JPH04366391A - Loop type heat pipe - Google Patents

Loop type heat pipe

Info

Publication number
JPH04366391A
JPH04366391A JP16767191A JP16767191A JPH04366391A JP H04366391 A JPH04366391 A JP H04366391A JP 16767191 A JP16767191 A JP 16767191A JP 16767191 A JP16767191 A JP 16767191A JP H04366391 A JPH04366391 A JP H04366391A
Authority
JP
Japan
Prior art keywords
liquid
evaporation
pipe
tube
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16767191A
Other languages
Japanese (ja)
Other versions
JPH0731023B2 (en
Inventor
Masao Shiraishi
白石 正夫
Koichi Masuko
耕一 益子
Shotaro Yoshida
昭太郎 吉田
Masataka Mochizuki
正孝 望月
Yuji Saito
祐士 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fujikura Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP3167671A priority Critical patent/JPH0731023B2/en
Publication of JPH04366391A publication Critical patent/JPH04366391A/en
Publication of JPH0731023B2 publication Critical patent/JPH0731023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To effectively supply operation liquid to an evaporator even when flowing speed of vapor is fast. CONSTITUTION:A liquid return tube 14 in which many nozzle holes 16 for injecting operation liquid F to an inner periphery of an evaporating tube 12, are formed, is so provided near the inner periphery as to generate a vapor passage along an axial direction at the center of the tube 12 thereby to form a structure in which a jet flow (f) of the liquid F to be injected from the nozzles 16 is scarcely blown off by the evaporated vapor flow (v) of the liquid F. Thus, even if the flowing speed of the vapor is fast, the liquid F can be effectively supplied to an evaporator 12.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、蒸気流路と液流路と
が分離されたループ型ヒートパイプに関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a loop-type heat pipe in which a vapor flow path and a liquid flow path are separated.

【0002】0002

【従来の技術】周知のように蒸気流路と液流路とが分離
されたループ型ヒートパイプでは、例えば図3および図
4に示すように、外周に断熱被覆2の施された液戻り管
3が、蒸発管1の中心軸線に沿って配置されるとともに
、この液戻り管3の下部で前記蒸発管1内の蒸発部1a
と対向する部分には、外周の断熱被覆2を貫通して多数
のノズル孔4が放射方向に形成されている。
2. Description of the Related Art As is well known, in a loop heat pipe in which a vapor flow path and a liquid flow path are separated, for example, as shown in FIGS. 3 and 4, a liquid return pipe is provided with a heat insulating coating 2 on its outer circumference 3 is arranged along the central axis of the evaporation tube 1, and the evaporation section 1a in the evaporation tube 1 is located at the lower part of the liquid return tube 3.
A large number of nozzle holes 4 are formed in the radial direction in a portion facing the radial direction, penetrating the heat insulating coating 2 on the outer periphery.

【0003】この液戻り管3の多数のノズル孔4が形成
されている部分には、このループ型ヒートパイプの上部
の凝縮部(図示せず)において熱を奪われて液相に戻り
、液戻り管3内を流下した作動液Fが液溜りを形成し、
この液溜りの水頭圧によって各ノズル孔4から蒸発部1
aの内周面に向けて作動液Fが噴出するようになってい
る。
The portion of the liquid return pipe 3 where the many nozzle holes 4 are formed is heated by being removed from the condensation section (not shown) at the top of the loop heat pipe and returns to the liquid phase. The hydraulic fluid F flowing down inside the return pipe 3 forms a liquid pool,
The head pressure of this liquid pool causes the evaporator 1 to flow from each nozzle hole 4.
The hydraulic fluid F is spouted toward the inner circumferential surface of a.

【0004】したがって、この従来のループ型ヒートパ
イプは、液戻り管3内を還流してきた作動液Fがノズル
孔4からの噴出流fとなって蒸発部1aの内周面にコン
スタントに供給される。
[0004] Therefore, in this conventional loop-type heat pipe, the working fluid F that has been refluxed in the liquid return pipe 3 becomes a jet flow f from the nozzle hole 4 and is constantly supplied to the inner circumferential surface of the evaporating section 1a. Ru.

【0005】そして蒸発部1aで加熱された作動液Fは
蒸発し、作動液Fの蒸気流vとなって、蒸発管1の上部
の凝縮部へ移動し、凝縮部において放熱して凝縮し、再
び液相の作動液Fとなって液戻り管3内を流下し、その
下端に形成されたノズル孔4から蒸発部1aに還流する
。このとき、液戻り管3が断熱被覆されているため、作
動液Fが途中で蒸発することなく下部のノズル孔4が形
成されている部分まで流下する。
[0005]Then, the working fluid F heated in the evaporator section 1a evaporates, becomes a vapor flow v of the working fluid F, moves to the condensing section at the upper part of the evaporating tube 1, radiates heat in the condensing section, and condenses. The working fluid F becomes a liquid phase again, flows down inside the fluid return pipe 3, and returns to the evaporation section 1a through the nozzle hole 4 formed at its lower end. At this time, since the liquid return pipe 3 is coated with heat insulation, the working liquid F flows down to the lower part where the nozzle hole 4 is formed without evaporating on the way.

【0006】そして、このように蒸発部1aに入力され
た熱を、作動液Fの蒸気が蒸発潜熱の形で凝縮部へ熱輸
送する。
[0006]Then, the heat thus inputted into the evaporation section 1a is transferred by the vapor of the working fluid F to the condensation section in the form of latent heat of vaporization.

【0007】[0007]

【発明が解決しようとする課題】前述した従来のループ
型ヒートパイプにおいては、液戻り管3が蒸発管1の中
心軸線に沿って設けられているため、この液戻り管3の
下部から蒸発部1aの内周面に供給される作動液Fは、
液戻り管3に形成された各ノズル孔4から放射方向に噴
出することとなる。
[Problems to be Solved by the Invention] In the conventional loop heat pipe described above, the liquid return pipe 3 is provided along the central axis of the evaporation pipe 1. The hydraulic fluid F supplied to the inner peripheral surface of 1a is
The liquid is ejected in the radial direction from each nozzle hole 4 formed in the liquid return pipe 3.

【0008】したがって、蒸発部1aで加熱されて蒸発
した作動液Fの蒸気の流速が速くなると、ノズル孔4か
らの作動液Fの噴出流fが、蒸気流vによって飛散させ
られてしまい、蒸発部1aに対して作動液Fが充分に還
流しなくなり、熱輸送効率が低下するという問題があっ
た。
[0008] Therefore, when the flow velocity of the vapor of the working fluid F heated and evaporated in the evaporator 1a increases, the jet flow f of the working fluid F from the nozzle hole 4 is scattered by the vapor flow v, resulting in evaporation. There was a problem in that the working fluid F was not sufficiently refluxed to the portion 1a, resulting in a decrease in heat transport efficiency.

【0009】特に大口径、大容量のループ型ヒートパイ
プにおいては、ノズル孔4から蒸発部1aの内周面まで
の距離が長くなるため、噴出流fが蒸気流vの影響を受
け易く、蒸発部1aへの作動液4の供給量が不足し易い
という問題があった。
In particular, in a large-diameter, large-capacity loop-type heat pipe, the distance from the nozzle hole 4 to the inner circumferential surface of the evaporator section 1a is long, so the jet flow f is easily influenced by the vapor flow v, and the evaporation There has been a problem in that the amount of hydraulic fluid 4 supplied to section 1a tends to be insufficient.

【0010】この発明は、上記の事情に鑑みなされたも
ので、作動液の蒸気の流速が速い場合にも蒸発部へ作動
液を充分に還流させて、効率よく熱輸送させることがで
きるループ型ヒートパイプを提供することを目的とする
ものである。
The present invention was made in view of the above-mentioned circumstances, and is a loop-type device that can sufficiently reflux the working fluid to the evaporator and efficiently transport heat even when the flow rate of the vapor of the working fluid is high. The purpose is to provide a heat pipe.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めの手段としてこの発明は、蒸発管内面に対して作動液
を噴出するノズル孔が多数形成されている液戻り管を備
えたループ型ヒートパイプにおいて、前記複数の液戻り
管を、蒸発管の中心部に軸線方向に沿う蒸気流路が生じ
るよう蒸発管の内面に接近させて配設したことを特徴と
している。
[Means for Solving the Problems] As a means for solving the above-mentioned problems, the present invention provides a loop-type liquid return pipe having a large number of nozzle holes for ejecting working liquid onto the inner surface of the evaporation pipe. The heat pipe is characterized in that the plurality of liquid return tubes are disposed close to the inner surface of the evaporation tube so that a vapor flow path along the axial direction is formed in the center of the evaporation tube.

【0012】0012

【作用】この発明のループ型ヒートパイプは、蒸発管内
面に対して作動液を噴出するノズル孔が多数形成された
液戻り管を、蒸発管内の中心に軸線方向に沿う蒸気流路
が生じるように内周面に接近した位置にそれぞれ配設さ
れているので、作動液は、各ノズル孔からその近くの蒸
発部に向けて噴出することとなり、凝縮部へ向う蒸気流
によって吹飛ばされることが少なく、作動液の飛散を大
幅に低減できることから、蒸発部の全体に対して充分な
量の作動液がコンスタントに供給される。
[Operation] The loop-type heat pipe of the present invention has a liquid return pipe formed with a number of nozzle holes for ejecting working fluid against the inner surface of the evaporation pipe, so that a vapor flow path along the axial direction is created at the center of the evaporation pipe. Since each nozzle is disposed close to the inner peripheral surface, the working fluid is ejected from each nozzle hole toward the nearby evaporation section, and is prevented from being blown away by the vapor flow toward the condensation section. Since the scattering of the working fluid can be greatly reduced, a sufficient amount of the working fluid can be constantly supplied to the entire evaporation section.

【0013】また、各液戻り管の作動液の循環流量を調
整することによって、ループ型ヒートパイプ全体の熱輸
送量を制御できる。
Furthermore, by adjusting the circulating flow rate of the working fluid in each liquid return pipe, the amount of heat transported throughout the loop heat pipe can be controlled.

【0014】[0014]

【実施例】以下、この発明のループ型ヒートパイプの一
実施例を図1および図2に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the loop-type heat pipe of the present invention will be described below with reference to FIGS. 1 and 2.

【0015】ループ型ヒートパイプ11は、蒸発管12
と図示しない凝縮部とを、全体として循環路を形成する
よう接続した構造であって、その蒸発管12内には、外
周に断熱被覆13をそれぞれ施した4本の液戻り管14
が、蒸発管12の内周面に接触した状態で等分配置され
るとともに、中心に嵌挿したコイルスプリング型スペー
サ15によって外側に押圧された状態で固定されている
[0015] The loop type heat pipe 11 is an evaporation tube 12.
and a condensation section (not shown) are connected to form a circulation path as a whole, and within the evaporation tube 12 are four liquid return tubes 14 each having a heat insulating coating 13 on its outer periphery.
are equally spaced in contact with the inner circumferential surface of the evaporation tube 12, and are pressed outward and fixed by a coil spring type spacer 15 inserted into the center.

【0016】また図2に示すように、4本の液戻り管1
4のそれぞれの下端は閉塞され、また各液戻り管14の
下端側は、蒸発管12の下端に形成された蒸発部12a
と対応する位置に配設されるとともに、蒸発管12の内
周面のうち隣接する液戻り管14との間の部分に向けた
ノズル孔16が、外周の断熱被覆13を貫通して多数形
成されている。
Furthermore, as shown in FIG. 2, four liquid return pipes 1
The lower end of each liquid return pipe 14 is closed, and the lower end side of each liquid return pipe 14 is connected to an evaporation section 12a formed at the lower end of the evaporation pipe 12.
A large number of nozzle holes 16 are formed at positions corresponding to the inner circumferential surface of the evaporation tube 12 and are directed toward the portion between the adjacent liquid return tube 14 and pass through the outer circumferential heat-insulating coating 13. has been done.

【0017】また図示してないが、4本の液戻り管14
の上端は、蒸発管12の上端に形成された凝縮部の下部
において、この凝縮部の内周面に結露した作動液Fが集
まって流入するようにそれぞれ配設されている。
Although not shown, there are four liquid return pipes 14.
The upper end is disposed at the lower part of the condensing part formed at the upper end of the evaporation tube 12 so that the working fluid F condensed on the inner peripheral surface of the condensing part gathers and flows into the condensing part.

【0018】次に、上記のように構成されるこの実施例
の作用を説明する。
Next, the operation of this embodiment constructed as described above will be explained.

【0019】この実施例のループ型ヒートパイプは、そ
の蒸発部12aに作動液Fが供給されると、この作動液
Fは外部から入力される熱によって加熱されて蒸発して
蒸気流vとなり、コイルスプリング型スペーサ15の間
を通って、蒸発管12の中心部の空間を凝縮部へ向けて
上昇する。
In the loop heat pipe of this embodiment, when the working fluid F is supplied to the evaporating section 12a, this working fluid F is heated by the heat input from the outside and evaporates into a vapor flow v. It passes between the coil spring type spacers 15 and rises through the space at the center of the evaporator tube 12 toward the condensing section.

【0020】その結果、作動液Fの蒸気は、凝縮部にお
いて熱を奪われて凝縮し、凝縮部の内周面を伝わって流
れ落ちる際に集められて液戻り管14内に流入し、下端
付近まで流下すると、各液戻り管14内に作動液Fが液
溜りを形成し、この液溜りの水頭圧で、ノズル孔16よ
り作動液Fが噴出流fとなって噴出し、再び蒸発部12
aの内周面に向けて供給され、以上のサイクルが繰り返
し行なわれる。
As a result, the vapor of the working fluid F loses heat and condenses in the condensing section, and as it flows down the inner peripheral surface of the condensing section, it is collected and flows into the liquid return pipe 14, near the lower end. When the hydraulic fluid F flows down to the point where it flows down, a liquid pool is formed in each liquid return pipe 14, and due to the head pressure of this liquid pool, the working liquid F is ejected from the nozzle hole 16 as a jet flow f, and returns to the evaporator section 12.
It is supplied toward the inner circumferential surface of a, and the above cycle is repeated.

【0021】したがって、各液戻り管14の下端のノズ
ル孔16からの作動液Fの噴出流fは、ノズル孔16か
らの距離が短かい最寄りの内周面に向けてそれぞれ噴出
するため、凝縮部へ向う蒸気流vとの干渉が少なく、ま
た、蒸発部12aで蒸発した作動液Fの蒸気流vは、主
として蒸発管12の中心部の空間を上昇するため、やは
り作動液Fの噴出流fへの影響が少ないことから、蒸発
部12aへ作動液Fをコンスタントに供給でき、特に、
蒸気の流速が速い場合にも、蒸発部12aへの噴出流f
の飛散を少なく抑えられるので、高い熱輸送効率を維持
することができる。
Therefore, the jet flow f of the working fluid F from the nozzle hole 16 at the lower end of each liquid return pipe 14 is jetted toward the nearest inner circumferential surface which is a short distance from the nozzle hole 16, so that it is not condensed. Since the vapor flow v of the working fluid F evaporated in the evaporation section 12a mainly ascends through the space in the center of the evaporation tube 12, it is still a jet flow of the working fluid F. Since the influence on f is small, the working fluid F can be constantly supplied to the evaporation section 12a, and in particular,
Even when the flow rate of steam is high, the jet flow f to the evaporation section 12a
Since the scattering of heat can be suppressed to a minimum, high heat transport efficiency can be maintained.

【0022】また、蒸発管12の口径を大きくしたとし
ても、液戻り管14のノズル孔16から蒸発部12aの
内面までの距離の増大が少ないため、大口径、大容量の
ループ型ヒートパイプにも適している。
Furthermore, even if the diameter of the evaporator tube 12 is increased, the distance from the nozzle hole 16 of the liquid return tube 14 to the inner surface of the evaporator section 12a does not increase much. is also suitable.

【0023】[0023]

【発明の効果】以上、説明したようにこの発明のループ
型ヒートパイプは、蒸発管内面に対して作動液を噴出す
るノズル孔が多数形成されている液戻り管を備えたルー
プ型ヒートパイプにおいて、前記複数の液戻り管を、蒸
発管の中心部に軸線方向に沿う蒸気流路が生じるよう蒸
発管の内面に接近させて配設したので、ノズル孔から噴
出する作動液が蒸気流に吹き飛ばされにくく、したがっ
て、蒸気の流速が速い場合にも、蒸発部へ作動液を確実
に供給することができる。
As explained above, the loop type heat pipe of the present invention is a loop type heat pipe equipped with a liquid return pipe in which a number of nozzle holes are formed for ejecting working liquid onto the inner surface of the evaporator tube. , the plurality of liquid return pipes are arranged close to the inner surface of the evaporator tube so that a vapor flow path along the axial direction is created in the center of the evaporator tube, so that the working liquid ejected from the nozzle hole is blown away by the vapor flow. Therefore, even when the flow rate of steam is high, the working fluid can be reliably supplied to the evaporator.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明のループ型ヒートパイプの蒸発部の断
面図である。
FIG. 1 is a sectional view of an evaporation section of a loop-type heat pipe according to the present invention.

【図2】図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 1;

【図3】従来のループ型ヒートパイプの蒸発部の断面図
である。
FIG. 3 is a cross-sectional view of an evaporation section of a conventional loop-type heat pipe.

【図4】図3のIV−IV線断面図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3;

【符号の説明】[Explanation of symbols]

11  ループ型ヒートパイプ 12  蒸発管 12a  蒸発部 13  断熱被覆 14  液戻り管 15  コイルスプリング型スペーサ 16  ノズル孔 F  作動液 f  作動液の噴出流 v  作動液の蒸気流 11 Loop type heat pipe 12 Evaporation tube 12a Evaporation section 13 Heat insulation coating 14 Liquid return pipe 15 Coil spring type spacer 16 Nozzle hole F Hydraulic fluid f Hydraulic fluid jet flow v Vapor flow of working fluid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  蒸発管内面に対して作動液を噴出する
ノズル孔が多数形成されている液戻り管を備えたループ
型ヒートパイプにおいて、前記複数の液戻り管を、蒸発
管の中心部に軸線方向に沿う蒸気流路が生じるよう蒸発
管の内面に接近させて配設したことを特徴とするループ
型ヒートパイプ。
1. A loop heat pipe equipped with a liquid return pipe in which a large number of nozzle holes are formed for ejecting a working liquid to the inner surface of the evaporation pipe, wherein the plurality of liquid return pipes are arranged in the center of the evaporation pipe. A loop-type heat pipe characterized by being placed close to the inner surface of an evaporation tube so as to create a vapor flow path along the axial direction.
JP3167671A 1991-06-12 1991-06-12 Loop heat pipe Expired - Lifetime JPH0731023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3167671A JPH0731023B2 (en) 1991-06-12 1991-06-12 Loop heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3167671A JPH0731023B2 (en) 1991-06-12 1991-06-12 Loop heat pipe

Publications (2)

Publication Number Publication Date
JPH04366391A true JPH04366391A (en) 1992-12-18
JPH0731023B2 JPH0731023B2 (en) 1995-04-10

Family

ID=15854063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3167671A Expired - Lifetime JPH0731023B2 (en) 1991-06-12 1991-06-12 Loop heat pipe

Country Status (1)

Country Link
JP (1) JPH0731023B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712099B2 (en) 2017-07-06 2020-07-14 Kabushiki Kaisha Toshiba Heat pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085370A (en) * 2018-11-28 2020-06-04 株式会社デンソー Thermosiphon device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266097A (en) * 1985-04-30 1987-03-25 Fujikura Ltd Thermal syphon device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266097A (en) * 1985-04-30 1987-03-25 Fujikura Ltd Thermal syphon device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712099B2 (en) 2017-07-06 2020-07-14 Kabushiki Kaisha Toshiba Heat pipe

Also Published As

Publication number Publication date
JPH0731023B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US8615909B2 (en) Steam discharge unit for use in a soleplate of a steam iron
JP2650395B2 (en) Absorption cycle heat pump
CA1193298A (en) Spray nozzle
JP2015190757A (en) Desuperheater and desuperheating method
JPH04366391A (en) Loop type heat pipe
CN108671570A (en) A kind of inclined ellipse pipe falling film evaporator
CN114653081A (en) Evaporation liquid distribution device and falling film evaporator
JPH0220883B2 (en)
CN204380291U (en) A kind of falling film evaporator cone hat type liquid distributing board
KR100345087B1 (en) Injection nozzle of absorption system cooling heating water unit
US1865775A (en) Water distributor for condensers of ice manufacturing systems
KR101538621B1 (en) a device of water spray type desuperheater and a method thereof
JPH0639246Y2 (en) Loop heat pipe
SU874085A1 (en) Film-type evaporative apparatus
CN108379859A (en) A kind of vertical tube high-efficiency falling film evaporation device
JPH0678869B2 (en) Thermosyphon device
CN221130990U (en) Multilayer instillation type thin film evaporator
JPH11294706A (en) Shell-tube heat exchanger type horizontal steam generator
JP2022537723A (en) Evaporator of working fluid for ETM plant with suitable atomization system
JPH08327259A (en) Continuous thermosiphon
JPS5579992A (en) Heat transfer device
RU2149669C1 (en) Climbing-film evaporator
CN2107303U (en) Two-phase converce flow water membrane-forming device
JPH0820193B2 (en) heat pipe
JP2022537729A (en) Working fluid evaporator for OTEC plants, especially with damper system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term