機膜20のビッカース硬度は600HV以上である。
First, in the lens of the first aspect, the water absorption rate of the polymer material constituting the lens body 10 is higher than 0% by mass and 0.05% by mass or less. In such a lens, the Vickers hardness of the inorganic film 20 is 600 HV or more.
また、第2の態様のレンズは、レンズ本体10を構成する高分子材料の吸水率が0.05質量%より高く、0.1質量%以下である。このようなレンズにおいて、無機膜20のビッカース硬度は600HV以上である。
In the lens of the second aspect, the water absorption rate of the polymer material constituting the lens body 10 is higher than 0.05% by mass and 0.1% by mass or less. In such a lens, the Vickers hardness of the inorganic film 20 is 600 HV or more.
第2の態様のレンズにおいて、無機膜20のビッカース硬度は800HV以上であることが好ましい。
In the lens of the second aspect, the Vickers hardness of the inorganic film 20 is preferably 800 HV or more.
また、第3の態様のレンズは、レンズ本体10を構成する高分子材料の吸水率が0.11質量%より高く、0.15質量%以下である。このようなレンズにおいて、無機膜20のビッカース硬度は800HV以上である。
In the lens of the third aspect, the water absorption rate of the polymer material constituting the lens body 10 is higher than 0.11% by mass and 0.15% by mass or less. In such a lens, the Vickers hardness of the inorganic film 20 is 800 HV or more.
第3の態様のレンズにおいて、無機膜20のビッカース硬度は900HV以上であることが好ましい。
In the lens of the third aspect, the Vickers hardness of the inorganic film 20 is preferably 900 HV or more.
また、第4の態様のレンズは、レンズ本体10を構成する高分子材料の吸水率が0.15質量%より高く、0.2質量%以下である。このようなレンズにおいて、無機膜20のビッカース硬度は850HV以上であるレンズが挙げられる。
In the lens of the fourth aspect, the water absorption rate of the polymer material constituting the lens body 10 is higher than 0.15 mass% and 0.2 mass% or less. In such a lens, a lens in which the Vickers hardness of the inorganic film 20 is 850 HV or more can be mentioned.
なお、本明細書において、高分子材料の吸水率は、JIS K7209に規定する方法に従って測定した値を用いる。
In the present specification, the water absorption rate of the polymer material is a value measured according to the method defined in JIS K7209.
また、本明細書において、ビッカース硬度は、ISO14577に規定するナノインデンテーション法に従い、下記試験条件で測定した測定結果を、ビッカース硬度に換算した値を用いる。(試験条件) 試験力 :0.4mN 試験力到達時間:10秒 試験力保持時間:0秒 試験力除荷時間:10秒 使用圧子 : ビッカース圧子
Moreover, in this specification, according to the nanoindentation method prescribed | regulated to ISO14577, the Vickers hardness uses the value which converted the measurement result measured on the following test conditions into Vickers hardness. (Test conditions) Test force: 0.4 mN Test force arrival time: 10 seconds Test force holding time: 0 seconds Test force unloading time: 10 seconds Working indenter: Vickers indenter
高分子材料の吸水率は、用いる高分子材料の物性に依存する。 また、無機膜20のビッカース硬度は、無機膜20の組成や、無機膜20を成膜する際の成膜条件に依存する。
The water absorption rate of the polymer material depends on the physical properties of the polymer material used. Further, the Vickers hardness of the inorganic film 20 depends on the composition of the inorganic film 20 and the film forming conditions at the time of forming the inorganic film 20.
例えば、無機膜20が、無機材料をイオンアシスト蒸着して得られた蒸着膜である場合には、以下のようにして無機膜20のビッカース硬度を調整することができる。
For example, when the inorganic film 20 is a deposited film obtained by ion-assisted vapor deposition of an inorganic material, the Vickers hardness of the inorganic film 20 can be adjusted as follows.
まず、蒸着源として用いる無機材料を、当初の無機材料と比べ相対的に高硬度の無機材料に変更すると、得られる無機膜のビッカース硬度が高くなる。 また、上記無機膜の製造時と比べ、相対的に蒸着温度を低くすると、得られる無機膜のビッカース硬度が高くなる傾向がある。 また、上記無機膜の製造時と比べ、相対的にアシスト条件(イオン加速電圧、イオン加速電流)を大きくすると、得られる無機膜のビッカース硬度が高くなる傾向がある。
First, when the inorganic material used as a deposition source is changed to an inorganic material having a relatively high hardness as compared with the original inorganic material, the Vickers hardness of the obtained inorganic film becomes high. In addition, when the deposition temperature is relatively lowered compared to the time of manufacturing the above-mentioned inorganic film, the Vickers hardness of the obtained inorganic film tends to be high. In addition, when the assist conditions (ion acceleration voltage, ion acceleration current) are relatively increased as compared with the production of the inorganic film, the Vickers hardness of the obtained inorganic film tends to be high.
本実施形態においては、上述したようなレンズ本体10の形成材料である高分子材料の種類、無機膜20の形成材料である無機材料の種類、無機膜20の成膜条件を適宜変更することで、上記第1の態様から第4の態様のいずれかのレンズとすることができる。
In the present embodiment, by appropriately changing the type of the polymer material that is the forming material of the lens main body 10 as described above, the type of the inorganic material that is the forming material of the inorganic film 20, and the film forming conditions of the inorganic film 20 The lens according to any one of the first to fourth aspects can be used.
以上のような構成のレンズによれば、レンズ本体10と無機膜20との間に、応力を緩衝するための中間層を形成することなく、高温高湿環境において高い耐久性を示すレンズを提供することができる。
According to the lens having the above configuration, a lens exhibiting high durability in a high temperature and high humidity environment without providing an intermediate layer for buffering stress between the lens body 10 and the inorganic film 20 is provided. can do.
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
Although the preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. The shapes, combinations, and the like of the constituent members shown in the above-described example are merely examples, and various changes can be made based on design requirements and the like without departing from the spirit of the present invention.
以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
EXAMPLES The present invention will be described by way of examples, but the present invention is not limited to these examples.
本実施例においては、高分子材料を形成材料とする基板(φ3cm×0.1cm)の表面に、誘電体多層膜(無機膜)を形成して試験片を作製し、得られた試験片について高温高湿環境下での耐久性を評価した。得られた試験片は、プラスチックレンズに無機膜が形成されたレンズのモデルサンプルである。
In this example, a dielectric multilayer film (inorganic film) is formed on the surface of a substrate (φ3 cm × 0.1 cm) made of a polymer material to form a test piece, and the obtained test piece The durability under high temperature and high humidity environment was evaluated. The obtained test piece is a model sample of a lens in which an inorganic film is formed on a plastic lens.
試験片に用いた高分子材料は、以下のとおりであった。 高分子材料1:COP1(Tg:138℃、吸水率:<0.01質量%) 高分子材料2:COP2(Tg:164℃、吸水率:0.17質量%) 高分子材料3:COC(Tg:153℃、吸水率:0.01質量%) 高分子材料4:PC1(Tg:145℃、吸水率:0.07質量%) 高分子材料5:PC2(Tg:156℃、吸水率:0.12質量%)
The polymeric materials used for the test pieces were as follows. Polymeric material 1: COP1 (Tg: 138 ° C., water absorption: <0.01% by mass) Polymeric material 2: COP2 (Tg: 164 ° C., water absorption: 0.17% by mass) Polymeric material 3: COC (COC) Tg: 153 ° C., water absorption: 0.01% by mass Polymer material 4: PC 1 (Tg: 145 ° C., water absorption: 0.07% by mass) Polymer material 5: PC 2 (Tg: 156 ° C., water absorption: 0.12 mass%)
COPは環状オレフィンポリマー、COCは環状オレフィンコポリマー、PCはポリカーボネートをそれぞれ示す。
COP shows a cyclic olefin polymer, COC shows a cyclic olefin copolymer, PC shows a polycarbonate, respectively.
高分子材料1および高分子材料3は、本発明において規定する「吸水率が0質量%より高く0.05質量%以下」の範囲に含まれる。 高分子材料4は、本発明において規定する「吸水率が0.05質量%より高く0.1質量%以下」の範囲に含まれる。 高分子材料5は、本発明において規定する「吸水率が0.1質量%より高く0.15質量%以下」の範囲に含まれる。 高分子材料2は、本発明において規定する「吸水率が0.15質量%より高く0.2質量%以下」の範囲に含まれる。
The polymeric material 1 and the polymeric material 3 are included in the range of “the water absorption coefficient is higher than 0% by mass and 0.05% by mass or less” defined in the present invention. The polymeric material 4 is included in the range of “the water absorption coefficient is higher than 0.05% by mass and 0.1% by mass or less” defined in the present invention. The polymeric material 5 is included in the range of “the water absorption coefficient is higher than 0.1% by mass and 0.15% by mass or less” defined in the present invention. The polymer material 2 is included in the range of “water absorption coefficient is higher than 0.15 mass% and 0.2 mass% or less” defined in the present invention.
また、無機膜の作製に用いた無機材料は、以下のとおりであった。(低屈折率材料) 無機材料1:SiO2 無機材料2:SiO2+Al2O3 (SiO2:Al2O3=97:3) 無機材料3:SiO2+Al2O3 (SiO2:Al2O3=93:7)
Moreover, the inorganic material used for preparation of an inorganic membrane was as follows. (Low refractive index material) Inorganic material 1: SiO 2 inorganic material 2: SiO 2 + Al 2 O 3 (SiO 2 : Al 2 O 3 = 97: 3) Inorganic material 3: SiO 2 + Al 2 O 3 (SiO 2 : Al) 2 O 3 = 93: 7)
(高屈折率材料) 無機材料4:Ta2O5+TiO2 (Ta2O5:TiO2=4:1)
(High refractive index material) Inorganic material 4: Ta 2 O 5 + TiO 2 (Ta 2 O 5 : TiO 2 = 4: 1)
誘電体多層膜は、基板上に低屈折材料の膜(上述の第1膜)を成膜し、以下順に高屈折材料の膜(上述の第2膜)と第1膜とを交互に成膜して形成した。各試験片においては、誘電体多層膜として、第1膜を4層、第2膜を3層形成した計7層の積層膜を作製した。作製した誘電体多層膜の第1膜、第2膜の各膜厚、および合計膜厚は、成膜条件を調整することで、各試験片において一定とした。誘電体多層膜の合計膜厚は、300nmであった。
The dielectric multilayer film is formed by depositing a film of a low refractive material (the first film described above) on a substrate, and depositing a film of the high refractive material (the second film described above) and the first film alternately in order It formed. In each test piece, a laminated film of 7 layers in total including 4 layers of the first film and 3 layers of the second film was produced as a dielectric multilayer film. Each film thickness and total film thickness of the first film and the second film of the manufactured dielectric multilayer film were made constant in each test piece by adjusting the film forming conditions. The total film thickness of the dielectric multilayer film was 300 nm.
また、誘電体多層膜の成膜時に、蒸着温度、アシスト条件を変更することで、ビッカース硬度の異なる誘電体多層膜を形成した。 条件1:蒸着温度-第1の設定温度、アシスト条件-第1のイオン加速電圧 条件2:蒸着温度-第1の設定温度、アシスト条件-第2のイオン加速電圧 条件3:蒸着温度-第2の設定温度、アシスト条件-第1のイオン加速電圧 条件4:蒸着温度-第2の設定温度、アシスト条件-第2のイオン加速電圧([第1の設定温度]<[第2の設定温度]であり、[第1のイオン加速電圧]<[第2のイオン加速電圧]である。) 上述したように、蒸着温度が相対的に低い第1の設定温度のほうが、第2の設定温度で成膜した場合よりも、得られる無機膜のビッカース硬度が高くなる傾向にある。 また、アシスト条件が相対的に強い第2のイオン加速電圧のほうが、第1のイオン加速電圧で成膜した場合よりも、得られる無機膜のビッカース硬度が高くなる傾向にある。
In addition, when forming the dielectric multilayer film, the deposition temperature and the assist condition were changed to form dielectric multilayer films having different Vickers hardness. Condition 1: Deposition temperature-first set temperature, assist condition-first ion acceleration voltage Condition 2: deposition temperature-first set temperature, assist condition-second ion acceleration voltage Condition 3: deposition temperature-second Preset temperature, assist condition-first ion acceleration voltage condition 4: deposition temperature-second preset temperature, assist condition-second ion acceleration voltage ([first preset temperature] <[second preset temperature] And [first ion acceleration voltage] <[second ion acceleration voltage].) As described above, the first set temperature at which the deposition temperature is relatively lower is the second set temperature. The Vickers hardness of the resulting inorganic film tends to be higher than when the film is formed. In addition, the Vickers hardness of the obtained inorganic film tends to be higher in the case of the second ion acceleration voltage in which the assist condition is relatively stronger than in the case of forming the film at the first ion acceleration voltage.
(評価) 作製した試験片を、温度85℃、湿度85%の条件で保存し、250時間毎に1000時間まで無機膜の剥がれを観察した。無機膜の剥がれの発生までの時間に応じて、各試験片について次のように評価した。 ◎:1000時間経過時に膜剥がれ無し。 ○:1000時間経過時に膜剥がれを確認。 △:500時間経過時に膜剥がれを確認。 ×:250時間経過時に膜剥がれを確認。
(Evaluation) The prepared test piece was stored at a temperature of 85 ° C. and a humidity of 85%, and peeling of the inorganic film was observed every 1000 hours for up to 1000 hours. Each test piece was evaluated as follows according to the time to occurrence of peeling of the inorganic film. ◎: No film peeling after 1000 hours. ○: Confirming film peeling after 1000 hours. Fair: Peeling of film was confirmed after 500 hours. X: Confirming film peeling after 250 hours.
評価においては、「◎」が最も良く、「○」「△」の順に低評価となり、「×」が最も悪い評価であることとした。また、「◎」「○」「△」をそれぞれ良品、「×」を不良品として判断した。
In the evaluation, “◎” is the best, and it is evaluated in the order of “o” and “Δ”, and “x” is the worst evaluation. In addition, “」 ”,“ ○ ”and“ Δ ”were respectively judged as non-defective products and“ x ”as defective products.
評価結果を、表1~5および図3に示す。
The evaluation results are shown in Tables 1 to 5 and FIG.
評価の結果、高分子材料1または高分子材料3を形成材料とする基板では、ビッカース硬度が600HV以上である無機膜を設けることにより、高温高湿条件で保存した後の無機膜の剥がれが抑制された。
As a result of the evaluation, in the case of a substrate having the polymer material 1 or the polymer material 3 as a forming material, peeling of the inorganic film after storage under high temperature and high humidity conditions is suppressed by providing the inorganic film having a Vickers hardness of 600 HV or more. It was done.
また、高分子材料4を形成材料とする基板では、ビッカース硬度が600HV以上である無機膜を設けることにより、高温高湿条件で保存した後の無機膜の剥がれが抑制された。
Moreover, in the board | substrate which uses the polymeric material 4 as a forming material, peeling of the inorganic membrane after preserve | saving on high temperature and high humidity conditions was suppressed by providing the inorganic membrane which is 600 HV or more in Vickers hardness.
さらに、高分子材料4を形成材料とする基板では、ビッカース硬度が800HV以上である無機膜を設けることにより、高温高湿条件で保存した後の無機膜の剥がれをより確実に抑制することができた。
Furthermore, in the case of a substrate using the polymer material 4 as a forming material, peeling of the inorganic film after storage under high temperature and high humidity conditions can be more reliably suppressed by providing the inorganic film having a Vickers hardness of 800 HV or more. The
また、高分子材料5を形成材料とする基板では、ビッカース硬度が800HV以上である無機膜を設けることにより、高温高湿条件で保存した後の無機膜の剥がれが抑制された。
Moreover, in the board | substrate which uses the polymeric material 5 as a forming material, peeling of the inorganic membrane after preserve | saving on high temperature and high humidity conditions was suppressed by providing the inorganic membrane which is 800 HV or more in Vickers hardness.
さらに、高分子材料5を形成材料とする基板では、ビッカース硬度が900HV以上である無機膜を設けることにより、高温高湿条件で保存した後の無機膜の剥がれをより確実に抑制することができた。
Furthermore, in the case of a substrate using the polymer material 5 as a forming material, peeling of the inorganic film after storage under high temperature and high humidity conditions can be more reliably suppressed by providing the inorganic film having a Vickers hardness of 900 HV or more. The
また、高分子材料2を形成材料とする基板では、ビッカース硬度が850HV以上である無機膜を設けることにより、高温高湿条件で保存した後の無機膜の剥がれが抑制された。
Moreover, in the board | substrate which uses the polymeric material 2 as a forming material, peeling of the inorganic film after preserve | saved on high temperature and high humidity conditions was suppressed by providing the inorganic film which has Vickers hardness of 850 HV or more.
以上の結果に基づくと、各高分子材料を用いてレンズ本体を形成し、当該レンズ本体の表面に本実施形態で作製した無機膜をそれぞれ形成した場合にも、高温高湿条件下での耐久性について、同様の傾向を示すと考えられる。
Based on the above results, even when the lens body is formed using each polymer material and the inorganic film produced in the present embodiment is formed on the surface of the lens body, durability under high temperature and high humidity conditions is obtained. The same tendency is considered for the sex.
以上の結果から、本発明が有用であることが確かめられた。
From the above results, it was confirmed that the present invention is useful.
1…レンズ、10…レンズ本体、20…無機膜、21…第1膜、22…第2膜、S1…一方の面、S2…他方の面
DESCRIPTION OF SYMBOLS 1 ... Lens, 10 ... Lens main body, 20 ... Inorganic film, 21 ... 1st film, 22 ... 2nd film, S1 ... One surface, S2 ... other surface
Claims (18)
- 高分子材料を含むレンズ本体と、 前記レンズ本体の表面に形成された無機膜と、を備え、 前記高分子材料は、吸水率が0質量%より高く0.05質量%以下であり、 前記無機膜は、ビッカース硬度が600HV以上であるレンズ。 A lens main body including a polymer material, and an inorganic film formed on a surface of the lens main body, wherein the polymer material has a water absorption coefficient higher than 0% by mass and 0.05% by mass or less, The film is a lens having a Vickers hardness of 600 HV or more.
- 前記無機膜は、誘電体多層膜であり、 前記誘電体多層膜は、SiO2を含む第1膜と、 前記第1膜よりも高屈折率である第2膜と、が交互に積層された積層体である請求項1に記載のレンズ。 The inorganic film is a dielectric multilayer film, and in the dielectric multilayer film, a first film containing SiO 2 and a second film having a refractive index higher than that of the first film are alternately stacked. The lens according to claim 1, which is a laminate.
- 前記第1膜は、SiO2およびAl2O3を含む請求項2に記載のレンズ。 The lens according to claim 2 , wherein the first film contains SiO 2 and Al 2 O 3 .
- 前記第2膜は、Ta2O5およびTiO2を含む請求項2または3に記載のレンズ。 The lens according to claim 2 , wherein the second film contains Ta 2 O 5 and TiO 2 .
- 高分子材料を含むレンズ本体と、 前記レンズ本体の表面に形成された無機膜と、を備え、 前記高分子材料は、吸水率が0.05質量%より高く0.1質量%以下であり、 前記無機膜は、ビッカース硬度が600HV以上であるレンズ。 A lens body containing a polymer material, and an inorganic film formed on the surface of the lens body, wherein the polymer material has a water absorption coefficient higher than 0.05% by mass and 0.1% by mass or less, The inorganic film is a lens having a Vickers hardness of 600 HV or more.
- 前記無機膜は、ビッカース硬度が800HV以上である請求項5に記載のレンズ。 The lens according to claim 5, wherein the inorganic film has a Vickers hardness of 800 HV or more.
- 前記無機膜は、誘電体多層膜であり、 前記誘電体多層膜は、SiO2を含む第1膜と、 前記第1膜よりも高屈折率である第2膜と、が交互に積層された積層体である請求項5または6に記載のレンズ。 The inorganic film is a dielectric multilayer film, and in the dielectric multilayer film, a first film containing SiO 2 and a second film having a refractive index higher than that of the first film are alternately stacked. The lens according to claim 5, which is a laminate.
- 前記第1膜は、SiO2およびAl2O3を含む請求項7に記載のレンズ。 The lens according to claim 7, wherein the first film comprises SiO 2 and Al 2 O 3 .
- 前記第2膜は、Ta2O5およびTiO2を含む請求項7または8に記載のレンズ。 The lens according to claim 7, wherein the second film contains Ta 2 O 5 and TiO 2 .
- 高分子材料を含むレンズ本体と、 前記レンズ本体の表面に形成された無機膜と、を備え、 前記高分子材料は、吸水率が0.1質量%より高く0.15質量%以下であり、 前記無機膜は、ビッカース硬度が800HV以上であるレンズ。 A lens body containing a polymer material, and an inorganic film formed on the surface of the lens body, wherein the polymer material has a water absorption coefficient higher than 0.1% by mass and 0.15% by mass or less, The inorganic film is a lens having a Vickers hardness of 800 HV or more.
- 前記無機膜は、ビッカース硬度が900HV以上である請求項10に記載のレンズ。 The lens according to claim 10, wherein the inorganic film has a Vickers hardness of 900 HV or more.
- 前記無機膜は、誘電体多層膜であり、 前記誘電体多層膜は、SiO2を含む第1膜と、 前記第1膜よりも高屈折率である第2膜と、が交互に積層された積層体である請求項10または11に記載のレンズ。 The inorganic film is a dielectric multilayer film, and in the dielectric multilayer film, a first film containing SiO 2 and a second film having a refractive index higher than that of the first film are alternately stacked. The lens according to claim 10, which is a laminate.
- 前記第1膜は、SiO2およびAl2O3を含む請求項12に記載のレンズ。 The lens of claim 12, wherein the first film comprises SiO 2 and Al 2 O 3 .
- 前記第2膜は、Ta2O5およびTiO2を含む請求項12または13に記載のレンズ。 The lens according to claim 12, wherein the second film contains Ta 2 O 5 and TiO 2 .
- 高分子材料を含むレンズ本体と、 前記レンズ本体の表面に形成された無機膜と、を備え、 前記高分子材料は、吸水率が0.15質量%より高く0.2質量%以下であり、 前記無機膜は、ビッカース硬度が850HV以上であるレンズ。 A lens body containing a polymer material, and an inorganic film formed on a surface of the lens body, wherein the polymer material has a water absorption coefficient higher than 0.15 mass% and 0.2 mass% or less, The inorganic film is a lens having a Vickers hardness of 850 HV or more.
- 前記無機膜は、誘電体多層膜であり、 前記誘電体多層膜は、SiO2を含む第1膜と、 前記第1膜よりも高屈折率である第2膜と、が交互に積層された積層体である請求項15に記載のレンズ。 The inorganic film is a dielectric multilayer film, and in the dielectric multilayer film, a first film containing SiO 2 and a second film having a refractive index higher than that of the first film are alternately stacked. The lens according to claim 15, which is a laminate.
- 前記第1膜は、SiO2およびAl2O3を含む請求項16に記載のレンズ。 The lens of claim 16, wherein the first film comprises SiO 2 and Al 2 O 3 .
- 前記第2膜は、Ta2O5およびTiO2を含む請求項16または17に記載のレンズ。 The lens according to claim 16, wherein the second film contains Ta 2 O 5 and TiO 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880050298.3A CN111133342A (en) | 2017-09-06 | 2018-06-25 | Lens and lens assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-171387 | 2017-09-06 | ||
JP2017171387 | 2017-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019049471A1 true WO2019049471A1 (en) | 2019-03-14 |
Family
ID=65633647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/023981 WO2019049471A1 (en) | 2017-09-06 | 2018-06-25 | Lens |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111133342A (en) |
WO (1) | WO2019049471A1 (en) |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63217303A (en) * | 1987-03-05 | 1988-09-09 | Minolta Camera Co Ltd | Plastic lens |
JPH04366901A (en) * | 1991-06-14 | 1992-12-18 | Canon Inc | Element having carbon film |
JPH0643304A (en) * | 1992-07-24 | 1994-02-18 | Nikon Corp | Antireflection film and optical parts with antireflection film |
JPH06122748A (en) * | 1992-08-26 | 1994-05-06 | Mitsui Toatsu Chem Inc | Composition for high-refractive-index plastic lens and lens |
JPH06273701A (en) * | 1993-01-25 | 1994-09-30 | Japan Synthetic Rubber Co Ltd | Ophthalmic lens |
JPH0796555A (en) * | 1993-09-29 | 1995-04-11 | Toray Ind Inc | Plastic optical article |
JPH07242722A (en) * | 1994-03-04 | 1995-09-19 | Mitsui Toatsu Chem Inc | Composition for plastic lens with high refractive index and lens |
JPH10116940A (en) * | 1996-10-09 | 1998-05-06 | Toshiba Corp | Resin-sealed semiconductor device and manufacturing method thereof |
JP2002139610A (en) * | 2000-10-31 | 2002-05-17 | Mitsubishi Chemicals Corp | Method for manufacturing projection lens |
WO2007102299A1 (en) * | 2006-03-08 | 2007-09-13 | Konica Minolta Opto, Inc. | Optical element |
JP2008076941A (en) * | 2006-09-25 | 2008-04-03 | Matsushita Electric Works Ltd | Optical element and manufacturing method thereof |
JP2008162181A (en) * | 2006-12-28 | 2008-07-17 | Fujifilm Corp | Laminated film, optical element having the same laminated film and manufacturing method of laminated film |
JP2012234621A (en) * | 1999-09-01 | 2012-11-29 | Konica Minolta Holdings Inc | Optical pickup device |
JP2013195883A (en) * | 2012-03-22 | 2013-09-30 | Hoya Corp | Manufacturing method of photochromic lens |
WO2015056734A1 (en) * | 2013-10-17 | 2015-04-23 | Jsr株式会社 | Optical filter, solid-state image pickup device, and camera module |
JP2015092193A (en) * | 2015-02-10 | 2015-05-14 | 大日本印刷株式会社 | Sensor device-manufacturing method, and sensor device |
WO2015129129A1 (en) * | 2014-02-26 | 2015-09-03 | コニカミノルタ株式会社 | Optical member provided with wide-band anti-reflection film |
JP2015184449A (en) * | 2014-03-24 | 2015-10-22 | 国立大学法人名古屋大学 | plastic lens |
WO2017010318A1 (en) * | 2015-07-13 | 2017-01-19 | 帝人株式会社 | Imaging lens |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1335214A4 (en) * | 2000-10-20 | 2007-02-28 | Mitsubishi Chem Corp | Projection lens |
US7092174B2 (en) * | 2001-05-18 | 2006-08-15 | Konica Corporation | Image pickup lens, image pickup apparatus and method for forming image pickup lens |
JP5903578B2 (en) * | 2010-01-21 | 2016-04-13 | 株式会社ユーテック | PBNZT ferroelectric film and method for manufacturing ferroelectric film |
-
2018
- 2018-06-25 WO PCT/JP2018/023981 patent/WO2019049471A1/en active Application Filing
- 2018-06-25 CN CN201880050298.3A patent/CN111133342A/en not_active Withdrawn
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63217303A (en) * | 1987-03-05 | 1988-09-09 | Minolta Camera Co Ltd | Plastic lens |
JPH04366901A (en) * | 1991-06-14 | 1992-12-18 | Canon Inc | Element having carbon film |
JPH0643304A (en) * | 1992-07-24 | 1994-02-18 | Nikon Corp | Antireflection film and optical parts with antireflection film |
JPH06122748A (en) * | 1992-08-26 | 1994-05-06 | Mitsui Toatsu Chem Inc | Composition for high-refractive-index plastic lens and lens |
JPH06273701A (en) * | 1993-01-25 | 1994-09-30 | Japan Synthetic Rubber Co Ltd | Ophthalmic lens |
JPH0796555A (en) * | 1993-09-29 | 1995-04-11 | Toray Ind Inc | Plastic optical article |
JPH07242722A (en) * | 1994-03-04 | 1995-09-19 | Mitsui Toatsu Chem Inc | Composition for plastic lens with high refractive index and lens |
JPH10116940A (en) * | 1996-10-09 | 1998-05-06 | Toshiba Corp | Resin-sealed semiconductor device and manufacturing method thereof |
JP2012234621A (en) * | 1999-09-01 | 2012-11-29 | Konica Minolta Holdings Inc | Optical pickup device |
JP2002139610A (en) * | 2000-10-31 | 2002-05-17 | Mitsubishi Chemicals Corp | Method for manufacturing projection lens |
WO2007102299A1 (en) * | 2006-03-08 | 2007-09-13 | Konica Minolta Opto, Inc. | Optical element |
JP2008076941A (en) * | 2006-09-25 | 2008-04-03 | Matsushita Electric Works Ltd | Optical element and manufacturing method thereof |
JP2008162181A (en) * | 2006-12-28 | 2008-07-17 | Fujifilm Corp | Laminated film, optical element having the same laminated film and manufacturing method of laminated film |
JP2013195883A (en) * | 2012-03-22 | 2013-09-30 | Hoya Corp | Manufacturing method of photochromic lens |
WO2015056734A1 (en) * | 2013-10-17 | 2015-04-23 | Jsr株式会社 | Optical filter, solid-state image pickup device, and camera module |
WO2015129129A1 (en) * | 2014-02-26 | 2015-09-03 | コニカミノルタ株式会社 | Optical member provided with wide-band anti-reflection film |
JP2015184449A (en) * | 2014-03-24 | 2015-10-22 | 国立大学法人名古屋大学 | plastic lens |
JP2015092193A (en) * | 2015-02-10 | 2015-05-14 | 大日本印刷株式会社 | Sensor device-manufacturing method, and sensor device |
WO2017010318A1 (en) * | 2015-07-13 | 2017-01-19 | 帝人株式会社 | Imaging lens |
Also Published As
Publication number | Publication date |
---|---|
CN111133342A (en) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10031349B2 (en) | Optical product, and spectacle lens and spectacles | |
US11701848B2 (en) | Polarizable compact | |
US9709704B2 (en) | Anti-reflection film and method for manufacturing anti-reflection film | |
US8908275B2 (en) | Optical product and spectacle plastic lens | |
CN117452668A (en) | Optical article including encapsulated micro-lenses and method of making the same | |
EP3324221A1 (en) | Antireflective coating | |
US7399524B2 (en) | Plastic optical elements | |
JP5522955B2 (en) | Optical element manufacturing method | |
KR20150043406A (en) | Special polycarbonate polarizing eyewear | |
US20060245056A1 (en) | Thin-film structure with counteracting layer | |
CN111474608A (en) | Far infrared optical antireflection hard film for mould pressing aspheric lens | |
US20180113238A1 (en) | Optical product, plastic lens, and eye glasses | |
WO2019049471A1 (en) | Lens | |
JP2005173326A (en) | Plastic optical component | |
WO2018159335A1 (en) | Lens and method for manufacturing lens | |
JP2022097764A (en) | Optical sheet | |
US20140004277A1 (en) | Optical component and manufacaturing method thereof | |
JP2006195120A (en) | Optical member and photographic lens using the same | |
CN113031122A (en) | Optical lens with antireflection film, projection lens, and projection lens optical system | |
WO2024195654A1 (en) | Polyester film for battery current collector, film foil for battery current collector, and battery current collector | |
CN214623097U (en) | Waterproof antireflection film and lens | |
WO2020251060A1 (en) | Optical element | |
JP2019070704A (en) | Optical sheet | |
WO2015182551A1 (en) | Optical product, camera lens, and camera filter | |
EP4047412A1 (en) | Coated lens based on a lens substrate comprising different optical materials or a single optical material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18853254 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18853254 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |