JPH04366704A - Position detecting method and position detecting device using diffraction grating - Google Patents

Position detecting method and position detecting device using diffraction grating

Info

Publication number
JPH04366704A
JPH04366704A JP16915891A JP16915891A JPH04366704A JP H04366704 A JPH04366704 A JP H04366704A JP 16915891 A JP16915891 A JP 16915891A JP 16915891 A JP16915891 A JP 16915891A JP H04366704 A JPH04366704 A JP H04366704A
Authority
JP
Japan
Prior art keywords
diffraction grating
beat signal
heterodyne interference
optical heterodyne
monochromatic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16915891A
Other languages
Japanese (ja)
Other versions
JP2928834B2 (en
Inventor
Atsunobu Une
宇根 篤▲暢▼
Masanori Suzuki
雅則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16915891A priority Critical patent/JP2928834B2/en
Publication of JPH04366704A publication Critical patent/JPH04366704A/en
Application granted granted Critical
Publication of JP2928834B2 publication Critical patent/JP2928834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect an optical heterodyne interference beat signal from diffraction gratings at a high stability and at a high accuracy. CONSTITUTION:Single lights of three wavelengths of different frequencies each other are used, and the single lights are injected to diffraction gratings 7 and 6 formed on a wafer 8 and a mask 9 which are movable relatively, at the incident angles to obtain a composed diffracted light to detect the position slippage and the gap. By the diffraction gratings 7 and 6, beat signals for detecting the slippage and the gap with different frequencies are separated and produced by frequency selection circuits 44 and 45, from two sets of optical heterodyne interference lights obtained by diffracting and composing the single lights of two wavelengths, an optical heterodyne interference beat signal produced by using either one grating by a signal process controller 19 is made as a standard beat signal, and by calculating the phase difference with one side optical heterodyne interference beat signal, the relative position slippage amount between the two gratings 6 and 7 is detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体ICやLSIを
製造するための露光装置やパタン評価装置等において適
用される位置検出方法および位置検出装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detection method and a position detection apparatus used in exposure apparatuses, pattern evaluation apparatuses, etc. for manufacturing semiconductor ICs and LSIs.

【0002】0002

【従来の技術】近年、半導体ICやLSIの微細化に伴
い、サブミクロンパタンを生産性良く転写できる装置と
してX線露光装置の開発が進められているが、X線露光
装置では、マスクとウエハとをマスク面・ウエハ面に平
行な面内において高精度に位置合わせをするとともに上
記マスク面・ウエハ面の法線方向の位置関係、つまりマ
スクとウエハ間のギャップをも所定の値に設定する技術
の確立が不可欠となっている。特に発散X線源を用いる
場合には、高精度のギャップ設定が必要である。従来、
この種の位置合わせを行う方法としては、第34回応用
物理学関係連合講演会講演予稿集,p.396(198
7)で紹介されている回折格子を用いた高精度,高安定
な位置検出が可能な光ヘテロダイン干渉法がある。
[Prior Art] In recent years, with the miniaturization of semiconductor ICs and LSIs, the development of X-ray exposure equipment is progressing as a device that can transfer submicron patterns with high productivity. and are aligned with high precision in a plane parallel to the mask surface and wafer surface, and the positional relationship in the normal direction of the mask surface and wafer surface, that is, the gap between the mask and wafer, is also set to a predetermined value. Establishment of technology is essential. Particularly when using a divergent X-ray source, highly accurate gap setting is required. Conventionally,
A method for performing this type of alignment is described in the Proceedings of the 34th Applied Physics Association Conference, p. 396 (198
There is an optical heterodyne interferometry method that uses a diffraction grating and is capable of highly accurate and highly stable position detection, as introduced in 7).

【0003】図2にこのような位相差信号を用いて位置
合わせする装置の一例を示す。図において、2波長直交
偏光レーザー光源1から発したレーザー光は、円筒レン
ズ2を通して楕円状のビームとなり、そのビームは、偏
光ビームスプリッター3によりそれぞれ水平成分(p偏
光成分)または垂直成分(s偏光成分)のみを有する直
接偏光でしかも周波数が僅かに異なる2波長の光に分離
される。このうちp偏光成分は、平面ミラー4a,4b
を介し、入射光5として反射形回折格子6,7に回折格
子面に垂直な法線方向(Z方向)に対して1次回折角の
方向からそれぞれ入射する。なお、ウエハ8に設けた回
折格子7に対しては、マスク9に設けた窓10を通して
入射する。他方、s偏光成分は、ビームスプリッター1
1により分光され、その一方は平面ミラー4cを介して
入射光12としてZ方向に対して入射光5と左右対称の
1次回折角の方向から、また、他方は平面ミラー4d,
4eを介して入射光13としてZ方向に対して入射光5
と同じ側の3次回折角の方向からそれぞれ反射形回折格
子6,7に入射する。回折格子7に対しては、窓10を
通して入射することは、入射光5と同様である。
FIG. 2 shows an example of an apparatus for positioning using such a phase difference signal. In the figure, laser light emitted from a two-wavelength orthogonally polarized laser light source 1 passes through a cylindrical lens 2 and becomes an elliptical beam.The beam is divided into a horizontal component (p-polarized light component) or a vertical component (s-polarized light component) by a polarizing beam splitter 3, respectively. Directly polarized light having only one component) is separated into two wavelengths with slightly different frequencies. Of these, the p-polarized light component is the plane mirror 4a, 4b.
The incident light 5 enters the reflective diffraction gratings 6 and 7 from the direction of the first-order diffraction angle with respect to the normal direction (Z direction) perpendicular to the diffraction grating surface. Note that the light enters the diffraction grating 7 provided on the wafer 8 through a window 10 provided in the mask 9 . On the other hand, the s-polarized component is transmitted through beam splitter 1
1, one of which passes through a plane mirror 4c as incident light 12 from the direction of the first-order diffraction angle that is bilaterally symmetrical to the incident light 5 with respect to the Z direction, and the other passes through a plane mirror 4d,
Incident light 5 in the Z direction as incident light 13 through 4e
The light enters the reflective diffraction gratings 6 and 7 from the direction of the third-order diffraction angle on the same side. The incident light 5 enters the diffraction grating 7 through the window 10 in the same way as the incident light 5.

【0004】2つの反射形回折格子6,7は、それぞれ
その格子ライン方向(Y方向)にずれており、しかも2
波長の各入射光の同一楕円ビームスポット内に配置され
ている。また、両回折格子6,7の回折格子ピッチは互
いに等しく設定されている。
The two reflective diffraction gratings 6 and 7 are offset in the grating line direction (Y direction), and
Each wavelength of incident light is placed within the same elliptical beam spot. Further, the diffraction grating pitches of both the diffraction gratings 6 and 7 are set to be equal to each other.

【0005】入射光5、12により、第1の回折格子6
からZ方向に得られる合成回折光、つまり第1の回折格
子6による入射光5の−1次回折光と、入射光12の−
1次回折光との合成回折光14aと、第2の回折格子7
から同様にZ方向に得られ、窓10を介して取り出され
る合成回折光、つまり第2の回折格子7による入射光5
の−1次回折光と、入射光12の−1次回折光との合成
回折光14bとは、平面ミラー4fにより方向を変えら
れた後、プリズム状ミラー15aにより分離される。そ
のうち、合成回折光14aの側は、偏光板16a,集光
レンズ17aを介して光検出器18aで検出され、第1
の光ヘテロダイン干渉ビート信号として信号処理制御部
19に入力される。他方、合成回折光14bの側は、偏
光板16b,集光レンズ17bを介して光検出器18b
で検出され、第3の光ヘテロダイン干渉ビート信号とし
て信号処理制御部19に入力される。
The incident light beams 5 and 12 cause the first diffraction grating 6 to
The combined diffracted light obtained in the Z direction from
Combined diffracted light 14a with the first-order diffracted light and second diffraction grating 7
The composite diffracted light obtained in the Z direction from
The composite diffracted light 14b of the −1st-order diffracted light of the incident light 12 and the −1st-order diffracted light of the incident light 12 is separated by the prismatic mirror 15a after its direction is changed by the plane mirror 4f. Among them, the side of the combined diffracted light 14a is detected by the photodetector 18a via the polarizing plate 16a and the condensing lens 17a, and is detected by the photodetector 18a.
is input to the signal processing control unit 19 as an optical heterodyne interference beat signal. On the other hand, the side of the combined diffracted light 14b is connected to a photodetector 18b via a polarizing plate 16b and a condensing lens 17b.
and is input to the signal processing control section 19 as a third optical heterodyne interference beat signal.

【0006】入射光5,13により、第1の回折格子6
からZ方向に対し2次回折角の方向に得られる合成回折
光、つまり第1の回折格子6による入射光5の+1次回
折光と、入射光13の−1次回折光との合成回折光20
aと、第2の回折格子7から同様に2次回折角の方向に
得られ、窓10を介して取り出される合成回折光、つま
り第2の回折格子7による入射光5の+1次回折光と、
入射光13の−1次回折光との合成回折光20bとは、
平面ミラー4gにより方向を変えられた後、プリズム状
ミラー15bにより分離される。そのうち、合成回折光
20aの側は、偏光板16c,集光レンズ17cを介し
て光検出器18cで検出され、第2の光ヘテロダイン干
渉ビート信号として信号処理制御部19に入力される。 他方、合成回折光20bの側は、偏光板16d,集光レ
ンズ17dを介して光検出器18dで検出され、第4の
光ヘテロダイン干渉ビート信号として信号処理制御部1
9に入力される。
The incident light beams 5 and 13 cause the first diffraction grating 6 to
A composite diffracted light 20 obtained in the direction of the second-order diffraction angle with respect to the Z direction, that is, a composite diffracted light 20 of the +1st-order diffracted light of the incident light 5 by the first diffraction grating 6 and the −1st-order diffracted light of the incident light 13
a, the combined diffracted light similarly obtained from the second diffraction grating 7 in the direction of the second-order diffraction angle and taken out through the window 10, that is, the +1st-order diffracted light of the incident light 5 by the second diffraction grating 7,
The combined diffracted light 20b with the −1st-order diffracted light of the incident light 13 is
After the direction is changed by the plane mirror 4g, it is separated by the prismatic mirror 15b. Of these, the side of the combined diffracted light 20a is detected by the photodetector 18c via the polarizing plate 16c and the condensing lens 17c, and is input to the signal processing control unit 19 as a second optical heterodyne interference beat signal. On the other hand, the side of the combined diffracted light 20b is detected by the photodetector 18d via the polarizing plate 16d and the condensing lens 17d, and is sent to the signal processing controller 1 as a fourth optical heterodyne interference beat signal.
9 is input.

【0007】信号処理制御部19では、第1の光ヘテロ
ダイン干渉ビート信号と第3の光ヘテロダイン干渉ビー
ト信号との位相差を求める。この位相差Δφxは、回折
格子の格子面内で格子ライン方向(Y方向)に直交する
方向(X方向)についての第1の回折格子6と第2の回
折格子7との相対的位置ずれ量Δxに対応し、    
Δφx=360・Δx/(P/2)  ・・・・・・・
・・・・・・・(1)の関係にある。ここでPは回折格
子ピッチである。したがってこの位相差が零となるよう
にマスク9を載置したマスクステージ21またはウエハ
8を載置したウエハステージ22をX方向に移動させる
ことにより、マスク面上のパタンをウエハ面上の所定の
位置に位置合わせすることができる。
The signal processing control section 19 determines the phase difference between the first optical heterodyne interference beat signal and the third optical heterodyne interference beat signal. This phase difference Δφx is the amount of relative positional deviation between the first diffraction grating 6 and the second diffraction grating 7 in the direction (X direction) orthogonal to the grating line direction (Y direction) within the grating plane of the diffraction grating. Corresponding to Δx,
Δφx=360・Δx/(P/2) ・・・・・・・・・
......The relationship is as shown in (1). Here, P is the diffraction grating pitch. Therefore, by moving the mask stage 21 on which the mask 9 is placed or the wafer stage 22 on which the wafer 8 is placed in the X direction so that this phase difference becomes zero, the pattern on the mask surface can be moved to a predetermined position on the wafer surface. It can be aligned to the position.

【0008】また、信号処理制御部19は、第2の光ヘ
テロダイン干渉ビート信号と第4の光ヘテロダイン干渉
ビート信号との位相差Δφxzを求め、これと上述した
第1の光ヘテロダイン干渉ビート信号と第3の光ヘテロ
ダイン干渉ビート信号との位相差Δφxとを加算処理す
る。この加算信号Δφzは、回折格子の格子面の法線方
向(Z方向)の第1の回折格子6と第2の回折格子7と
のギャップΔzに対応し、     Δφz=Δφx+Δφxz           =360・Δz・(COSθ3−
COSθ1)/λ  ・・・・・・・・(2)の関係に
ある。ここで、θ1は第1次回折角,θ3は第3次回折
角、λはレーザー光の波長である。したがってこの位相
差信号Δφzが零となるようにマスクステージ21また
はウエハステージ22をZ方向に移動させることにより
、ギャップを所定の値に設定できる。
[0008] Furthermore, the signal processing control unit 19 determines the phase difference Δφxz between the second optical heterodyne interference beat signal and the fourth optical heterodyne interference beat signal, and calculates the phase difference Δφxz between this and the above-mentioned first optical heterodyne interference beat signal. The phase difference Δφx with the third optical heterodyne interference beat signal is added. This addition signal Δφz corresponds to the gap Δz between the first diffraction grating 6 and the second diffraction grating 7 in the normal direction (Z direction) of the grating plane of the diffraction grating, and is expressed as Δφz=Δφx+Δφxz =360・Δz・( COSθ3-
COS θ1)/λ...The relationship is as shown in (2). Here, θ1 is the first-order diffraction angle, θ3 is the third-order diffraction angle, and λ is the wavelength of the laser beam. Therefore, by moving the mask stage 21 or wafer stage 22 in the Z direction so that this phase difference signal Δφz becomes zero, the gap can be set to a predetermined value.

【0009】ところが、上記位置合わせ光学系において
、相対位置ずれ量検出光学系とギャップ検出光学系とは
、互いに光学系の一部を共用しているため、相対位置ず
れ量検出およびギャップ検出用光ヘテロダイン干渉光に
それぞれ不要な回折光が混入し、検出精度を劣化させる
という問題がある。これに関して図3を用いて説明する
However, in the above alignment optical system, the relative positional deviation amount detection optical system and the gap detection optical system share a part of the optical system with each other, so that the relative positional deviation amount detection and gap detection optical systems are There is a problem in that unnecessary diffracted light is mixed into the heterodyne interference light, degrading detection accuracy. This will be explained using FIG. 3.

【0010】図3は、図2のマスク回折格子6の部分に
おける入射光ならびに回折光を詳細に示した図である。 図3より、入射光5および入射光12から得られる相対
位置ずれ量検出用の−1次回折光の光ヘテロダイン干渉
光14aには、入射光13の−3次回折光25bが重な
り、不要の干渉を生ぜしめる。一方、入射光5および入
射光13から得られるギャップ検出用の±1次回折光の
光ヘテロダイン干渉光20aには、同様に入射光12の
−3次回折光25aが重なり、不要の干渉を生ぜしめる
。一般に回折光の光強度は、1次回折光の方が3次回折
光よりも十分強いと考えられため、光ヘテロダイン干渉
光14a,20aには、ほとんど3次回折光の影響は寄
与しない。
FIG. 3 is a diagram showing in detail the incident light and the diffracted light at the mask diffraction grating 6 in FIG. 2. In FIG. From FIG. 3, the -3rd order diffracted light 25b of the incident light 13 overlaps with the optical heterodyne interference light 14a of the -1st order diffracted light for detecting the amount of relative positional deviation obtained from the incident light 5 and the incident light 12, causing unnecessary interference. bring about. On the other hand, the optical heterodyne interference light 20a of the ±1st order diffracted light for gap detection obtained from the incident light 5 and the incident light 13 is similarly overlapped with the -3rd order diffracted light 25a of the incident light 12, causing unnecessary interference. Generally, it is considered that the light intensity of the first-order diffracted light is sufficiently stronger than that of the third-order diffracted light, so that the influence of the third-order diffracted light hardly contributes to the optical heterodyne interference lights 14a and 20a.

【0011】[0011]

【発明が解決しようとする課題】ところが、前述した図
2のウエハ上の回折格子7のように回折格子上にLSI
パタン形成用のプロセス層、例えばAl配線層,SiO
2絶縁層,レジスト層等が堆積し、回折格子7の開口比
(回折格子ピッチに対する格子ライン幅の比)が変わる
と、1次回折光の強度と3次回折光の強度とが余り変わ
らない条件が現れる。すなわち3次回折光は、3次回折
光と同じ波長(あるいは 周波数)の1次回折光と干渉
し、ビート信号の振幅変動となって検出信号に影響をも
たらす。さらに3次回折光と異なる波長(あるいは 周
波数)の1次回折光とは、光ヘテロダイン干渉し、所望
の光ヘテロダイン干渉光とは周期の異なる信号を発生す
る。したがって法線方向および2次回折角方向に出射す
る光ヘテロダイン干渉光は、これらの影響が重なる合っ
て回折格子の微小変位に対して非線形に変化する位相差
信号となり、高精度の位置合わせが困難となる。また、
3次回折光の強度の程度によっては、所望の光ヘテロダ
イン干渉信号が全く検出できないという問題があった。
However, as shown in the above-mentioned diffraction grating 7 on the wafer in FIG.
Process layer for pattern formation, e.g. Al wiring layer, SiO
When the second insulating layer, resist layer, etc. are deposited and the aperture ratio of the diffraction grating 7 (the ratio of the grating line width to the diffraction grating pitch) changes, there is a condition in which the intensity of the first-order diffracted light and the intensity of the third-order diffracted light do not change much. appear. That is, the third-order diffracted light interferes with the first-order diffracted light having the same wavelength (or frequency) as the third-order diffracted light, resulting in amplitude fluctuations of the beat signal and affecting the detection signal. Further, the first-order diffracted light having a different wavelength (or frequency) from the third-order diffracted light undergoes optical heterodyne interference, generating a signal having a period different from that of the desired optical heterodyne interference light. Therefore, the optical heterodyne interference light emitted in the normal direction and the second-order diffraction angle direction becomes a phase difference signal that changes nonlinearly with respect to minute displacements of the diffraction grating due to the combination of these effects, making highly accurate alignment difficult. Become. Also,
There is a problem in that a desired optical heterodyne interference signal cannot be detected at all depending on the intensity of the third-order diffracted light.

【0012】したがって本発明は前述した従来の課題を
解決するためになされたものであり、その目的は、回折
格子からの光ヘテロダイン干渉ビート信号を高安定性,
高精度で検出できるようにした位置検出方法および位置
検出装置を提供することにある。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and its purpose is to convert optical heterodyne interference beat signals from a diffraction grating into highly stable and
An object of the present invention is to provide a position detection method and a position detection device that enable highly accurate detection.

【0013】[0013]

【課題を解決するための手段】このような目的を達成す
るために本発明による位置検出方法は、周波数が互いに
異なる3波長の単色光を用い、各単色光を位置ずれおよ
びギャップ検出のための合成回折光の得られる入射角度
で相対的に移動可能な2つの物体上に固定あるいは 形
成した2つの回折格子へ入射し、前記回折格子によって
2波長の単色光を回折・合成して得られる2組の光ヘテ
ロダイン干渉光から周波数の異なる位置ずれおよびギャ
ップ検出用ビート信号を周波数選別回路により分離・生
成し、いずれか一方の回折格子を用いて生成された光ヘ
テロダイン干渉ビート信号を基準ビート信号とし、もう
一方の光ヘテロダイン干渉ビート信号との位相差を算出
する方法によって2つの回折格子間の相対的位置ずれ量
を検出するようにしたものである。また、本発明による
位置検出装置は、相対的に移動可能な2つの物体と、こ
の2つの物体上に固定あるいは形成した2つの回折格子
と、周波数が互いに異なる3波長の単色光を発生する光
源と、前記回折格子に前記光源から発せられた3波長の
単色光を位置ずれおよびギャップ検出のための合成回折
光の得られる方向から入射させる入射角調整手段と、前
記回折格子によって2波長の単色光を回折・合成して得
られる2組の光ヘテロダイン干渉光から周波数の異なる
位置ずれおよびギャップ検出用ビート信号を生成する光
検出手段と、光検出手段によって生成されたこれらの光
ヘテロダイン干渉ビート信号から所望のビート信号を分
離・生成する周波数選別回路と、いずれか一方の回折格
子を用いて生成された光ヘテロダイン干渉ビート信号を
基準ビート信号としもう一方の光ヘテロダイン干渉ビー
ト信号との位相差を算出処理する信号処理装置とからな
り、2つの回折格子間の相対的位置ずれ量を検出するよ
うにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the position detection method according to the present invention uses monochromatic light of three wavelengths having different frequencies, and uses each monochromatic light to detect positional deviation and gaps. The synthesized diffracted light is incident on two diffraction gratings fixed or formed on two relatively movable objects at an incident angle to obtain the synthesized diffracted light, and the monochromatic light of two wavelengths is diffracted and synthesized by the diffraction gratings. A frequency selection circuit separates and generates beat signals for position shift and gap detection with different frequencies from the optical heterodyne interference light of the pair, and the optical heterodyne interference beat signal generated using one of the diffraction gratings is used as a reference beat signal. , the amount of relative positional shift between two diffraction gratings is detected by a method of calculating the phase difference with the other optical heterodyne interference beat signal. Further, the position detection device according to the present invention includes two relatively movable objects, two diffraction gratings fixed or formed on these two objects, and a light source that generates monochromatic light of three wavelengths with different frequencies. and an incident angle adjustment means for causing monochromatic light of three wavelengths emitted from the light source to enter the diffraction grating from a direction in which a synthesized diffracted light for position shift and gap detection is obtained; A photodetector that generates beat signals for position shift and gap detection with different frequencies from two sets of optical heterodyne interference lights obtained by diffracting and combining light, and these optical heterodyne interference beat signals generated by the photodetector. A frequency selection circuit that separates and generates a desired beat signal from the optical heterodyne interference beat signal from one of the diffraction gratings is used as a reference beat signal, and the phase difference between the optical heterodyne interference beat signal and the other optical heterodyne interference beat signal is determined. It consists of a signal processing device that performs calculation processing, and is configured to detect the amount of relative positional deviation between two diffraction gratings.

【0014】[0014]

【作用】本発明においては、3波長のビームを回折格子
に入射したとき、回折格子から射出する回折光から生成
されるビート信号のうち、不要のビート信号と、所望の
ビート信号を周波数選別回路により分離することによっ
て高次の回折光等に起因する検出信号の不安定を完全に
除去することができるので、高安定性,高精度な相対的
位置ずれ量を検出できる。
[Operation] In the present invention, when a beam of three wavelengths is incident on a diffraction grating, out of the beat signals generated from the diffracted light emitted from the diffraction grating, an unnecessary beat signal and a desired beat signal are selected by a frequency screening circuit. Since the instability of the detection signal caused by high-order diffracted light can be completely removed by separating the signals, it is possible to detect the amount of relative positional deviation with high stability and high accuracy.

【0015】[0015]

【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。図1は、本発明に係わる位置検出装置の一実
施例を示すものである。同図において、僅かに周波数が
異なる3波長の直線偏光レーザー光を出射する光源40
から発した3本の楕円状ビーム41,42,43のうち
、ビーム41は、平面ミラー4a,4bを介し、入射光
5として反射形回折格子6,7に、回折格子面に垂直な
法線方向(Z方向)に対して1次回折角の方向からそれ
ぞれ入射する。なお、ウエハ8に設けた回折格子7に対
しては、マスク9に設けた窓10を通して入射する。 ビーム43は、平面ミラー4d,4eを介して入射光1
3としてZ方向に対して入射光5と同じ側の3次回折角
の方向から、また、ビーム42は、平面ミラー4h,4
cを介して入射光12としてZ方向に対して入射光5と
左右対称の1次回折角の方向から、それぞれ反射形回折
格子6,7に入射する。回折格子7に対しては、窓10
を通して入射することは、入射光5と同様である。
Embodiments Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings. FIG. 1 shows an embodiment of a position detection device according to the present invention. In the figure, a light source 40 that emits linearly polarized laser light of three wavelengths with slightly different frequencies
Of the three elliptical beams 41, 42, 43 emitted from the plane, the beam 41 passes through the plane mirrors 4a, 4b, and enters the reflective diffraction gratings 6, 7 as incident light 5 with a normal line perpendicular to the diffraction grating surface. The light is incident from the direction of the first-order diffraction angle with respect to the direction (Z direction). Note that the light enters the diffraction grating 7 provided on the wafer 8 through a window 10 provided in the mask 9 . The beam 43 passes through the plane mirrors 4d and 4e to the incident light 1.
3, the beam 42 is directed from the direction of the third-order diffraction angle on the same side as the incident light 5 with respect to the Z direction.
The incident light 12 enters the reflective diffraction gratings 6 and 7 from the direction of the first-order diffraction angle that is bilaterally symmetrical to the incident light 5 with respect to the Z direction. For the diffraction grating 7, the window 10
The incident light is similar to the incident light 5.

【0016】2つの反射形回折格子6,7は、互いに格
子ライン方向(Y方向)にずれており、しかも2波長の
各入射光の同一楕円ビームスポット内に配置されている
。また、両回折格子6,7の回折格子ピッチは互いに等
しく設定されている。
The two reflective diffraction gratings 6 and 7 are offset from each other in the grating line direction (Y direction) and are arranged within the same elliptical beam spot of each incident light beam of two wavelengths. Further, the diffraction grating pitches of both the diffraction gratings 6 and 7 are set to be equal to each other.

【0017】入射光5,12により、第1の回折格子6
からZ方向に得られる合成回折光、つまり第1の回折格
子6による入射光5の−1次回折光と、入射光12の−
1次回折光との合成回折光14aと、第2の回折格子7
から同様にZ方向に得られ、窓10を介して取り出され
る合成回折光、つまり第2の回折格子7による入射光5
の−1次回折光と、入射光12の−1次回折光との合成
回折光14bとは、平面ミラー4fにより方向を変えら
れた後、プリズム状ミラー15aにより分離される。そ
のうち、合成回折光14aの側は、集光レンズ17aを
介して光検出器18aで検出され、第1の周波数選別回
路44に送られ、不要のビート信号が分離されて第1の
光ヘテロダイン干渉ビート信号として所望のビート信号
のみが信号処理制御回路19に入力される。他方、合成
回折光14bの側は、集光レンズ17bを介して光検出
器18bで検出され、第1の周波数選別回路44に送ら
れ、不要のビート信号が分離されて第3の光ヘテロダイ
ン干渉ビート信号として所望のビート信号のみが信号処
理制御部19に入力される。
The incident light beams 5 and 12 cause the first diffraction grating 6 to
The combined diffracted light obtained in the Z direction from
Combined diffracted light 14a with the first-order diffracted light and second diffraction grating 7
The composite diffracted light obtained in the Z direction from
The composite diffracted light 14b of the −1st-order diffracted light of the incident light 12 and the −1st-order diffracted light of the incident light 12 is separated by the prismatic mirror 15a after its direction is changed by the plane mirror 4f. Among them, the side of the synthesized diffracted light 14a is detected by the photodetector 18a via the condensing lens 17a, and sent to the first frequency selection circuit 44, where unnecessary beat signals are separated and the first optical heterodyne interference is generated. Only a desired beat signal is input to the signal processing control circuit 19 as a beat signal. On the other hand, the side of the synthesized diffracted light 14b is detected by the photodetector 18b via the condensing lens 17b, and sent to the first frequency selection circuit 44, where unnecessary beat signals are separated and the third optical heterodyne interference is generated. Only a desired beat signal is input to the signal processing control section 19 as a beat signal.

【0018】一方、入射光5,13により、第1の回折
格子6からZ方向に対して2次回折角の方向に得られる
合成回折光、つまり第1の回折格子6による入射光5の
+1次回折光と、入射光13の−1次回折光との合成回
折光20aと、第2の回折格子7から同様に2次回折角
の方向に得られ、窓10を介して取り出される合成回折
光、つまり第2の回折格子7による入射光5の+1次回
折光と、入射光13の−1次回折光との合成回折光20
bとは、平面ミラー4gにより方向を変えられた後、プ
リズム状ミラー15bにより分離される。そのうち、合
成回折光20aの側は、集光レンズ17cを介して光検
出器18cで検出され、第2の周波数選別回路45に送
られ、不要のビート信号が分離されて第2の光ヘテロダ
イン干渉ビート信号として所望のビート信号のみが信号
処理制御部19に入力される。他方、合成回折光20b
の側は、集光レンズ17dを介して光検出器18dで検
出され、第2の周波数選別回路45に送られ、不要のビ
ート信号が分離されて第4の光ヘテロダイン干渉ビート
信号として所望のビート信号のみが信号処理制御部19
に入力される。
On the other hand, the combined diffracted light obtained from the first diffraction grating 6 in the direction of the second-order diffraction angle with respect to the Z direction by the incident lights 5 and 13, that is, the +1st order of the incident light 5 by the first diffraction grating 6. A composite diffracted light 20a of the diffracted light and the −1st-order diffracted light of the incident light 13, and a composite diffracted light 20a similarly obtained from the second diffraction grating 7 in the direction of the second-order diffraction angle and taken out through the window 10, that is, the Synthetic diffracted light 20 of the +1st-order diffracted light of the incident light 5 and the -1st-order diffracted light of the incident light 13 by the diffraction grating 7 of No. 2
b is separated by a prismatic mirror 15b after its direction is changed by a plane mirror 4g. Among them, the combined diffracted light 20a side is detected by the photodetector 18c via the condensing lens 17c, and sent to the second frequency selection circuit 45, where unnecessary beat signals are separated and the second optical heterodyne interference is generated. Only a desired beat signal is input to the signal processing control section 19 as a beat signal. On the other hand, the combined diffracted light 20b
side is detected by a photodetector 18d via a condensing lens 17d and sent to a second frequency selection circuit 45, where unnecessary beat signals are separated and a desired beat signal is generated as a fourth optical heterodyne interference beat signal. Only the signal is processed by the signal processing control section 19
is input.

【0019】信号処理制御部19では、第1の光ヘテロ
ダイン干渉ビート信号と第3の光ヘテロダイン干渉ビー
ト信号との位相差Δφxならびに第2の光ヘテロダイン
干渉ビート信号と第4の光ヘテロダイン干渉ビート信号
との位相差Δφxzとを検出する。このΔφxとΔxと
の関係あるいは ΔφxzとΔzとの関係については、
前述した式(1),(2)と同じ関係が成立する。
In the signal processing control unit 19, the phase difference Δφx between the first optical heterodyne interference beat signal and the third optical heterodyne interference beat signal and the second optical heterodyne interference beat signal and the fourth optical heterodyne interference beat signal are determined. Detects the phase difference Δφxz. Regarding the relationship between Δφx and Δx or the relationship between Δφxz and Δz,
The same relationship as the above-mentioned equations (1) and (2) holds true.

【0020】上記実施例において、3波長の単色光光源
40としては、周波数安定化He−Neレーザー光源と
ブラッグセル等の音響光学素子3個を組み合わせて僅か
に周波数の異なる3本のビームを生成し、円筒レンズに
よりビームを楕円ビームにしたものを用いた。ブラッグ
セルによりビーム41の周波数をf0+f1に、ビーム
42の周波数をf0+f2に、ビーム43の周波数をf
0+f3にそれぞれ変換すると、ビーム41とビーム4
2による合成回折光のビート周波数はΔfa=f1−f
2,ビーム41とビーム43による合成回折光のビート
周波数はΔfb=f1−f3と異なる2つのビート周波
数を得ることができる。前者のビート周波数Δfaの信
号が位置ずれ検出に、後者のビート周波数fbの信号が
ギャップ検出にそれぞれ用いられる。
In the above embodiment, the three-wavelength monochromatic light source 40 is a combination of a frequency-stabilized He-Ne laser light source and three acousto-optic elements such as Bragg cells to generate three beams with slightly different frequencies. , the beam was made into an elliptical beam using a cylindrical lens. The Bragg cell sets the frequency of beam 41 to f0+f1, the frequency of beam 42 to f0+f2, and the frequency of beam 43 to f
When converted to 0+f3, beam 41 and beam 4
The beat frequency of the synthesized diffracted light by 2 is Δfa=f1-f
2. The beat frequency of the combined diffracted light by beam 41 and beam 43 can obtain two different beat frequencies as Δfb=f1−f3. The former signal with the beat frequency Δfa is used for positional deviation detection, and the latter signal with the beat frequency fb is used for gap detection.

【0021】前者の位置ずれ検出信号には、前述したよ
うにビーム43が回折格子によって回折した−3次回折
光がビーム41とビーム42による−1次回折光と干渉
して生じる不要なビート信号が含まれる。これらの不要
なビート信号の周波数は、それぞれΔfb=f1−f3
,Δfd=f2−f3となり、位置ずれ信号のビート周
波数Δfaと異なる。したがって周波数選別回路44に
より容易に位置ずれ検出信号のみを抽出することが可能
となり、真の信号である第1のビート信号および第3の
ビート信号のみを信号処理制御部19に送ることができ
る。 同様に後者のギャップ検出信号にも、ビーム42が回折
格子によって回折した−3次回折光がビーム41とビー
ム43による−1次回折光と干渉して生じる不要なビー
ト信号が含まれる。これらの不要なビート信号の周波数
は、それぞれΔfa=f1−f2,Δfd=f2−f3
となり、ギャップ信号のビート周波数Δfbとは異なる
。したがって周波数選別回路45により容易にギャップ
検出信号のみを抽出することが可能となり、真の信号で
ある第2のビート信号および第4のビート信号のみを信
号処理制御部19に送ることができる。
The former positional deviation detection signal includes an unnecessary beat signal generated when the −3rd-order diffracted light of the beam 43 diffracted by the diffraction grating interferes with the −1st-order diffracted light of the beams 41 and 42, as described above. It will be done. The frequencies of these unnecessary beat signals are respectively Δfb=f1-f3
, Δfd=f2−f3, which is different from the beat frequency Δfa of the positional deviation signal. Therefore, the frequency screening circuit 44 can easily extract only the positional deviation detection signal, and only the first beat signal and the third beat signal, which are true signals, can be sent to the signal processing control section 19. Similarly, the latter gap detection signal also includes an unnecessary beat signal that is generated when -3rd-order diffracted light from the beam 42 diffracted by the diffraction grating interferes with -1st-order diffracted light from the beams 41 and 43. The frequencies of these unnecessary beat signals are Δfa=f1-f2, Δfd=f2-f3, respectively.
This is different from the beat frequency Δfb of the gap signal. Therefore, the frequency screening circuit 45 can easily extract only the gap detection signal, and only the second beat signal and the fourth beat signal, which are true signals, can be sent to the signal processing control section 19.

【0022】上記実施例の場合、周波数安定化光源40
としてHe−Neレーザーを用いた場合について説明し
たが、実願平2−115951号公報に示されるマルチ
チャンネル音響光学素子と、1990年度精密工学会春
季大会学術講演会論文集,p.429に示される周波数
を安定化した半導体レーザーとを組み合わせることによ
り、3波長単色光光源のコンパクト化が可能である。
In the above embodiment, the frequency stabilized light source 40
The case where a He-Ne laser is used has been explained, but the multichannel acousto-optic device shown in Utility Model Application No. 115951/1992 and the Proceedings of the 1990 Society for Precision Engineering Spring Conference, p. By combining it with a frequency-stabilized semiconductor laser shown in No. 429, it is possible to make a three-wavelength monochromatic light source compact.

【0023】また、回折格子への入射光の方向および回
折格子からの回折光の方向が回折格子面に垂直なXY平
面に含まれる例について説明したが、回折格子への入射
光の方向および回折格子からの回折光の方向として回折
格子面に垂直なXY平面に含まれない斜め入射および斜
め出射の2波長の回折光を光学的に合成して光ヘテロダ
イン干渉ビート信号を検出するようにしても同様の効果
を得ることができる。
[0023]Also, an example has been described in which the direction of light incident on the diffraction grating and the direction of diffracted light from the diffraction grating are included in the XY plane perpendicular to the plane of the diffraction grating. Even if the optical heterodyne interference beat signal is detected by optically combining two wavelengths of obliquely incident and obliquely output diffracted light that are not included in the XY plane perpendicular to the diffraction grating surface as the direction of the diffracted light from the grating. A similar effect can be obtained.

【0024】さらに本発明における回折格子としては、
吸収型回折格子,位相型回折格子のいずれを用いても良
く、また、バイナリー回折格子に限らず正弦波状回折格
子,フレーズ回折格子等種々の回折格子を用いることが
可能であり、透過型の他に反射型回折格子を用いること
も可能である。
Furthermore, the diffraction grating in the present invention includes:
Either an absorption type diffraction grating or a phase type diffraction grating may be used, and various types of diffraction gratings such as not only a binary diffraction grating but also a sine wave diffraction grating and a phrase diffraction grating can be used. It is also possible to use a reflection type diffraction grating.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、回
折格子に周波数が異なる3波長の単色光を入射し、回折
格子から生じる合成回折光を用いて生成した光ヘテロダ
イン干渉ビート信号から回折光同志の不要の干渉によっ
て生じるノイズとなるビート信号を周波数選別回路によ
って完全に取り除くことが可能であり、回折格子からの
光ヘテロダイン干渉ビート信号を高安定性,高精度に検
出できるという極めて優れた効果が得られる。
As explained above, according to the present invention, monochromatic light of three wavelengths with different frequencies is incident on a diffraction grating, and an optical heterodyne interference beat signal generated using the combined diffracted light generated from the diffraction grating is diffracted. It is possible to completely remove the beat signal, which is noise caused by unnecessary interference between light beams, using a frequency selection circuit, and is extremely superior in that it is possible to detect the optical heterodyne interference beat signal from the diffraction grating with high stability and high precision. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による位置検出装置の一実施例による構
成を示す図である。
FIG. 1 is a diagram showing the configuration of an embodiment of a position detection device according to the present invention.

【図2】従来の位置検出装置の構成を示す図である。FIG. 2 is a diagram showing the configuration of a conventional position detection device.

【図3】回折格子部への入射光,回折光の詳細を示す図
である。
FIG. 3 is a diagram showing details of incident light and diffracted light to a diffraction grating section.

【符号の説明】[Explanation of symbols]

1    2波長直交偏光レーザー光源2    円筒
レンズ 3    偏光ビームスプリッター 4a  平面ミラー 4b  平面ミラー 4c  平面ミラー 4d  平面ミラー 4e  平面ミラー 4f  平面ミラー 4g  平面ミラー 4h  平面ミラー 5    入射光 6    反射形回折格子 7    反射形回折格子 8    ウエハ 9    マスク 10    窓 11    ビームスプリッター 12    入射光 13    入射光 14a  合成回折光 14b  合成回折光 15a  プリズム状ミラー 15b  プリズム状ミラー 16a  偏光板 16b  偏光板 16c  偏光板 16d  偏光板 17a  集光レンズ 17b  集光レンズ 17c  集光レンズ 17d  集光レンズ 18a  光検出器 18b  光検出器 18c  光検出器 18d  光検出器 19    信号処理制御部 20a  合成回折光 20b  合成回折光 21    マスクステージ 22    ウエハステージ 23    マスク 24    不透明薄膜 25a  3次回折光 25b  3次回折光 40    3波長直線偏光レーザー光源41    
レーザービーム 42    レーザービーム 43    レーザービーム 44    周波数選別回路 45    周波数選別回路
1 Two-wavelength orthogonally polarized laser light source 2 Cylindrical lens 3 Polarizing beam splitter 4a Plane mirror 4b Plane mirror 4c Plane mirror 4d Plane mirror 4e Plane mirror 4f Plane mirror 4g Plane mirror 4h Plane mirror 5 Incident light 6 Reflection type diffraction grating 7 Reflection type diffraction Grating 8 Wafer 9 Mask 10 Window 11 Beam splitter 12 Incident light 13 Incident light 14a Combined diffracted light 14b Combined diffracted light 15a Prism mirror 15b Prism mirror 16a Polarizing plate 16b Polarizing plate 16c Polarizing plate 16d Polarizing plate 17a Condensing lens 17b Optical lens 17c Condensing lens 17d Condensing lens 18a Photodetector 18b Photodetector 18c Photodetector 18d Photodetector 19 Signal processing control section 20a Combined diffracted light 20b Combined diffracted light 21 Mask stage 22 Wafer stage 23 Mask 24 Opaque thin film 25a Third-order diffracted light 25b Third-order diffracted light 40 Three-wavelength linearly polarized laser light source 41
Laser beam 42 Laser beam 43 Laser beam 44 Frequency selection circuit 45 Frequency selection circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1の物体に設けた第1の回折格子お
よび第2の物体に設けた第1の回折格子と格子ラインの
平行な第2の回折格子のそれぞれに対して所定の周波数
を有する第1の単色光と、第1の単色光と周波数の異な
る第2の単色光を、回折格子に対して相互に対称な方向
から入射させるとともに第1の単色光および第2の単色
光と周波数の異なる第3の単色光を、第2の単色光と同
方向で回折格子に対して第1の単色光と非対称な方向か
ら入射させ、第1の回折格子および第2の回折格子によ
って第1の単色光および第2の単色光が回折・合成して
生じる2組の合成回折光を受光し、位置ずれ検出に必要
な第1の光ヘテロダイン干渉ビート信号および第3の光
ヘテロダイン干渉ビート信号のみを周波数選別回路によ
り抽出し、且つ第1の回折格子および第2の回折格子に
よって第2の単色光および第3の単色光が回折・合成し
て生じる2組の合成回折光を受光し、ギャップ検出に必
要な第1の光ヘテロダイン干渉ビート信号および第3の
光ヘテロダイン干渉ビート信号と周波数の異なる第2の
光ヘテロダイン干渉ビート信号および第4の光ヘテロダ
イン干渉ビート信号のみを周波数選別回路により抽出し
、第1の光ヘテロダイン干渉ビート信号および第3の光
ヘテロダイン干渉ビート信号間の位相差から第1の回折
格子および第2の回折格子の格子面に平行で格子ライン
に直交する方向の位置ずれ量を検出するとともに上記位
相差と、第2の光ヘテロダイン干渉ビート信号および第
4の光ヘテロダイン干渉ビート信号間の位相差とから第
1の回折格子および第2の回折格子の格子面法線方向の
ギャップを検出することを特徴とする回折格子による位
置検出方法。
Claim 1: A predetermined frequency is set for each of a first diffraction grating provided on a first object and a second diffraction grating provided on a second object whose grating lines are parallel to the first diffraction grating. A first monochromatic light having a different frequency from the first monochromatic light and a second monochromatic light having a different frequency from the first monochromatic light are incident on the diffraction grating from mutually symmetrical directions, and the first monochromatic light and the second monochromatic light A third monochromatic light having a different frequency is incident on the diffraction grating from a direction asymmetrical to the first monochromatic light in the same direction as the second monochromatic light, and A first optical heterodyne interference beat signal and a third optical heterodyne interference beat signal necessary for detecting positional deviation are received by receiving two sets of combined diffracted lights generated by diffraction and combination of the first monochromatic light and the second monochromatic light. a frequency selection circuit, and receive two sets of combined diffracted light generated by diffraction and combination of the second monochromatic light and the third monochromatic light by the first diffraction grating and the second diffraction grating, A frequency selection circuit extracts only a second optical heterodyne interference beat signal and a fourth optical heterodyne interference beat signal that have different frequencies from the first optical heterodyne interference beat signal and the third optical heterodyne interference beat signal necessary for gap detection. From the phase difference between the first optical heterodyne interference beat signal and the third optical heterodyne interference beat signal, a positional shift in the direction parallel to the grating plane and orthogonal to the grating line of the first diffraction grating and the second diffraction grating is determined. The normal direction of the grating surfaces of the first diffraction grating and the second diffraction grating is detected from the phase difference and the phase difference between the second optical heterodyne interference beat signal and the fourth optical heterodyne interference beat signal. A position detection method using a diffraction grating, which is characterized by detecting a gap between.
【請求項2】  周波数が互いに異なる第1の単色光,
第2の単色光および第3の単色光を出力する光源装置と
、第1の物体に設けられた第1の回折格子および第2の
物体に設けられた第2の回折格子に上記3つの単色光を
それぞれ所定の角度で入射させる入射角調整手段と、第
1の回折格子および第2の回折格子によって第1の単色
光および第2の単色光が回折・合成して生じる合成回折
光を光検出器まで導き第1の光ヘテロダイン干渉ビート
信号および第3の光ヘテロダイン干渉ビート信号を作る
第1の光検出手段および第3の光検出手段と、第1の回
折格子および第2の回折格子によって第2の単色光およ
び第3の単色光が回折・合成して生じる合成回折光を光
検出器まで導き第1の光ヘテロダイン干渉ビート信号お
よび第3の光ヘテロダイン干渉ビート信号と周波数の異
なる第2の光ヘテロダイン干渉ビート信号および第4の
光ヘテロダイン干渉ビート信号を作る第2の光検出手段
および第4の光検出手段と、第1の光検出手段および第
3の光検出手段により生成されたビート信号から所望の
ビート信号のみを抽出する第1の周波数選別回路と、第
2の光検出手段および第4の光検出手段により生成され
たビート信号から所望のビート信号のみを抽出する第2
の周波数選別回路と、第1の光ヘテロダイン干渉ビート
信号および第3の光ヘテロダイン干渉ビート信号間の位
相差信号から第1の回折格子および第2の回折格子の格
子面に平行で格子ラインに直交する方向の位置ずれ量を
算出し、且つ前記位相差信号ならびに第2の光ヘテロダ
イン干渉ビート信号および第4の光ヘテロダイン干渉ビ
ート信号間の位相差信号とから第1の回折格子および第
2の回折格子の格子面法線方向のギャップを算出する信
号処理手段とを少なくとも備えたことを特徴とする回折
格子による位置検出装置。
[Claim 2] First monochromatic light having mutually different frequencies;
a light source device that outputs a second monochromatic light and a third monochromatic light; a first diffraction grating provided on the first object and a second diffraction grating provided on the second object; The first monochromatic light and the second monochromatic light are diffracted and synthesized by an incident angle adjusting means for making each light incident at a predetermined angle, and a first diffraction grating and a second diffraction grating. a first optical detection means and a third optical detection means that are guided to a detector and produce a first optical heterodyne interference beat signal and a third optical heterodyne interference beat signal; and a first diffraction grating and a second diffraction grating. The second monochromatic light and the third monochromatic light are diffracted and synthesized to produce a combined diffracted light, which is then guided to a photodetector. a second optical detection means and a fourth optical detection means for producing an optical heterodyne interference beat signal and a fourth optical heterodyne interference beat signal, and a beat generated by the first optical detection means and the third optical detection means. a first frequency selection circuit that extracts only a desired beat signal from the signal; and a second frequency selection circuit that extracts only a desired beat signal from the beat signals generated by the second and fourth light detection means.
and a phase difference signal between the first optical heterodyne interference beat signal and the third optical heterodyne interference beat signal, which is parallel to the grating plane of the first diffraction grating and the second diffraction grating and perpendicular to the grating line. the first diffraction grating and the second diffraction grating from the phase difference signal and the phase difference signal between the second optical heterodyne interference beat signal and the fourth optical heterodyne interference beat signal. 1. A position detection device using a diffraction grating, comprising at least a signal processing means for calculating a gap in a direction normal to a grating surface of the grating.
JP16915891A 1991-06-14 1991-06-14 Position detecting method and position detecting device using diffraction grating Expired - Fee Related JP2928834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16915891A JP2928834B2 (en) 1991-06-14 1991-06-14 Position detecting method and position detecting device using diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16915891A JP2928834B2 (en) 1991-06-14 1991-06-14 Position detecting method and position detecting device using diffraction grating

Publications (2)

Publication Number Publication Date
JPH04366704A true JPH04366704A (en) 1992-12-18
JP2928834B2 JP2928834B2 (en) 1999-08-03

Family

ID=15881359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16915891A Expired - Fee Related JP2928834B2 (en) 1991-06-14 1991-06-14 Position detecting method and position detecting device using diffraction grating

Country Status (1)

Country Link
JP (1) JP2928834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745211A1 (en) * 1994-01-24 1996-12-04 Svg Lithography Systems, Inc. Grating-grating interferometric alignment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745211A1 (en) * 1994-01-24 1996-12-04 Svg Lithography Systems, Inc. Grating-grating interferometric alignment system
EP0745211A4 (en) * 1994-01-24 1997-02-05 Svg Lithography Systems Inc Grating-grating interferometric alignment system
EP1278104A1 (en) * 1994-01-24 2003-01-22 Svg Lithography Systems, Inc. Grating-grating interferometric alignment system

Also Published As

Publication number Publication date
JP2928834B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP2821073B2 (en) Gap control device and gap control method
EP0581118B1 (en) Light source for a heterodyne interferometer
US4710026A (en) Position detection apparatus
EP0309281B1 (en) Apparatus for controlling relation in position between a photomask and a wafer
JPH039403B2 (en)
JPS62172203A (en) Method for measuring relative displacement
US4895447A (en) Phase-sensitive interferometric mask-wafer alignment
US5448357A (en) Position detecting system for detecting a position of an object by detecting beat signals produced through interference of diffraction light
JPH0642918A (en) Aligning method and apparatus
JPH0749926B2 (en) Alignment method and alignment device
JP2928834B2 (en) Position detecting method and position detecting device using diffraction grating
JPH04361103A (en) Method and apparatus for detecting relative position
JPS5938521B2 (en) Micro displacement measurement and alignment equipment
JPS59163517A (en) Optical scale reader
JP2514699B2 (en) Position shift detection method and position shift detection device using diffraction grating
JP2773779B2 (en) Displacement measuring method and displacement measuring device using diffraction grating
JP2931082B2 (en) Method and apparatus for measuring small displacement
JPH0635927B2 (en) Position detecting method, apparatus therefor and position aligning apparatus
JPH01202602A (en) Position detecting method and apparatus with diffraction grating
JPS63172904A (en) Method and device for position detection by diffraction grating
JPH09138110A (en) Method and apparatus for position alignment using diffraction grating
JP3095036B2 (en) Method and apparatus for measuring displacement using diffraction grating
JP2677662B2 (en) Relative alignment method and device
JP2694045B2 (en) Positioning device using diffraction grating
JP3405480B2 (en) Positioning method and positioning apparatus using diffraction grating

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees