JPH04366374A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH04366374A
JPH04366374A JP3141980A JP14198091A JPH04366374A JP H04366374 A JPH04366374 A JP H04366374A JP 3141980 A JP3141980 A JP 3141980A JP 14198091 A JP14198091 A JP 14198091A JP H04366374 A JPH04366374 A JP H04366374A
Authority
JP
Japan
Prior art keywords
indoor
indoor unit
flow rate
air
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3141980A
Other languages
Japanese (ja)
Other versions
JP2723380B2 (en
Inventor
Shuichi Tani
秀一 谷
Setsu Nakamura
中村 節
Noriaki Hayashida
林田 徳明
Tomohiko Kasai
智彦 河西
Shigeo Takada
茂生 高田
Junichi Kameyama
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3141980A priority Critical patent/JP2723380B2/en
Priority to AU16034/92A priority patent/AU649810B2/en
Priority to US07/880,719 priority patent/US5297392A/en
Priority to ES95106908T priority patent/ES2120104T3/en
Priority to EP92304136A priority patent/EP0514086B1/en
Priority to DE69212225T priority patent/DE69212225D1/en
Priority to DE69226381T priority patent/DE69226381T2/en
Priority to ES92304136T priority patent/ES2092035T3/en
Priority to EP95106908A priority patent/EP0676595B1/en
Publication of JPH04366374A publication Critical patent/JPH04366374A/en
Priority to AU59368/94A priority patent/AU660124B2/en
Application granted granted Critical
Publication of JP2723380B2 publication Critical patent/JP2723380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make it possible to cool and heat each chamber selectively by installing first indoor equipment which sucks up outdoor air and circulates the air in an indoor side heat exchanger and a second indoor equipment which receives the air which has passed through the first indoor equipment as a primary air for a second indoor side heat exchanger. CONSTITUTION:First indoor equipment B and second indoor equipment C and D are connected with each other in parallel. They are connected with heat source equipment A by way of relay equipment E which is built-in with second branch sections 10 and 11, flow rate control devices 9 and 13 and a gas-liquid separation device 12. In the air conditioning apparatus, there is provided a fan so as to take in the outside air. The outside air thus introduced is led to the first indoor equipment B where heat exchange takes place with an indoor side heat exchanger 5. There is also provided a fan which circulates the indoor air. The air circulated by this fan is introduced to the second indoor equipment C and D so that they perform heat exchange with the indoor side heat exchanger 5. At least one equipment out of the second indoor equipments which operates in heating (cooling) mode, the first indoor equipment is adapted to operate in heating mode (cooling mode) as well.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ式空気調
和装置に関するもので、特に各室内機毎に冷暖房を選択
的に、かつ一方の室内機では冷房、他方の室内機では暖
房が同時に行うことができる空気調和装置に関するもの
である。
[Field of Industrial Application] This invention relates to a multi-room heat pump type air conditioner in which a plurality of indoor units are connected to one heat source unit. The present invention also relates to an air conditioner that can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

【0002】0002

【従来の技術】以下、従来例について説明する。図7は
従来の空気調和装置の冷媒系を中心とする全体構成図で
ある。また、図8、図9、図10は図7の従来例におけ
る冷暖房運転時の動作状態を示したもので、図8は冷房
又は暖房のみの運転動作状態図、図9及び図10は冷暖
房同時運転の動作を示すもので、図9は暖房主体(暖房
運転しようとしている室内機の合計容量が冷房運転しよ
うとしている室内機の合計容量より大きい場合)を、図
10は冷房主体(冷房運転しようとしている室内機の合
計容量が暖房運転しようとしている室内機の合計容量よ
り大きい場合)を示す運転動作状態図である。なお、こ
の従来例では熱源機1台に室内機3台を接続した場合に
ついて説明するが、2台以上の室内機を接続した場合で
も同様である。
2. Description of the Related Art A conventional example will be explained below. FIG. 7 is an overall configuration diagram centered on the refrigerant system of a conventional air conditioner. 8, 9, and 10 show operating states during cooling/heating operation in the conventional example shown in FIG. Figure 9 shows the operation mainly for heating (when the total capacity of the indoor units trying to operate heating is larger than the total capacity of the indoor units trying to operate cooling), and Figure 10 shows the operation mainly for cooling (when the indoor units trying to operate cooling). FIG. 12 is an operation state diagram showing a case in which the total capacity of the indoor units that are currently being operated is larger than the total capacity of the indoor units that are attempting to perform heating operation. Although this conventional example describes a case where three indoor units are connected to one heat source device, the same applies to a case where two or more indoor units are connected.

【0003】図7において、Aは熱源機、B,C,Dは
後述するように互いに並列接続された室内機でそれぞれ
同じ構成となっている。Eは後述するように、第1の分
岐部、第2の流量調整装置、第2の分岐部、気液分離装
置、第1及び第2の熱交換器を内臓した中継機である。 1は圧縮機、2は熱源機の冷媒流通方向を切り換える四
方切換弁、3は熱源機側熱交換器、4はアキュムレータ
で、上記機器1〜3と接続され熱源機Aを構成する。5
はそれぞれ室内機B,C,Dの室内側熱交換器、6は四
方切換弁2と中継機Eを接続する太い第1の接続配管、
6b,6c,6dはそれぞれ室内機B,C,Dの室内側
熱交換器5と中継機Eを接続し、第1の接続配管6に対
応する室内機側の第1の接続配管、7は熱源機側熱交換
器3と中継機Eを接続する上記第1の接続配管6より細
い第2の接続配管、7b,7c,7dはそれぞれ室内機
B,C,Dの室内側熱交換器5と中継機Eを接続し、第
2の接続配管7に対応する室内機側の第2の接続配管、
8は室内機側の第1の接続配管6b,6c,6dと、第
1の接続配管6または、第2の接続配管7側に切り換え
可能に接続する三方切換弁、9は室内側熱交換器5に近
接して接続され室内側熱交換器5の出口側の冷房時は過
熱度、暖房時は過冷却度により制御される第1の流量調
整装置で、室内機側の第2の接続配管7b,7c,7d
に接続される。
[0003] In FIG. 7, A is a heat source unit, and B, C, and D are indoor units connected in parallel to each other, each having the same configuration as described later. As will be described later, E is a repeater incorporating a first branch, a second flow rate adjustment device, a second branch, a gas-liquid separation device, and first and second heat exchangers. 1 is a compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source machine, 3 is a heat exchanger on the heat source machine side, and 4 is an accumulator, which are connected to the above-mentioned devices 1 to 3 to constitute heat source machine A. 5
are the indoor heat exchangers of the indoor units B, C, and D, respectively; 6 is the thick first connection pipe that connects the four-way switching valve 2 and the repeater E;
6b, 6c, and 6d connect the indoor heat exchangers 5 of the indoor units B, C, and D, respectively, and the repeater E, and 7 is the first connection pipe on the indoor unit side corresponding to the first connection pipe 6; Second connection pipes 7b, 7c, and 7d connecting the heat source machine side heat exchanger 3 and the repeater E are thinner than the first connection pipe 6, and 7b, 7c, and 7d are the indoor heat exchangers 5 of the indoor units B, C, and D, respectively. and a second connection pipe on the indoor unit side that connects the repeater E and corresponds to the second connection pipe 7;
8 is a three-way switching valve that is switchably connected to the first connection pipes 6b, 6c, 6d on the indoor unit side and the first connection pipe 6 or the second connection pipe 7 side; 9 is an indoor heat exchanger 5 and is controlled by the degree of superheating during cooling and the degree of subcooling during heating on the outlet side of the indoor heat exchanger 5, and is connected to the second connecting pipe on the indoor unit side. 7b, 7c, 7d
connected to.

【0004】10は室内機側の第1の接続配管6b,6
c,6dと、第1の接続配管6または、第2の接続配管
7に切り換え可能に接続する三方切換弁8よりなる第1
の分岐部、11は室内機側の第2の接続配管7b,7c
,7dと、その合流部よりなる第2の分岐部、12は第
2の接続配管7の途中に設けられた気液分離装置で、そ
の気相部は、三方切換弁8のそれぞれの第1口8aに接
続され、その液相部は第2の分岐部11に接続されてい
る。13は気液分離装置12と第2の分岐部11との間
に接続する開閉自在な第2の流量調整装置、14は第2
の分岐部11と上記第1の接続配管6とを結ぶバイパス
配管、15はバイパス配管14の途中に設けられた第3
の流量調整装置、16b,16c,16dはバイパス配
管14の第3の流量調整装置15の下流に設けられ、第
2の分岐部11における各室内機側の第2の接続配管7
b,7c,7dとの間でそれぞれ熱交換を行う第3の熱
交換部、16aはバイパス配管14の第3の流量調整装
置15の下流及び第3の熱交換部16b,16c,16
dの下流に設けられ、第2の分岐部11における各室内
機側の第2の接続配管7b,7c,7dの合流部との間
で熱交換を行う第2の熱交換部、19はバイパス配管1
4の第3の流量調整装置15の下流及び第2の熱交換部
16aの下流に設けられ気液分離装置12と第2の流量
制御装置13とを接続する配管との間で熱交換を行う第
1の熱交換部、17は第2の分岐部11と第1の接続配
管6との間に接続する開閉自在な第4の流量制御装置、
32は熱源側熱交換器3と第2の接続配管7との間に設
けられた第3の逆止弁であり、熱源側熱交換器3から第
2の接続配管7へのみ冷媒流通を許容する。
10 is the first connection pipe 6b, 6 on the indoor unit side.
c, 6d, and a three-way switching valve 8 that is switchably connected to the first connecting pipe 6 or the second connecting pipe 7.
11 is the second connection pipe 7b, 7c on the indoor unit side.
, 7d and a second branching section consisting of a confluence section thereof; 12 is a gas-liquid separation device provided in the middle of the second connecting pipe 7; It is connected to the port 8a, and its liquid phase part is connected to the second branch part 11. 13 is a second flow rate regulating device that can be opened and closed and is connected between the gas-liquid separation device 12 and the second branch 11; 14 is a second flow rate regulating device;
A bypass pipe 15 connects the branch part 11 and the first connection pipe 6, and 15 is a third pipe provided in the middle of the bypass pipe 14.
The flow rate adjustment devices 16b, 16c, and 16d are provided downstream of the third flow rate adjustment device 15 in the bypass pipe 14, and are connected to the second connection pipe 7 on each indoor unit side in the second branch portion 11.
b, 7c, and 7d, respectively;
A second heat exchange section 19 is provided downstream of d and performs heat exchange with the merging section of the second connection pipes 7b, 7c, and 7d on each indoor unit side in the second branch section 11, and 19 is a bypass. Piping 1
Heat exchange is performed between pipes that are provided downstream of the third flow rate adjustment device 15 of No. 4 and downstream of the second heat exchange section 16a and connect the gas-liquid separation device 12 and the second flow rate control device 13. A first heat exchange part, 17 is a fourth flow rate control device that can be opened and closed, and is connected between the second branch part 11 and the first connection pipe 6;
32 is a third check valve provided between the heat source side heat exchanger 3 and the second connection pipe 7, and allows the refrigerant to flow only from the heat source side heat exchanger 3 to the second connection pipe 7. do.

【0005】33は熱源機Aの四方切換弁2と第1の接
続配管6とに間に設けられた第4の逆止弁であり、第1
の接続配管6から四方切換弁2へのみ冷媒流通を許容す
る。34は熱源機Aの四方切換弁2と第2の接続配管7
との間設けられた第5の逆止弁であり、四方切換弁2か
ら第2の接続配管7へのみ冷媒流通を許容する。35は
熱源側熱交換器3と第1の接続配管6との間に設けられ
た第6の逆止弁であり、第1の接続配管6から熱源側熱
交換器3へのみ冷媒流通を許容する。上記第3の逆止弁
32から第6の逆止弁35で切換弁40を構成する。4
1は一端を気液分離装置12に他端を第1の接続配管6
に接続した液抜き配管、42は液抜き配管41の気液分
離装置12と第1の接続配管6の間に設けた第5の流量
制御装置、43は液抜き配管41の第5の流量制御装置
42の下流に設けられ、気液分離装置12と第1の分岐
部10を接続する配管との間で熱交換を行う第4の熱交
換部である。23は第2の流量制御装置13と第1の熱
交換部19を接続する配管に取り付けた第1の温度検出
器、25は上記第1の温度検出器23と同じ配管に取り
付けた第1の圧力検出器、26は第2の分岐部11に取
り付けた第2の圧力検出器、52は第1の接続配管6と
第1の分岐部10を接続する配管に取り付けた第3の圧
力検出器、51は液抜き配管41側の第4の熱交換部4
3の出口部に取り付けた第2の温度検出器、53はバイ
パス配管14側の第1の熱交換部19の出口側に取り付
けた第3の温度検出器である。
33 is a fourth check valve provided between the four-way switching valve 2 of the heat source device A and the first connecting pipe 6;
The refrigerant is allowed to flow only from the connecting pipe 6 to the four-way switching valve 2. 34 is the four-way switching valve 2 of the heat source device A and the second connection pipe 7
This is a fifth check valve provided between the four-way switching valve 2 and the second connecting pipe 7, which allows refrigerant to flow only from the four-way switching valve 2 to the second connecting pipe 7. 35 is a sixth check valve provided between the heat source side heat exchanger 3 and the first connection pipe 6, and allows refrigerant flow only from the first connection pipe 6 to the heat source side heat exchanger 3. do. The third check valve 32 to the sixth check valve 35 constitute a switching valve 40. 4
1 has one end connected to the gas-liquid separator 12 and the other end connected to the first connecting pipe 6
42 is a fifth flow control device provided between the gas-liquid separation device 12 and the first connection pipe 6 of the liquid drain pipe 41; 43 is a fifth flow rate control device of the liquid drain pipe 41; This is a fourth heat exchange section that is provided downstream of the device 42 and performs heat exchange between the gas-liquid separation device 12 and the piping that connects the first branch section 10 . 23 is a first temperature detector attached to a pipe connecting the second flow rate control device 13 and the first heat exchange section 19; 25 is a first temperature detector attached to the same pipe as the first temperature detector 23; Pressure detectors; 26 is a second pressure detector attached to the second branch 11; 52 is a third pressure detector attached to the pipe connecting the first connection pipe 6 and the first branch 10; , 51 is the fourth heat exchange section 4 on the liquid draining pipe 41 side.
A second temperature sensor 53 is attached to the outlet of the first heat exchanger 19 on the bypass piping 14 side.

【0006】このように構成された従来例の動作につい
て説明する。まず、図8を用いて冷房運転のみの場合に
ついて説明する。すなわち、図8に実線矢印で示すよう
に圧縮機1より吐出された高温高圧の冷媒ガスは四方切
換弁2を通り、熱源機側熱交換器3で熱交換して凝縮さ
れた後、第3の逆止弁32、第2の接続配管7、気液分
離装置12、第2の流量調整装置13の順に通り、更に
第2の分岐部11、室内機側の第2の接続配管7b,7
c,7dを通り、各室内機B,C,Dに流入した冷媒は
、各室内側熱交換器5の出口の過熱度により制御される
第1の流量調整装置9により低圧まで減圧されて室内側
熱交換器5で室内空気と熱交換して蒸発しガス化され室
内を冷房する。そして、このガス状態となった冷媒は、
室内機側の第1の接続配管6b,6c,6d三方切換弁
8、第1の分岐部10を通り、第1の接続配管6、第4
の逆止弁33、四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、冷房運転
を行う。このとき、三方切換弁8はそれぞれの第1口8
aは閉路、第2口8b及び第3口8cは開路されている
The operation of the conventional example configured as described above will be explained. First, the case of only cooling operation will be described using FIG. 8. That is, as shown by the solid arrow in FIG. 8, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, exchanges heat with the heat exchanger 3 on the heat source side, and is condensed. The check valve 32 of
The refrigerant that has flowed into each of the indoor units B, C, and D through channels c and 7d is reduced to a low pressure by the first flow rate regulating device 9, which is controlled by the degree of superheating at the outlet of each indoor heat exchanger 5, and then returned to the indoor unit. It exchanges heat with indoor air in the inner heat exchanger 5, evaporates and becomes gas, and cools the room. The refrigerant in this gas state is
The first connecting pipes 6b, 6c, 6d on the indoor unit side pass through the three-way switching valve 8 and the first branch part 10, and the first connecting pipes 6, 4th
This constitutes a circulation cycle in which air is sucked into the compressor 1 through the check valve 33, the four-way switching valve 2, and the accumulator 4, and performs cooling operation. At this time, the three-way switching valve 8 has each first port 8
a is closed, and second port 8b and third port 8c are open.

【0007】この時、第1の接続配管6が低圧、第2の
接続配管7が高圧のため必然的に第3の逆止弁32、第
4の逆止弁33へ冷媒流通する。また、このサイクルの
時、第2の流量調整装置13を通過した冷媒の一部がバ
イパス配管14へ入り、第3の流量調整装置15で低圧
まで減圧されて、第3の熱交換部16b,16c,16
dで各室内機側の第2の接続配管7b,7c,7dとの
間で、第2の熱交換部16aで第2の分岐部11の各室
内機側の第2の接続配管7b,7c,7dの合流部との
間で、更に第1の熱交換部19で第2の流量制御装置1
3に流入する冷媒との間で熱交換を行い蒸発した冷媒は
、第1の接続配管6へ入り、第4の逆止弁は33、四方
切換弁2、アキュムレータ4を経て圧縮機1に吸入され
る。一方、第1及び第2及び第3の熱交換部19,16
a,16b,16c,16dで熱交換し、冷却され過冷
却度を十分につけられた上記第2の分岐部11の冷媒は
冷房しようとしている室内機B,C,Dへ流入する。ま
た、冷房運転において空気調和装置に封入されている冷
媒が、第2の接続配管を高圧液冷媒で満たすほど封入さ
れていない場合、熱源側熱交換器3にて凝縮された高圧
2相冷媒は、第2の接続配管7、気液分離装置12を経
た後に、第1及び第2及び第3の熱交換部19,16a
,16b,16c,16dにて、第3の流量制御装置1
5にて低圧まで減圧されたバイパス側を流れる冷媒と熱
交換することにより、液化してさらに冷却され過冷却度
を十分につけられて冷房しようとしている室内機B,C
,Dへ流入する。
At this time, since the first connecting pipe 6 is under low pressure and the second connecting pipe 7 is under high pressure, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33. Also, during this cycle, a part of the refrigerant that has passed through the second flow rate adjustment device 13 enters the bypass pipe 14, is reduced in pressure to a low pressure by the third flow rate adjustment device 15, and is transferred to the third heat exchange section 16b, 16c, 16
d between the second connection pipes 7b, 7c, 7d on each indoor unit side, and the second connection pipes 7b, 7c on each indoor unit side of the second branch part 11 at the second heat exchange part 16a. , 7d, and the second flow rate control device 1 at the first heat exchange section 19.
The evaporated refrigerant exchanges heat with the refrigerant flowing into 3, enters the first connecting pipe 6, passes through the fourth check valve 33, the four-way switching valve 2, and the accumulator 4, and is sucked into the compressor 1. be done. On the other hand, the first, second and third heat exchange parts 19, 16
The refrigerant in the second branch section 11, which has been cooled and sufficiently subcooled through heat exchange in a, 16b, 16c, and 16d, flows into the indoor units B, C, and D to be cooled. In addition, when the refrigerant sealed in the air conditioner during cooling operation is not sealed enough to fill the second connection pipe with high-pressure liquid refrigerant, the high-pressure two-phase refrigerant condensed in the heat source side heat exchanger 3 , the second connection pipe 7, and the gas-liquid separator 12, and then the first, second, and third heat exchange parts 19, 16a.
, 16b, 16c, 16d, the third flow rate control device 1
By exchanging heat with the refrigerant flowing through the bypass side, which was reduced to a low pressure in step 5, the indoor units B and C are liquefied and further cooled to a sufficient degree of supercooling, and are about to be cooled.
, D.

【0008】次に、図8を用いて暖房運転のみの場合に
ついて説明する。すなわち、図8に破線矢印で示すよう
に圧縮機1より吐出された高温高圧の冷媒ガスは四方切
換弁2を通り、第5の逆止弁34、第2の接続配管7、
気液分離装置12を通り、第1の分岐部10、三方切換
弁8、室内機側の第1の接続配管6b,6c,6dを通
り、各室内機B,C,Dに流入した冷媒は、室内空気と
熱交換して凝縮液化し、室内を暖房する。そして、この
液状態となった冷媒は、各室内側熱交換器5の出口の過
冷却度により制御される第1の流量調整装置9を通り、
室内機側の第2の接続配管7b,7c,7dから第2の
分岐部11に流入して合流し、更に第4の流量調整装置
17を通り、ここで第1の流量調整装置9又は第4の流
量調整装置17のどちらか一方で低圧の二相状態まで減
圧される。 そして、低圧まで減圧された冷媒は、第1の接続配管6
を経て、第6の逆止弁35、熱源機側熱交換器3に流入
し熱交換して蒸発しガス状態となった冷媒は、四方切換
弁2、アキュムレータ4を経て圧縮機1に吸入される循
環サイクルを構成し、暖房運転を行う。このとき、三方
切換弁8はそれぞれの第2口8bは閉路、第1口8a及
び第3口8cは開路されている。この時、第1の接続配
管6が低圧、第2の接続配管7が高圧のため必然的に第
5の逆止弁34、第6の逆止弁35へ冷媒は流通する。
Next, the case of only heating operation will be explained using FIG. That is, as shown by the broken line arrow in FIG. 8, the high temperature and high pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, the second connection pipe 7,
The refrigerant that has passed through the gas-liquid separator 12, passed through the first branch part 10, the three-way switching valve 8, and the first connection pipes 6b, 6c, and 6d on the indoor unit side, and has flowed into each indoor unit B, C, and D. , exchanges heat with indoor air, condenses and liquefies, heating the room. The refrigerant in a liquid state then passes through a first flow rate adjustment device 9 that is controlled by the degree of subcooling at the outlet of each indoor heat exchanger 5.
It flows from the second connection pipes 7b, 7c, and 7d on the indoor unit side to the second branch part 11, merges, and further passes through the fourth flow rate adjustment device 17, where it flows into the first flow rate adjustment device 9 or the fourth flow rate adjustment device 17. The pressure is reduced to a low pressure two-phase state by either one of the flow regulating devices 17 of No. 4. Then, the refrigerant reduced to a low pressure is transferred to the first connection pipe 6
The refrigerant, which flows into the sixth check valve 35 and the heat source machine side heat exchanger 3, undergoes heat exchange and evaporates into a gas state, is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4. A circulation cycle is configured to perform heating operation. At this time, the three-way switching valve 8 has its second port 8b closed, and its first port 8a and third port 8c opened. At this time, since the first connecting pipe 6 is under low pressure and the second connecting pipe 7 is under high pressure, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35.

【0009】冷暖房同時運転における暖房主体の場合に
ついて図9を用いて説明する。ここでは室内機B,Cの
2台が暖房、室内機D1台が冷房しようとしている場合
について説明する。すなわち、図9に実線矢印で示すよ
うに圧縮機1より吐出された高温高圧の冷媒ガスは四方
切換弁2、第5の逆止弁34、第2の接続配管7を通り
、中継機Eへ送られ、気液分離装置12を通り、そして
第1の分岐部10、室内機B,Cに接続された三方切換
弁8、室内機側の第1の接続配管6b,6cの順に通り
、暖房しようとしている室内機B,Cに流入した冷媒は
、室内側熱交換器5で室内空気と熱交換して凝縮液化し
、室内を暖房する。そして、この液状態となった冷媒は
、室内側熱交換器5の出口の過冷却度により制御され、
ほぼ全開状態の第1の流量調整装置9を通り少し減圧さ
れて高圧と低圧の中間の圧力(中間圧)になり、室内機
側の第2の接続配管7b,7cから第2の分岐部11に
流入する。そして、室内機側の第2の接続配管7dを通
り冷房しようとしている室内機Dに入り、室内側熱交換
器5の出口の過熱度により制御される第1の流量調整装
置9により減圧された後に室内側熱交換器5に入り熱交
換して蒸発しガス状態となって室内を冷房し、室内機D
に接続された三方切換弁8を介して第1の接続配管6に
流入する。
[0009] A case in which heating is the main component in simultaneous cooling and heating operation will be explained with reference to FIG. Here, a case will be described in which two indoor units B and C are trying to heat the room, and one indoor unit D is trying to cool the room. That is, as shown by the solid line arrow in FIG. 9, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, and the second connection pipe 7, and is sent to the relay machine E. It passes through the gas-liquid separator 12, and then passes through the first branch 10, the three-way switching valve 8 connected to the indoor units B and C, and the first connection pipes 6b and 6c on the indoor unit side, and is heated. The refrigerant that has flowed into the indoor units B and C exchanges heat with indoor air in the indoor heat exchanger 5, condenses and liquefies, and heats the room. The refrigerant in this liquid state is controlled by the degree of supercooling at the outlet of the indoor heat exchanger 5,
It passes through the first flow regulating device 9 which is in an almost fully open state, and is slightly reduced in pressure to a pressure between high pressure and low pressure (intermediate pressure), and then flows from the second connecting pipes 7b, 7c on the indoor unit side to the second branch part 11. flows into. Then, it passes through the second connection pipe 7d on the indoor unit side and enters the indoor unit D that is being cooled, and is depressurized by the first flow rate adjustment device 9 controlled by the degree of superheating at the outlet of the indoor heat exchanger 5. After that, it enters the indoor heat exchanger 5, exchanges heat, evaporates, becomes a gas, cools the room, and then goes to the indoor unit D.
The water flows into the first connecting pipe 6 through a three-way switching valve 8 connected to the first connecting pipe 6.

【0010】一方、他の冷媒は第2の分岐部11を通り
、第2の接続配管7の高圧と第2の分岐部11の中間圧
の差を一定にするように制御される開閉自在な第5の流
量調整装置17を通って、冷房しようとしている室内機
Dを通った冷媒と合流して太い第1の接続配管6に流入
し、第6の逆止弁35、熱減機側熱交換器3に流入し熱
交換して蒸発しガス状態となる。その冷媒は、四方切換
弁2、アキュムレータ4を経て圧縮機1に吸入される循
環サイクルを構成し、暖房主体運転を行う。このとき、
冷房しようとしている室内機Dの室内側熱交換器5の蒸
発圧力と熱源側熱交換器3の蒸発圧力の圧力差が、太い
第1の接続配管6に切り換えるために小さくなる。この
とき、室内機B,Cに接続された三方切換弁8はそれぞ
れの第2口8bは閉路、第1口8a及び第3口8cは開
路されている。また室内機Dに接続された三方切換弁8
は第2口8b及び第3口8cは開路、第1口8aは閉路
されている。
On the other hand, other refrigerants pass through the second branch section 11, which is controlled to keep the difference between the high pressure of the second connecting pipe 7 and the intermediate pressure of the second branch section 11 constant. It passes through the fifth flow rate adjustment device 17, joins with the refrigerant that has passed through the indoor unit D to be cooled, flows into the thick first connection pipe 6, and passes through the sixth check valve 35, the heat reducing machine side heat It flows into the exchanger 3, exchanges heat, and evaporates into a gas state. The refrigerant forms a circulation cycle in which the refrigerant is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4, and performs heating-dominant operation. At this time,
The pressure difference between the evaporation pressure of the indoor heat exchanger 5 and the evaporation pressure of the heat source side heat exchanger 3 of the indoor unit D to be cooled becomes smaller because the first connection pipe 6 is switched to the thicker one. At this time, the second ports 8b of the three-way switching valves 8 connected to the indoor units B and C are closed, and the first ports 8a and third ports 8c are opened. In addition, the three-way switching valve 8 connected to the indoor unit D
The second port 8b and the third port 8c are open, and the first port 8a is closed.

【0011】この時、第1の接続配管6が低圧、第2の
接続配管7が高圧のため必然的に第5の逆止弁34、第
6の逆止弁35へ冷媒は流通する。また、このサイクル
の時、一部の液冷媒は各室内機側の第2の接続配管7b
,7c,7dの合流部からバイパス配管14へ入り、第
3の流量調整装置15で低圧まで減圧されて第2の熱交
換部16aで第2の分岐部11の各室内機側の第2の接
続配管7b,7c,7dの合流部との間で、更に第1の
熱交換部19で第2の流量制御装置13へ流入する冷媒
との間で熱交換を行い蒸発した冷媒は、第1の接続配管
6へ入り、第6の逆止弁を35を経て、熱源機側熱交換
器3に流入し熱交換して蒸発しガス状態となる。そして
、この冷媒は四方切換弁2、アキュムレータ4を経て圧
縮機1に吸入される。一方、第1及び第2及び第3の熱
交換部19,16a,16b,16c,16dで熱交換
し冷却され過冷却度を十分につけられた上記第2の分岐
部11の冷媒は冷房しようとしている室内機Dへ流入す
る。
At this time, since the first connecting pipe 6 is under low pressure and the second connecting pipe 7 is under high pressure, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35. Also, during this cycle, some of the liquid refrigerant is transferred to the second connection pipe 7b on the side of each indoor unit.
, 7c, and 7d enter the bypass pipe 14 from the confluence part of the pipes, and the pressure is reduced to low pressure by the third flow rate regulating device 15, and the second heat exchanger part 16a passes through the second branch part 11 on each indoor unit side. The refrigerant that has been evaporated through heat exchange with the refrigerant flowing into the second flow rate control device 13 in the first heat exchange section 19 is further transferred to the confluence section of the connecting pipes 7b, 7c, and 7d. The liquid enters the connecting pipe 6, passes through the sixth check valve 35, flows into the heat exchanger 3 on the heat source side, exchanges heat, and evaporates to become a gas. This refrigerant is then sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4. On the other hand, the refrigerant in the second branch part 11, which has been cooled by heat exchange in the first, second, and third heat exchange parts 19, 16a, 16b, 16c, and 16d and has been sufficiently subcooled, tries to cool down. It flows into the indoor unit D.

【0012】冷暖房同時運転における冷房主体の場合に
ついて図10を用いて説明する。ここでは、室内機B,
Cの2台が冷房、室内機D1台が暖房しようとしている
場合について説明する。すなわち、図10に実線矢印で
示すように圧縮機1より吐出された高温高圧の冷媒ガス
は四方切換弁2を通り、熱源機側熱交換器3で任意量熱
交換して2相の高温高圧ガスとなり、第3の逆止弁32
、第2の接続配管7より、中継機Eの気液分離装置12
へ送られる。ここで、ガス状冷媒と液状冷媒に分離され
、分離されたガス状冷媒を第1の分岐部10、三方切換
弁8、室内機側の第1の接続配管6dの順に通り、暖房
しようとしている室内機Dに流入し、室内側熱交換器5
で室内空気と熱交換して凝縮液化し、室内を暖房する。 更に、室内側熱交換器5の出口の過冷却度により制御さ
れほぼ全開状態の第1の流量調整装置9を通り少し減圧
されて、高圧と低圧の中間の圧力(中間力)となり、第
2の分岐部11に流入する。一方、残りの液状冷媒は高
圧と中間圧の差を一定にするように制御される第2の流
量調整装置13を通って第2の分岐部11を流入し、暖
房しようとしている室内機Dを通った冷媒と合流する。
[0012] A case in which cooling is the main component in simultaneous heating and cooling operation will be explained with reference to FIG. Here, indoor unit B,
A case will be explained in which two indoor units C are trying to cool the room and one indoor unit D is trying to heat the room. That is, as shown by the solid line arrow in FIG. 10, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, exchanges an arbitrary amount of heat with the heat exchanger 3 on the heat source equipment side, and becomes a two-phase high-temperature, high-pressure refrigerant gas. becomes a gas, and the third check valve 32
, from the second connection pipe 7 to the gas-liquid separator 12 of the repeater E.
sent to. Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant is passed through the first branch part 10, the three-way switching valve 8, and the first connecting pipe 6d on the indoor unit side in this order for heating. Flows into the indoor unit D and passes through the indoor heat exchanger 5
It exchanges heat with indoor air, condenses and liquefies, heating the room. Furthermore, it is controlled by the degree of supercooling at the outlet of the indoor heat exchanger 5 and is slightly reduced through the first flow rate regulator 9 which is in an almost fully open state, resulting in a pressure between high pressure and low pressure (intermediate force). It flows into the branch part 11 of. On the other hand, the remaining liquid refrigerant flows into the second branch part 11 through the second flow rate adjustment device 13 that is controlled to keep the difference between the high pressure and the intermediate pressure constant, and then flows into the second branch part 11 to heat the indoor unit D. It merges with the refrigerant that passed through it.

【0013】そして、第2の分岐部11、室内機側の第
2の接続配管7b,7cを通り、各室内機B,Cに流入
する。そして、この冷媒は、室内機B,Cの室内側熱交
換器5の出口の過熱度により制御される第1の流量調整
装置9により低圧まで減圧されて室内側熱交換器5で室
内空気と熱交換して蒸発しガス化され室内を冷房する。 そして、このガス状態となった冷媒は、室内機側の第1
の接続配管6b,6c,室内機B,Cに接続された三方
切換弁8、第1の分岐部10、第1の接続配管6、第4
の逆止弁33、四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、冷房主体
運転を行う。このとき、室内機B,Cに接続された三方
切換弁8はそれぞれの第1口8aは閉路、第2口8b及
び第3口8cは開路されている。また室内機Dに接続さ
れた三方切換弁8は第1口8a及び第3口8cは開路、
第2口8bは閉路されている。
[0013]Then, the water passes through the second branch 11 and the second connection pipes 7b, 7c on the indoor unit side, and flows into each of the indoor units B, C. Then, this refrigerant is reduced in pressure to a low pressure by the first flow rate regulating device 9, which is controlled by the degree of superheating at the outlet of the indoor heat exchanger 5 of the indoor units B and C, and is mixed with indoor air in the indoor heat exchanger 5. It exchanges heat and evaporates into gas, cooling the room. Then, this refrigerant in a gas state is transferred to the first refrigerant on the indoor unit side.
connecting pipes 6b, 6c, three-way switching valve 8 connected to indoor units B, C, first branch 10, first connecting pipe 6, fourth
A circulation cycle is configured in which air is sucked into the compressor 1 through the check valve 33, the four-way switching valve 2, and the accumulator 4, and air-conditioning-based operation is performed. At this time, the first ports 8a of the three-way switching valves 8 connected to the indoor units B and C are closed, and the second ports 8b and third ports 8c are opened. Moreover, the three-way switching valve 8 connected to the indoor unit D has the first port 8a and the third port 8c open;
The second port 8b is closed.

【0014】このとき、第1の接続配管6が低圧、第2
の接続配管7が高圧のため必然的に第3の逆止弁32、
第4の逆止弁33へ冷媒は流通する。また、このサイク
ルの時、一部の液冷媒は各室内機側の第2の接続配管7
b,7c,7dの合流部からバイパス配管14へ入り、
第3の流量調整装置15で低圧まで減圧されて第2の熱
交換部16aで第2の分岐部11の各室内機側の第2の
接続配管7b,7c,7dの合流部との間で、更に第1
の熱交換部19で第2の流量制御装置へ流入する冷媒と
の間で熱交換を行い蒸発した冷媒は、第1の接続配管6
へ入り、第4の逆止弁33、四方切換弁2、アキュムレ
ータ4を経て圧縮機1に吸入される。一方、第1及び第
2及び第3の熱交換部19,16a,16b,16c,
16dで熱交換し冷却され過冷却度を十分につけられた
上記第2の分岐部11の冷媒は冷房しようとしている室
内機B,Cへ流入する。
At this time, the first connection pipe 6 is at low pressure, and the second
Because the connecting pipe 7 is under high pressure, the third check valve 32,
The refrigerant flows to the fourth check valve 33. Also, during this cycle, some of the liquid refrigerant is transferred to the second connection pipe 7 on each indoor unit side.
It enters the bypass pipe 14 from the junction of b, 7c, and 7d,
The pressure is reduced to low pressure by the third flow rate adjustment device 15, and the second heat exchange part 16a is connected to the confluence part of the second connection pipes 7b, 7c, and 7d on each indoor unit side of the second branch part 11. , and further the first
The evaporated refrigerant undergoes heat exchange with the refrigerant flowing into the second flow rate control device in the heat exchange section 19 of the first connection pipe 6.
The air enters the compressor 1 through the fourth check valve 33, the four-way switching valve 2, and the accumulator 4. On the other hand, the first, second and third heat exchange parts 19, 16a, 16b, 16c,
The refrigerant in the second branch part 11, which has been cooled by heat exchange in step 16d and has been sufficiently subcooled, flows into the indoor units B and C which are to be cooled.

【0015】また、気液分離装置12にて分離されたガ
ス状冷媒と液状冷媒の境界面である液面が、気液分離装
置12の液抜き配管41より下にある場合は、ガス状冷
媒が液抜き配管41に流入し第5の流量制御装置42に
て低圧まで減圧される。第5の流量制御装置42の入口
がガス状態のため、第5の流量制御装置42を流れる冷
媒は少ない。このため、液抜き配管41を流れる冷媒は
、第4の熱交換部43にて、気液分離装置12から第1
の分岐部10に流入する高圧ガス状冷媒と熱交換して低
圧の過熱ガスになって、第1の接続配管6に流入する。 逆に、気液分離装置12にて分離されたガス状冷媒と液
状冷媒の境界面である液面が、気液分離装置12の液抜
き配管41より上にある場合は、液状冷媒が液抜き配管
41に流入し第5の流量制御装置42にて低圧まで減圧
される。第5の流量制御装置42の入口が液状態のため
、第5の流量制御装置42を流れる冷媒は、上記入り口
がガス状状態の場合と比べて多い。このため、液抜き配
管41を流れる冷媒は、第4の熱交換部43にて、気液
分離装置12から第1の分岐部10に流入する高圧ガス
状冷媒と熱交換しても、低圧の過熱ガスにならず、2相
状態で、第1の接続配管6に流入する。
Furthermore, if the liquid level, which is the interface between the gaseous refrigerant and the liquid refrigerant separated in the gas-liquid separator 12, is below the liquid drain pipe 41 of the gas-liquid separator 12, the gaseous refrigerant flows into the liquid drain pipe 41 and is reduced in pressure to a low pressure by the fifth flow rate control device 42. Since the inlet of the fifth flow rate control device 42 is in a gas state, the amount of refrigerant flowing through the fifth flow rate control device 42 is small. Therefore, the refrigerant flowing through the liquid draining pipe 41 is transferred from the gas-liquid separator 12 to the first
The refrigerant exchanges heat with the high-pressure gaseous refrigerant flowing into the branch section 10, becomes a low-pressure superheated gas, and flows into the first connecting pipe 6. Conversely, if the liquid level, which is the interface between the gaseous refrigerant and the liquid refrigerant separated in the gas-liquid separator 12, is above the liquid drain pipe 41 of the gas-liquid separator 12, the liquid refrigerant is drained. It flows into the pipe 41 and is reduced in pressure to a low pressure by the fifth flow rate control device 42. Since the inlet of the fifth flow rate control device 42 is in a liquid state, more refrigerant flows through the fifth flow rate control device 42 than when the inlet is in a gaseous state. Therefore, even if the refrigerant flowing through the liquid draining pipe 41 exchanges heat with the high-pressure gaseous refrigerant flowing from the gas-liquid separator 12 into the first branch part 10 in the fourth heat exchange part 43, the refrigerant flows at a low pressure. It does not become superheated gas, but flows into the first connection pipe 6 in a two-phase state.

【0016】[0016]

【発明が解決しようとする課題】上記のような従来の空
気調和装置では、空調の要素の中で、換気という機能を
持っていないため、他に換気装置が必要となり、また、
その室外の空気を導入することにより発生する負荷に対
応できないという問題があった。
[Problems to be Solved by the Invention] Conventional air conditioners such as those described above do not have the function of ventilation among the air conditioning elements, so an additional ventilation device is required.
There was a problem in that it could not cope with the load generated by introducing the outdoor air.

【0017】この発明は、上記のような問題点を解決す
るためになされたもので、各室内機毎に冷暖房を選択的
に、かつ一方の室内機では冷房、他方の室内機では暖房
が同時に行うことができる空気調和装置に、換気の機能
を持たせ、かつ換気によって発生する負荷を運転する室
内機の運転状態に応じて、対応させることができる空気
調和装置を得ることを目的とする。
[0017] This invention was made to solve the above-mentioned problems, and it is possible to selectively perform heating and cooling for each indoor unit, and simultaneously perform cooling in one indoor unit and heating in the other indoor unit. To provide an air conditioner which can provide a ventilation function and which can respond to the load generated by ventilation according to the operating state of an operating indoor unit.

【0018】[0018]

【課題を解決するための手段】この発明に係る冷・暖房
同時運転可能な空気調和装置においては、圧縮機、四方
切換弁、熱源機側熱交換器、アキュムレータ等よりなる
1台の熱源機と、室内側熱交換器、第1の流量制御装置
等からなる複数台の室内機とを、第1、第2の接続配管
を介して接続すると共に、上記複数台の室内機の上記室
内側熱交換器の一方を上記第1の接続配管または、第2
の接続配管に切り換え可能に接続する切換弁を有する第
1の分岐部と、上記複数台の室内機の上記室内側熱交換
器の他方を、上記第1の流量制御装置を介して上記第2
の接続配管に接続してなる第2の分岐部とを第2の流量
制御装置を介して接続したものにおいて、外気導入用送
風機を備え、この送風機により導入された外気と熱交換
させる第1の室内機と、室内空気を循環させる送風機を
備え、この送風機により循環される空気と熱交換させる
第2の室内機とにより上記室内機を構成し、上記第2の
室内機のうち少なくとも1台が暖房運転を行う場合、第
1の室内機は暖房運転を行う構成としたものである。
[Means for Solving the Problems] In the air conditioner capable of simultaneous cooling and heating operation according to the present invention, a single heat source machine including a compressor, a four-way switching valve, a heat exchanger on the heat source machine side, an accumulator, etc. , an indoor heat exchanger, a first flow rate control device, etc., are connected via first and second connection pipes, and the indoor heat of the plurality of indoor units is Connect one side of the exchanger to the first connection pipe or the second connection pipe.
A first branch section having a switching valve that is switchably connected to the connecting pipe of the indoor unit, and the other of the indoor heat exchangers of the plurality of indoor units are connected to the second branch section through the first flow rate control device.
A first branch part connected to a connecting pipe of the first part is connected via a second flow rate control device to a second branch part formed by connecting to a connecting pipe of The indoor unit comprises an indoor unit and a second indoor unit that includes a blower that circulates indoor air and exchanges heat with the air that is circulated by the blower, and at least one of the second indoor units When performing heating operation, the first indoor unit is configured to perform heating operation.

【0019】また、第2の室内機のうち、暖房運転を行
う第2の室内機が1台もなく、かつ少なくとも1台が冷
房運転を行う第2の室内機がある場合、第1の室内機を
冷房運転させる。
[0019] Furthermore, if there is no second indoor unit that performs heating operation among the second indoor units, and at least one second indoor unit performs cooling operation, the first indoor unit Set the machine to cooling operation.

【0020】また、第2の室内機のうち、暖房運転、或
は冷房運転を行う第2の室内機が1台もなく、かつ1台
でも送風運転を行う第2の室内機がある場合、第1の室
内機を送風運転させる。
[0020] Furthermore, when there is no second indoor unit that performs heating operation or cooling operation among the second indoor units, and there is at least one second indoor unit that performs ventilation operation, The first indoor unit is operated to blow air.

【0021】[0021]

【作用】第2の室内機が、1台でも暖房運転の場合、第
1の室内機を暖房運転することにより、第1の室内機の
室内側熱交換器にて、暖められた空気が、第2の室内機
に供給される。また、第2の室内機のうち、暖房運転を
行う第2の室内機が1台もなく、かつ1台でも冷房運転
を行う第2の室内機がある場合、第1の室内機を冷房運
転することにより、第1の室内機の室内側熱交換器にて
冷却された空気が、第2の室内機の室内側熱交換器に供
給される。また、第2の室内機のうち、暖房運転、或は
冷房運転を行う第2の室内機が1台もなく、かつ1台で
も送風運転を行う第2の室内機がある場合、第1の室内
機を送風運転させるものである。
[Operation] When even one second indoor unit is in heating operation, by heating the first indoor unit, the air warmed by the indoor heat exchanger of the first indoor unit is It is supplied to the second indoor unit. In addition, if there is no second indoor unit that performs heating operation among the second indoor units, and there is at least one second indoor unit that performs cooling operation, the first indoor unit is set to cooling operation. By doing so, the air cooled by the indoor heat exchanger of the first indoor unit is supplied to the indoor heat exchanger of the second indoor unit. In addition, if there is no second indoor unit that performs heating operation or cooling operation among the second indoor units, and there is at least one second indoor unit that performs ventilation operation, the first This is to operate the indoor unit to blow air.

【0022】[0022]

【実施例】【Example】

実施例1.以下、この発明の実施例について説明する。 図1はこの発明の一実施例による空気調和装置の冷媒系
を中心とする全体構成図である。また、図2、図3、図
4は図1に示す空気調和装置における冷暖房運転時の動
作状態を示したもので、図2は冷房又は暖房のみの運転
動作状態図、図3及び図4は冷暖房同時運転の動作を示
すもので、図3は暖房主体(暖房運転しようとしている
室内機の合計容量が冷房運転しようとしている室内機の
合計容量より大きい場合)を、図4は冷房主体(冷房運
転しようとしている室内機の合計容量が暖房運転しよう
としている室内機の合計容量より大きい場合)を示す運
転動作状態図である。そして、図5はこの発明の他の実
施例の空気調和装置の冷媒系を中心とする全体構成図で
ある。なお、この実施例では、熱源機1台に、第1の室
内機を1台第2の室内機を2台接続した場合について説
明するが、第1の室内機及び第2の室内機が、それぞれ
1台以上接続した場合でも同様である。
Example 1. Examples of the present invention will be described below. FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to an embodiment of the present invention. Furthermore, FIGS. 2, 3, and 4 show the operating states of the air conditioner shown in FIG. 1 during cooling/heating operation. FIG. Figure 3 shows the operation of simultaneous cooling and heating operation. Figure 3 shows the heating-dominant operation (when the total capacity of the indoor units attempting heating operation is larger than the total capacity of the indoor units attempting cooling operation), and Figure 4 shows the cooling-dominant operation (cooling operation). FIG. 7 is an operation state diagram showing a case where the total capacity of the indoor units that are about to be operated is larger than the total capacity of the indoor units that are about to be operated for heating. FIG. 5 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention. In this example, a case will be described in which one first indoor unit and two second indoor units are connected to one heat source unit, but the first indoor unit and the second indoor unit are The same applies even when one or more units of each are connected.

【0023】図1において、Aは熱源機、Bは第1の室
内機、C,Dは第2の室内機で、第1の室内機B、第2
の室内機C,Dは後述するように互いに並列接続されて
おり、冷凍サイクル上それぞれ同じ構成になっている。 Eは後述するように、第1の分岐部、第2の流量調整装
置、第2の分岐部、気液分離装置、第1及び第2の熱交
換器を内蔵した中継機である。1は圧縮機、2は熱源機
の冷媒流通方向を切り換える四方切換弁、3は熱源機側
熱交換器、4はアキュムレータで、上記機器1〜3と接
続され熱源機Aを構成する。5はそれぞれ第1及び第2
の室内機B,C,Dの室内側熱交換器、6は四方切換弁
2と中継機Eを接続する太い第1の接続配管、6b,6
c,6dはそれぞれ第1及び第2の室内機B,C,Dの
室内側熱交換器5と中継機Eを接続し、第1の接続配管
6に対応する室内機側の第1の接続配管、7は熱源機側
熱交換器3と中継機Eを接続する上記第1の接続配管6
より細い第2の接続配管、7b,7c,7dはそれぞれ
第1及び第2の室内機B,C,Dの室内側熱交換器5と
中継機Eを接続し、第2の接続配管7に対応する室内機
側の第2の接続配管、8は室内機側の第1の接続配管6
b,6c,6dと、第1の接続配管6または、第2の接
続配管7側に切り換え可能に接続する三方切換弁、9は
室内側熱交換器5に近接して接続され室内側熱交換器5
の出口側の冷房時は過熱度、暖房時は過冷却度により制
御される第1の流量調整装置で、室内機側の第2の接続
配管7b,7c,7dに接続される。
In FIG. 1, A is a heat source unit, B is a first indoor unit, C and D are second indoor units, and the first indoor unit B, the second indoor unit
The indoor units C and D are connected in parallel to each other as will be described later, and have the same configuration on the refrigeration cycle. As will be described later, E is a repeater incorporating a first branch, a second flow rate adjustment device, a second branch, a gas-liquid separation device, and first and second heat exchangers. 1 is a compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source machine, 3 is a heat exchanger on the heat source machine side, and 4 is an accumulator, which are connected to the above-mentioned devices 1 to 3 to constitute heat source machine A. 5 are the first and second respectively
indoor heat exchangers for indoor units B, C, and D; 6 is a thick first connection pipe that connects the four-way switching valve 2 and the repeater E; 6b, 6;
c and 6d connect the indoor heat exchangers 5 of the first and second indoor units B, C, and D, respectively, and the repeater E, and are the first connections on the indoor unit side corresponding to the first connection piping 6. Piping, 7 is the first connection piping 6 that connects the heat source machine side heat exchanger 3 and the relay machine E.
Thinner second connection pipes 7b, 7c, and 7d connect the indoor heat exchangers 5 and repeater E of the first and second indoor units B, C, and D, respectively, and are connected to the second connection pipes 7. The corresponding second connection pipe on the indoor unit side, 8 is the first connection pipe 6 on the indoor unit side
b, 6c, and 6d, a three-way switching valve that is switchably connected to the first connecting pipe 6 or the second connecting pipe 7, and 9 is connected close to the indoor heat exchanger 5 for indoor heat exchange. Vessel 5
The first flow rate adjusting device is controlled by the degree of superheating during cooling and the degree of subcooling during heating on the exit side of the air conditioner, and is connected to second connection pipes 7b, 7c, and 7d on the indoor unit side.

【0024】10は室内機側の第1の接続配管6b,6
c,6dと、第1の接続配管6または、第2の接続配管
7に切り換え可能に接続する三方切換弁8よりなる第1
の分岐部、11は室内機側の第2の接続配管7b,7c
,7dと、その会合部よりなる第2の分岐部、12は第
2の接続配管7の途中に設けられた気液分離装置で、そ
の気相部は、三方切換弁8のそれぞれの第1口8aに接
続され、その液相部は第2の分岐部11に接続されてい
る。13は気液分離装置12と第2の分岐部11との間
に接続する開閉自在な第2の流量調整装置、14は第2
の分岐部11と上記第1の接続配管6とを結ぶバイパス
配管、15はバイパス配管14の途中に設けられた第3
の流量調整装置、16b,16c,16dはバイパス配
管14の第3の流量調整装置15の下流に設けられ、第
2の分岐部11における各室内機側の第2の接続配管7
b,7c,7dとの間でそれぞれ熱交換を行う第3の熱
交換部、16aはバイパス配管14の第3の流量調整装
置15の下流及び第3の熱交換部16b,16c,16
dの下流に設けられ、第2の分岐部11における各室内
機側の第2の接続配管7b,7c,7dの会合部との間
で熱交換を行う第2の熱交換部、19はバイパス配管1
4の第3の流量調整装置15の下流及び第2の熱交換部
16aの下流に設けられ気液分離装置12と第2の流量
調整装置13とを接続する配管との間で熱交換を行う第
1の熱交換部、17は第2の分岐部11と第1の接続配
管6との間に接続する開閉自在な第4の流量制御装置、
32は熱源側熱交換器3と第2の接続配管7との間に設
けられた第3の逆止弁であり、熱源側熱交換器3から第
2の接続配管7へのみ冷媒流通を許容する。
10 is the first connection pipe 6b, 6 on the indoor unit side.
c, 6d, and a three-way switching valve 8 that is switchably connected to the first connecting pipe 6 or the second connecting pipe 7.
11 is the second connection pipe 7b, 7c on the indoor unit side.
, 7d and a second branching part consisting of a meeting part thereof; 12 is a gas-liquid separator installed in the middle of the second connecting pipe 7; It is connected to the port 8a, and its liquid phase part is connected to the second branch part 11. 13 is a second flow rate regulating device that can be opened and closed and is connected between the gas-liquid separation device 12 and the second branch 11; 14 is a second flow rate regulating device;
A bypass pipe 15 connects the branch part 11 and the first connection pipe 6, and 15 is a third pipe provided in the middle of the bypass pipe 14.
The flow rate adjustment devices 16b, 16c, and 16d are provided downstream of the third flow rate adjustment device 15 in the bypass pipe 14, and are connected to the second connection pipe 7 on each indoor unit side in the second branch portion 11.
b, 7c, and 7d, respectively;
A second heat exchange section 19 is provided downstream of d and performs heat exchange with the meeting section of the second connection pipes 7b, 7c, and 7d on each indoor unit side in the second branch section 11, and 19 is a bypass. Piping 1
Heat exchange is performed between pipes that are provided downstream of the third flow rate adjustment device 15 and downstream of the second heat exchange section 16a in No. 4 and connect the gas-liquid separation device 12 and the second flow rate adjustment device 13. A first heat exchange part, 17 is a fourth flow rate control device that can be opened and closed, and is connected between the second branch part 11 and the first connection pipe 6;
32 is a third check valve provided between the heat source side heat exchanger 3 and the second connection pipe 7, and allows the refrigerant to flow only from the heat source side heat exchanger 3 to the second connection pipe 7. do.

【0025】33は熱源機Aの四方切換弁2と第1の接
続配管6との間に設けられた第4の逆止弁であり、第1
の接続配管6から四方切換弁2へのみ冷媒流通を許容す
る。34は熱源機Aの四方切換弁2と第2の接続配管7
との間に設けられた第5の逆止弁であり、四方切換弁2
から第2の接続配管7へのみ冷媒流通を許容する。35
は熱源側熱交換器3と第1の接続配管6との間に設けら
れた第6の逆止弁であり、第1の接続配管6から熱源側
熱交換器3へのみ冷媒流通を許容する。上記第3の逆止
弁32から第6の逆止弁35で切換弁40を構成する。 41は一端を気液分離装置12に他端を第1の接続配管
6に接続した液抜き配管、42は液抜き配管41の気液
分離装置12と第1の接続配管6の間に設けた第5の流
量制御装置、43は液抜き配管41の第5の流量制御装
置42の下流に設けられ、気液分離装置12と第1の分
岐部10を接続する配管との間で熱交換を行う第4の熱
交換部である。23は第2の流量制御装置13と第1の
熱交換部19を接続する配管に取り付けた第1の温度検
出器、25は上記第1の温度検出器と同じ配管に取り付
けた第1の圧力検出器、26は第2の分岐部11に取り
付けた第3の圧力検出器、52は第1の接続配管6と第
1の分岐部10を接続する配管に取り付けた第3の圧力
検出器、51は液抜き配管41側の第4の熱交換部43
の出口側に取り付けた第2の温度検出器、53はバイパ
ス配管14側の第1の熱交換部19の出口側に取り付け
た第3の温度検出器である。
33 is a fourth check valve provided between the four-way switching valve 2 of the heat source device A and the first connecting pipe 6;
The refrigerant is allowed to flow only from the connecting pipe 6 to the four-way switching valve 2. 34 is the four-way switching valve 2 of the heat source device A and the second connection pipe 7
It is a fifth check valve provided between the four-way switching valve 2 and the four-way switching valve 2.
The refrigerant is allowed to flow only from the to the second connecting pipe 7. 35
is a sixth check valve provided between the heat source side heat exchanger 3 and the first connection pipe 6, and allows refrigerant flow only from the first connection pipe 6 to the heat source side heat exchanger 3. . The third check valve 32 to the sixth check valve 35 constitute a switching valve 40. Reference numeral 41 indicates a liquid draining pipe which has one end connected to the gas-liquid separator 12 and the other end to the first connecting pipe 6, and 42 indicates a liquid draining pipe 41 provided between the gas-liquid separator 12 and the first connecting pipe 6. A fifth flow rate control device 43 is provided downstream of the fifth flow rate control device 42 in the liquid draining pipe 41 and performs heat exchange between the gas-liquid separation device 12 and the pipe connecting the first branch section 10. This is the fourth heat exchange section. 23 is a first temperature detector attached to the pipe connecting the second flow rate control device 13 and the first heat exchange section 19, and 25 is a first pressure sensor attached to the same pipe as the first temperature detector. Detector, 26 is a third pressure detector attached to the second branch part 11, 52 is a third pressure detector attached to the pipe connecting the first connection pipe 6 and the first branch part 10, 51 is the fourth heat exchange part 43 on the side of the liquid draining pipe 41
A second temperature detector 53 is attached to the outlet side of the first heat exchange section 19 on the bypass piping 14 side.

【0026】また、第1の室内機Bは、例えば換気を目
的として、室外の空気を吸込み第1の室内機Bの室内側
熱交換器5を通過させて、さらにその空気を第2の室内
機C,Dの室内側熱交換器5の1次側空気として供給す
るように構成されている。
Further, the first indoor unit B takes in outdoor air, passes it through the indoor heat exchanger 5 of the first indoor unit B, and then transfers the air to the second indoor unit, for example, for the purpose of ventilation. It is configured to be supplied as primary air to the indoor heat exchangers 5 of the machines C and D.

【0027】このように構成されたこの発明の動作につ
いて説明する。まず、図2を用いて冷房運転のみの場合
について説明する。すなわち、図2に実線矢印で示すよ
うに圧縮機1より吐出された高温高圧の冷媒ガスは四方
切換弁2を通り、熱源機側交換器3で熱交換して凝縮さ
れた後、第3の逆止弁32、第2の接続配管7、気液分
離装置12、第2の流量制御装置13の順に通り、更に
第2の分岐部11、室内機側の第2の接続配管7b,7
c,7dを通り、各第1及び第2の室内機B,C,Dに
流入した冷媒は、各室内側熱交換器5の出口の過熱度に
より制御される第1の流量制御装置9により低圧まで減
圧されて室内側熱交換器5で室内空気と熱交換して蒸発
しガス化され室内を冷房する。そして、このガス状態と
なった冷媒は、室内機側の第1の接続配管6b,6c,
6d三方切換弁8、第1の分岐部10を通り、第1の接
続配管6、第4の逆止弁33、四方切換弁2、アキュム
レータ4を経て圧縮機1に吸入される循環サイクルを構
成し、冷房運転を行う。このとき、三方切換弁8はそれ
ぞれの第1口8aは閉路、第2口8b及び第3口8cは
開路されている。
The operation of the present invention configured as described above will be explained. First, the case of only cooling operation will be described using FIG. 2. That is, as shown by the solid arrow in FIG. 2, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, exchanges heat with the heat source equipment side exchanger 3, and is condensed. It passes through the check valve 32, the second connection pipe 7, the gas-liquid separation device 12, and the second flow rate control device 13 in this order, and then passes through the second branch 11 and the second connection pipes 7b and 7 on the indoor unit side.
The refrigerant that has flowed into each of the first and second indoor units B, C, and D through channels c and 7d is controlled by the first flow rate control device 9 that is controlled by the degree of superheating at the outlet of each indoor heat exchanger 5. The pressure is reduced to a low pressure, and the air is evaporated and gasified by exchanging heat with indoor air in the indoor heat exchanger 5 to cool the room. Then, the refrigerant in the gas state is transferred to the first connection pipes 6b, 6c on the indoor unit side,
6d constitutes a circulation cycle in which the fluid passes through the three-way switching valve 8, the first branch 10, the first connecting pipe 6, the fourth check valve 33, the four-way switching valve 2, and the accumulator 4, and is sucked into the compressor 1. and perform cooling operation. At this time, the first port 8a of the three-way switching valve 8 is closed, and the second port 8b and third port 8c are opened.

【0028】この時、第1の接続配管6が低圧、第2の
接続配管7が高圧のため必然的に第3の逆止弁32、第
4の逆止弁33へ冷媒流通する。また、このサイクルの
時、第2の流量制御装置13を通過した冷媒の一部がバ
イパス配管14へ入り、第3の流量調整装置15で低圧
まで減圧されて、第3の熱交換部16b,16c,16
dで各室内機側の第2の接続配管7b,7c,7dとの
間で、また第2の熱交換部16aで第2の分岐部11の
各室内機側の第2の接続配管7b,7c,7dの会合部
との間で、更に第1の熱交換部19で第2の流量制御装
置13に流入する冷媒との間で熱交換を行い蒸発した冷
媒は、第1の接続配管6へ入り、第4の逆止弁33、四
方切換弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる。一方、第1及び第2及び第3の熱交換部19,1
6a,16b,16c,16dで熱交換し、冷却され過
冷却度を十分につけられた上記第2の分岐部11の冷媒
は冷房しようとしている第1及び第2の室内機B,C,
Dへ流入する。また、冷房運転において空気調和装置に
封入されている冷媒が、第2の接続配管を高圧液冷媒で
満たすほど封入されていない場合、熱源側熱交換器3に
て凝縮された高圧気液2相冷媒は、第2の接続配管7、
気液分離装置12を経た後に、第1及び第2及び第3の
熱交換部19,16a,16b,16c,16dにて、
第3の流量制御装置15にて低圧まで減圧されたバイパ
ス側を流れる冷媒と熱交換することにより、液化してさ
らに冷却され過冷却度を十分につけられて冷房しようと
している第1及び第2の室内機B,C,Dへ流入する。
At this time, since the first connecting pipe 6 is under low pressure and the second connecting pipe 7 is under high pressure, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33. Also, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the bypass pipe 14, is reduced in pressure to a low pressure by the third flow rate control device 15, and is transferred to the third heat exchange section 16b, 16c, 16
d between the second connection pipes 7b, 7c, 7d on each indoor unit side, and the second connection pipe 7b on each indoor unit side of the second branch part 11 at the second heat exchange part 16a, The refrigerant that is evaporated through heat exchange with the refrigerant flowing into the second flow rate control device 13 in the first heat exchanger 19 is transferred to the first connecting pipe 6. The air enters the compressor 1 through the fourth check valve 33, the four-way switching valve 2, and the accumulator 4. On the other hand, the first, second and third heat exchange parts 19,1
6a, 16b, 16c, and 16d, and the refrigerant in the second branch section 11, which has been cooled and has a sufficient degree of supercooling, is transferred to the first and second indoor units B, C, which are about to be cooled.
Flows into D. In addition, when the refrigerant sealed in the air conditioner during cooling operation is not sealed enough to fill the second connection pipe with high-pressure liquid refrigerant, the high-pressure gas-liquid two-phase condensed in the heat source side heat exchanger 3 The refrigerant is supplied to the second connection pipe 7,
After passing through the gas-liquid separator 12, at the first, second and third heat exchange parts 19, 16a, 16b, 16c, 16d,
By exchanging heat with the refrigerant flowing through the bypass side, which has been reduced in pressure to a low pressure by the third flow rate control device 15, it is liquefied and further cooled. It flows into indoor units B, C, and D.

【0029】次に、図2を用いて暖房運転のみの場合に
ついて説明する。すなわち、図2に破線矢印で示すよう
に圧縮機1より吐出された高温高圧の冷媒ガスは四方切
換弁2を通り、第5の逆止弁34、第2の接続配管7、
気液分離装置12を通り、第1の分岐部10、三方切換
弁8、室内機側の第1の接続配管6b,6c,6dを通
り、第1及び第2の室内機B,C,Dに流入した冷媒は
、室内空気と熱交換して凝縮液化し、室内を暖房する。 そして、この液状態となった冷媒は、各室内側熱交換器
5の出口の過冷却度により制御される第1の流量制御装
置9を通り、室内機側の第2の接続配管7b,7c,7
dから第2の分岐部11に流入して合流し、更に第4の
流量制御装置17を通り、ここで第1の流量制御装置9
又は第4の流量調整装置17のどちらか一方で低圧の二
相状態まで減圧される。そして、低圧まで減圧された冷
媒は、第1の接続配管を経て、第6の逆止弁35、熱源
機側熱交換器3に流入し熱交換して蒸発しガス状態とな
った冷媒は、四方切換弁2、アキュムレータ4を経て圧
縮機1に吸入される循環サイクルを構成し、暖房運転を
行う。このとき、三方切換弁8はそれぞれの第2口8b
は閉路、第1口8a及び第3口8cは開路されている。 この時、第1の接続配管6が低圧、第2の接続配管7が
高圧のため必然的に第5の逆止弁34、第6の逆止弁3
5へ冷媒は流通する。
Next, the case of only heating operation will be explained using FIG. That is, as shown by the broken line arrow in FIG. 2, the high temperature and high pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, the second connection pipe 7,
It passes through the gas-liquid separator 12, passes through the first branch part 10, the three-way switching valve 8, and the first connection pipes 6b, 6c, and 6d on the indoor unit side, and passes through the first and second indoor units B, C, and D. The refrigerant that flows into the room exchanges heat with the indoor air, condenses and liquefies, heating the room. Then, this liquid refrigerant passes through the first flow rate control device 9 controlled by the degree of subcooling at the outlet of each indoor heat exchanger 5, and then passes through the second connection pipes 7b, 7c on the indoor unit side. ,7
d, flows into the second branch 11, merges, and further passes through the fourth flow rate control device 17, where it flows into the first flow rate control device 9.
Alternatively, the pressure is reduced to a low-pressure two-phase state by either the fourth flow rate regulator 17 or the fourth flow rate regulator 17. The refrigerant, which has been reduced in pressure to a low pressure, passes through the first connection pipe, flows into the sixth check valve 35, and the heat exchanger 3 on the heat source equipment side, where it exchanges heat and evaporates into a gas state. A circulation cycle is configured in which air is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4, and heating operation is performed. At this time, the three-way switching valve 8 has each second port 8b.
is a closed circuit, and the first port 8a and the third port 8c are open circuits. At this time, since the first connecting pipe 6 is under low pressure and the second connecting pipe 7 is under high pressure, the fifth check valve 34 and the sixth check valve 3 are inevitably connected.
The refrigerant flows to 5.

【0030】冷暖房同時運転における暖房主体の場合に
ついて図3を用いて説明する。ここでは第1及び第2の
室内機B,Cの2台が暖房、第2の室内機D1台が冷房
しようとしている場合について説明する。すなわち、図
3に実線矢印で示すように圧縮機1より吐出された高温
高圧の冷媒ガスは四方切換弁2、第5の逆止弁34、第
2の接続配管7を通り、中継機Eへ送られ、気液分離装
置12を通り、そして第1の分岐部10、第1及び第2
の室内機B,Cに接続された三方切換弁8、室内機側の
第1の接続配管6b,6cの順に通り、暖房しようとし
ている第1及び第2の室内機B,Cに流入した冷媒は、
室内側熱交換器5で室内空気と熱交換して凝縮液化し、
室内を暖房する。そして、この液状態となった冷媒は、
室内側熱交換器5の出口の過冷却度により制御され、ほ
ぼ全開状態の第1の流量制御装置9を通り少し減圧され
て高圧と低圧の中間の圧力(中間圧)になり、室内機側
の第2の接続配管7b,7cから第2の分岐部11に流
入する。 そして、室内機側の第2の接続配管7dを通り冷房しよ
うとしている第2の室内機Dに入り、室内側熱交換器5
の出口の過熱度により制御される第1の流量制御装置9
により減圧された後に室内側熱交換器5に入り熱交換し
て蒸発しガス状態となって室内を冷房し、室内機Dに接
続された三方切換弁8を介して第1の接続配管6に流入
する。
[0030] A case in which heating is the main component in simultaneous cooling and heating operation will be described with reference to FIG. Here, a case will be described in which the first and second indoor units B and C are used for heating, and the second indoor unit D is used for cooling. In other words, as shown by the solid line arrow in FIG. the gas-liquid separator 12 and the first branch 10, the first and second
The refrigerant passes in this order through the three-way switching valve 8 connected to the indoor units B and C, and the first connection pipes 6b and 6c on the indoor unit side, and flows into the first and second indoor units B and C that are being heated. teeth,
It is condensed and liquefied by exchanging heat with indoor air in the indoor heat exchanger 5,
Heat the room. The refrigerant in this liquid state is
It is controlled by the degree of subcooling at the outlet of the indoor heat exchanger 5, and the pressure is slightly reduced through the first flow rate control device 9 which is in an almost fully open state, to a pressure between high pressure and low pressure (intermediate pressure), and then the indoor unit side It flows into the second branch part 11 from the second connecting pipes 7b and 7c. Then, it passes through the second connection pipe 7d on the indoor unit side, enters the second indoor unit D that is being cooled, and enters the indoor heat exchanger 5.
A first flow control device 9 controlled by the degree of superheating at the outlet of
After being depressurized, it enters the indoor heat exchanger 5, exchanges heat, evaporates, becomes a gas, cools the room, and then flows into the first connection pipe 6 via the three-way switching valve 8 connected to the indoor unit D. Inflow.

【0031】一方、他の冷媒は第2の分岐部11を通り
、第2の接続配管7の高圧と第2の分岐部11の中間圧
の差を一定にするように制御される開閉自在な第5の流
量制御装置17を通って、冷房しようとしている第2の
室内機Dを通った冷媒と合流して太い第1の接続配管6
に流入し、第6の逆止弁35、熱源機側熱交換器3に流
入し熱交換して蒸発しガス状態となる。その冷媒は、四
方切換弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる循環サイクルを構成し、暖房主体運転を行う。この
とき、冷房しようとしている第2の室内機Dの室内側熱
交換器5の蒸発圧力と熱源側熱交換器3の蒸発圧力の圧
力差が、太い第1の接続配管6に切り換えるために小さ
くなる。 このとき、室内機B,Cに接続された三方切換弁8はそ
れぞれの第2口8bは閉路、第1口8a及び第3口8c
は開路されている。また室内機Dに接続された三方切換
弁8は第2口8b及び第3口8cは開路、第1口8aは
閉路されている。
On the other hand, other refrigerants pass through the second branch 11, which is controlled to keep the difference between the high pressure of the second connecting pipe 7 and the intermediate pressure of the second branch 11 constant. It passes through the fifth flow rate control device 17 and merges with the refrigerant that has passed through the second indoor unit D that is being cooled, and is connected to the thick first connection pipe 6.
The gas flows into the sixth check valve 35 and the heat exchanger 3 on the heat source side, exchanges heat, and evaporates to become a gas. The refrigerant forms a circulation cycle in which the refrigerant is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4, and performs heating-dominant operation. At this time, the pressure difference between the evaporation pressure of the indoor heat exchanger 5 and the evaporation pressure of the heat source side heat exchanger 3 of the second indoor unit D that is trying to cool the air is small because the switch is made to the thick first connection pipe 6. Become. At this time, the three-way switching valve 8 connected to the indoor units B and C has the second port 8b closed, the first port 8a and the third port 8c.
is open. Further, in the three-way switching valve 8 connected to the indoor unit D, the second port 8b and the third port 8c are open, and the first port 8a is closed.

【0032】この時、第1の接続配管6が低圧、第2の
接続配管7が高圧のため必然的に第5の逆止弁34、第
6の逆止弁35へ冷媒は流通する。また、このサイクル
の時、一部の液冷媒は各室内機側の第2の接続配管7b
,7cの合流部からバイパス配管14へ入り、第3の流
量調整装置15で低圧まで減圧されて第2の熱交換部1
6aで第2の分岐部11の各室内機側の第2の接続配管
7b,7cの合流部との間で、更に第1の熱交換部19
で第2の流量制御装置13へ流入する冷媒との間で熱交
換を行い蒸発した冷媒は、第1の接続配管6へ入り第6
の逆止弁35を経て、熱源機側熱交換器3に流入し熱交
換して蒸発しガス状態となる。そして、この冷媒は四方
切換弁2、アキュムレータを経て圧縮機1に吸入される
。一方、第1、第2及び第3の熱交換部19,16a,
16b,16c,16dで熱交換し冷却され過冷却度を
十分につけられた上記第2の分岐部11の冷媒は冷房し
ようとしている第2の室内機Dへ流入する。
At this time, since the first connecting pipe 6 is under low pressure and the second connecting pipe 7 is under high pressure, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35. Also, during this cycle, some of the liquid refrigerant is transferred to the second connection pipe 7b on the side of each indoor unit.
, 7c enters the bypass pipe 14 from the confluence part, and is reduced to a low pressure by the third flow rate regulator 15, and then transferred to the second heat exchange section 1.
At 6a, a first heat exchange section 19 is connected between the second branch section 11 and the confluence section of the second connection pipes 7b and 7c on each indoor unit side.
The refrigerant that has undergone heat exchange with the refrigerant flowing into the second flow rate control device 13 and evaporated enters the first connection pipe 6 and flows into the sixth flow control device 13.
It flows into the heat source equipment side heat exchanger 3 through the check valve 35, exchanges heat, and evaporates into a gas state. This refrigerant is then sucked into the compressor 1 through the four-way switching valve 2 and the accumulator. On the other hand, the first, second and third heat exchange parts 19, 16a,
The refrigerant in the second branch section 11, which has been cooled by heat exchange in 16b, 16c, and 16d and has been sufficiently subcooled, flows into the second indoor unit D that is being cooled.

【0033】冷暖房同時運転における冷房主体の場合に
ついて図4を用いて説明する。ここでは、第1及び第2
の室内機B,Cの2台が暖房、第2の室内機D1台が冷
房しようとしていて、かつ、第2の室内機Dの冷房負荷
が、第1及び第2の室内機B,Dの暖房負荷より大きい
場合について説明する。すなわち、図4に実線矢印で示
すように圧縮機1より吐出された高温高圧の冷媒ガスは
四方切換弁2を通り、熱源機側熱交換器3で任意量熱交
換して気液2相の高温高圧冷媒となり、第3の逆止弁3
2、第2の接続配管7より、中継機Eの気液分離装置1
2へ送られる。ここで、ガス状冷媒と液状冷媒に分離さ
れ、分離されたガス状冷媒を第1の分岐部10、三方切
換弁8、室内機側の第1の接続配管6b,6cの順に通
り、暖房しようとしている第1及び第2の室内機B,C
に流入し、室内側熱交換器5で室内空気と熱交換して凝
縮液化し、室内を暖房する。更に、室内側熱交換器5の
出口の過冷却度により制御されほぼ全開状態の第1の流
量制御装置9を通り少し減圧されて、高圧と低圧の中間
の圧力(中間圧)となり、第2の分岐部11に流入する
。 一方、残りの液状冷媒は高圧と中間圧の差を一定にする
ように制御される第2の流量制御装置13を通って第2
の分岐部11に流入し、暖房しようとしている第1及び
第2の室内機B,Cを通った冷媒と合流する。
[0033] A case in which cooling is the main component in simultaneous heating and cooling operation will be explained with reference to FIG. Here, the first and second
Two indoor units B and C are trying to heat the room, and one second indoor unit D is trying to cool the room, and the cooling load of the second indoor unit D is the same as that of the first and second indoor units B and D. A case where the load is larger than the heating load will be explained. That is, as shown by the solid arrow in FIG. 4, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, exchanges an arbitrary amount of heat with the heat exchanger 3 on the heat source equipment side, and converts into two-phase gas-liquid. It becomes high temperature and high pressure refrigerant, and the third check valve 3
2. From the second connection pipe 7, the gas-liquid separation device 1 of the repeater E
Sent to 2. Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant is passed through the first branch part 10, the three-way switching valve 8, and the first connecting pipes 6b and 6c on the indoor unit side in this order to perform heating. The first and second indoor units B and C
The air flows into the room, exchanges heat with indoor air in the indoor heat exchanger 5, condenses and liquefies, and heats the room. Furthermore, the pressure is slightly reduced through the first flow rate control device 9 which is controlled by the degree of subcooling at the outlet of the indoor heat exchanger 5 and is in an almost fully open state, resulting in a pressure between the high pressure and the low pressure (intermediate pressure). It flows into the branch part 11 of. On the other hand, the remaining liquid refrigerant passes through the second flow control device 13 which is controlled to keep the difference between the high pressure and the intermediate pressure constant.
The refrigerant flows into the branch section 11 of the refrigerant and joins with the refrigerant that has passed through the first and second indoor units B and C that are being heated.

【0034】そして、第2の分岐部11、室内機側の第
2の接続配管7dを通り、第2の室内機Dに流入する。 そして、この冷媒は、室内機Dの室内側熱交換器5の出
口の過熱度により制御される第1の流量制御装置9によ
り低圧まで減圧されて室内側熱交換器5で室内空気と熱
交換して蒸発しガス化され室内を冷房する。そして、こ
のガス状態となった冷媒は、室内機側の第1の接続配管
6d、第2の室内機Dに接続された三方切換弁8、第1
の分岐部10、第1の接続配管6、第4の逆止弁33、
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される循環サイクルを構成し、冷房主体運転を行う。こ
のとき、第2の室内機Dに接続された三方切換弁8はそ
れぞれの第1口8aは閉路、第2口8b及び第3口8c
は開路されている。また第1及び第2の室内機B,Cに
接続された三方切換弁8は第1口8a及び第3口8cは
開路、第2口8bは閉路されている。
The water then flows into the second indoor unit D through the second branch 11 and the second connection pipe 7d on the indoor unit side. This refrigerant is then reduced in pressure to a low pressure by a first flow rate control device 9 that is controlled by the degree of superheating at the outlet of the indoor heat exchanger 5 of the indoor unit D, and is then heat exchanged with indoor air in the indoor heat exchanger 5. It evaporates and becomes gas, cooling the room. Then, the refrigerant in the gas state is transferred to the first connection pipe 6d on the indoor unit side, the three-way switching valve 8 connected to the second indoor unit D, and the first connection pipe 6d on the indoor unit side.
branch part 10, first connection pipe 6, fourth check valve 33,
A circulation cycle is configured in which the air is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4, and air-conditioning-based operation is performed. At this time, the three-way switching valve 8 connected to the second indoor unit D has the first port 8a closed, the second port 8b, and the third port 8c.
is open. Further, in the three-way switching valve 8 connected to the first and second indoor units B and C, the first port 8a and the third port 8c are open, and the second port 8b is closed.

【0035】このとき、第1の接続配管6が低圧、第2
の接続配管7が高圧のため必然的に第3の逆止弁32、
第4の逆止弁33へ冷媒は流通する。また、このサイク
ルの時、一部の液冷媒は各室内機側の第2の接続配管7
b,7cの合流部からバイパス配管14へ入り、第3の
流量制御装置15で低圧まで減圧されて第2の熱交換部
16aで第2の分岐部11の各室内機側の第2の接続配
管7b,7cの合流部との間で、更に第1の熱交換部1
9で第2の流量制御装置へ流入する冷媒との間で熱交換
を行い蒸発した冷媒は、第1の接続配管6へ入り、第4
の逆止弁33、四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される。一方、第1、第2、及び第3の
熱交換部19,16a,16b,16c,16dで熱交
換し冷却され過冷却度を十分につけられた上記第2の分
岐部11の冷媒は冷房しようとしている第2の室内機D
へ流入する。
At this time, the first connection pipe 6 is at low pressure, and the second
Because the connecting pipe 7 is under high pressure, the third check valve 32,
The refrigerant flows to the fourth check valve 33. Also, during this cycle, some of the liquid refrigerant is transferred to the second connection pipe 7 on each indoor unit side.
b, 7c enters the bypass pipe 14 from the confluence part, is reduced to low pressure by the third flow rate control device 15, and is connected to the second connection on each indoor unit side of the second branch part 11 in the second heat exchange part 16a. Further, a first heat exchange section 1 is provided between the confluence section of the pipes 7b and 7c.
The evaporated refrigerant undergoes heat exchange with the refrigerant flowing into the second flow rate control device at 9, enters the first connection pipe 6, and flows into the fourth flow control device.
It is sucked into the compressor 1 through the check valve 33, the four-way switching valve 2, and the accumulator 4. On the other hand, the refrigerant in the second branch part 11, which has been cooled by heat exchange in the first, second, and third heat exchange parts 19, 16a, 16b, 16c, and 16d, and has been sufficiently supercooled, will be cooled. The second indoor unit D
flows into.

【0036】また、気液分離装置12にて分離されたガ
ス状冷媒と液状冷媒の境界面である液面が、気液分離装
置12の液抜き配管41より下にある場合は、ガス状冷
媒が液抜き配管41に流入し第5の流量制御装置42に
て低圧まで減圧される。第5の流量制御装置42の入口
がガス状態のため、第5の流量制御装置42を流れる冷
媒は少ない。このため、液抜き配管41を流れる冷媒は
、第4の熱交換部43にて、気液分離装置12から第1
の分岐部10に流入する高圧ガス状冷媒と熱交換して低
圧の過熱ガスになって、第1の接続配管6に流入する。 逆に、気液分離装置12にて分離されたガス状冷媒と液
状冷媒の境界面である液面が、気液分離装置12の液抜
き配管41より上にある場合は、液状冷媒が液抜き配管
41に流入し第5の流量制御装置42にて低圧まで減圧
される。第5の流量制御装置42の入口が液状態のため
、第5の流量制御装置42を流れる冷媒は、上記入り口
がガス状状態の場合と比べて多い。このため、液抜き配
管41を流れる冷媒は、第4の熱交換部43にて、気液
分離装置12から第1の分岐部10に流入する高圧ガス
状冷媒と熱交換しても、低圧の過熱ガスにならず、気液
2相状態で第1の接続配管6に流入する。
Furthermore, if the liquid level, which is the interface between the gaseous refrigerant and liquid refrigerant separated in the gas-liquid separator 12, is below the liquid drain pipe 41 of the gas-liquid separator 12, the gaseous refrigerant flows into the liquid drain pipe 41 and is reduced in pressure to a low pressure by the fifth flow rate control device 42. Since the inlet of the fifth flow rate control device 42 is in a gas state, the amount of refrigerant flowing through the fifth flow rate control device 42 is small. Therefore, the refrigerant flowing through the liquid draining pipe 41 is transferred from the gas-liquid separator 12 to the first
The refrigerant exchanges heat with the high-pressure gaseous refrigerant flowing into the branch section 10, becomes a low-pressure superheated gas, and flows into the first connecting pipe 6. Conversely, if the liquid level, which is the interface between the gaseous refrigerant and the liquid refrigerant separated in the gas-liquid separator 12, is above the liquid drain pipe 41 of the gas-liquid separator 12, the liquid refrigerant is drained. It flows into the pipe 41 and is reduced in pressure to a low pressure by the fifth flow rate control device 42. Since the inlet of the fifth flow rate control device 42 is in a liquid state, more refrigerant flows through the fifth flow rate control device 42 than when the inlet is in a gaseous state. Therefore, even if the refrigerant flowing through the liquid draining pipe 41 exchanges heat with the high-pressure gaseous refrigerant flowing from the gas-liquid separator 12 into the first branch part 10 in the fourth heat exchange part 43, the refrigerant flows at a low pressure. The gas does not become a superheated gas and flows into the first connection pipe 6 in a gas-liquid two-phase state.

【0037】図6を用いて、第1の室内機Bの運転につ
いて説明する。ステップ90にて第2の室内機C,Dの
うち、いずれかが暖房運転しているかを判定し、暖房運
転していればステップ93に進み、第1の室内機Bは暖
房運転を行う。また、第2の室内機C,Dのいずれもが
暖房運転していない場合は、ステップ91に進む。ステ
ップ91では第2の室内機C,Dのうち、いずれかが冷
房運転しているかを判定し、冷房運転していればステッ
プ94に進み、第1の室内機Bは冷房運転を行う。また
、第2の室内機C,Dのいずれもが冷房運転していない
場合は、ステップ92に進む。ステップ92では第2の
室内機C,Dのうち、いずれかが送風運転しているかを
判定し、送風運転していればステップ95に進む、第1
の室内機Bは送風運転を行う。また、第2の室内機C,
Dのいずれもが送風運転していない場合は、ステップ9
6に進み、第1の室内機Bは停止する。
The operation of the first indoor unit B will be explained using FIG. 6. In step 90, it is determined whether one of the second indoor units C and D is in a heating operation, and if it is in a heating operation, the process proceeds to step 93, where the first indoor unit B performs a heating operation. Further, if neither of the second indoor units C and D is in heating operation, the process proceeds to step 91. In step 91, it is determined whether one of the second indoor units C and D is in a cooling operation, and if it is in a cooling operation, the process proceeds to step 94, where the first indoor unit B performs a cooling operation. Further, if neither of the second indoor units C and D is in the cooling operation, the process proceeds to step 92. In step 92, it is determined whether one of the second indoor units C and D is in the ventilation operation, and if it is in the ventilation operation, the process proceeds to step 95.
Indoor unit B performs ventilation operation. In addition, the second indoor unit C,
If none of D is operating, step 9
6, the first indoor unit B stops.

【0038】このように第1の室内機Bは、第2の室内
機C,Dの運転又は停止に連動して、運転又は停止する
。さらに第2の室内機C,Dが、1台でも暖房運転して
いたら第1の室内機Bは暖房運転し、第1の室内機Bに
吸込まれた冷たい室外の空気は、第1の室内機Bの室内
側熱交換器5で例えば室温程度まで暖められ、第2の室
内機C,Dに供給される。この場合、第1の室内機Bに
よって冷たい室外の空気は、例えば室温程度まで暖めら
れているので、室外の空気を導入することによる第2の
室内機C,Dの暖房負荷の増加は抑えられる。ここで、
例えば、第2の室内機Cが暖房、第2の室内機Dが冷房
の場合でも同様に、暖房負荷が発生するような冷たい室
外の空気を第1の室内機Bによって、例えば室温程度ま
で暖められているので、冷房運転している第2の室内機
Dの冷房負荷の増加にはつながらない。さらに、第2の
室内機C,Dのいずれもが暖房運転してなく、かついず
れかが冷房運転している場合は、第1の室内機Bは冷房
運転し、第1の室内機Bに吸込まれた室外の空気は、第
1の室内機Bの室内側熱交換器5で冷却され、第2の室
内機C,Dに供給される。この場合、第1の室内機Bに
よって室外の空気は冷却されるので、室外の空気を導入
することによる第2の室内機C,Dの冷房負荷の増加は
抑えられる。さらに、第2の室内機C,Dのいずれもが
暖房運転でも冷房運転でもなく、かついずれかが送風運
転の場合、第1の室内機Bは送風運転を行い、室外の空
気を導入して換気が行われる。
In this way, the first indoor unit B operates or stops in conjunction with the operation or stop of the second indoor units C and D. Furthermore, if even one of the second indoor units C and D is in heating operation, the first indoor unit B will be in heating operation, and the cold outdoor air sucked into the first indoor unit B will be transferred to the first indoor unit B. The indoor heat exchanger 5 of the machine B warms it up to about room temperature, for example, and supplies it to the second indoor units C and D. In this case, since the cold outdoor air is warmed by the first indoor unit B to, for example, room temperature, an increase in the heating load on the second indoor units C and D due to the introduction of outdoor air can be suppressed. . here,
For example, even if the second indoor unit C is for heating and the second indoor unit D is for cooling, the first indoor unit B can warm the cold outdoor air, which would generate a heating load, to about room temperature, for example. Therefore, it does not lead to an increase in the cooling load of the second indoor unit D that is in cooling operation. Furthermore, if neither of the second indoor units C and D is in the heating operation, and one of them is in the cooling operation, the first indoor unit B is in the cooling operation, and the first indoor unit B is The outdoor air taken in is cooled by the indoor heat exchanger 5 of the first indoor unit B, and then supplied to the second indoor units C and D. In this case, since the outdoor air is cooled by the first indoor unit B, an increase in the cooling load on the second indoor units C and D due to the introduction of outdoor air can be suppressed. Furthermore, if neither of the second indoor units C and D is in heating mode nor in cooling mode, and either one is in blowing mode, the first indoor unit B is in blowing mode and introduces outdoor air. Ventilation is provided.

【0039】実施例2.なお、上記実施例では三方切換
弁8を設けて室内機側の第1の接続配管6b,6c,6
dと、第1の接続配管6または、第2の接続配管7に切
り換え可能に接続しているが、図5に示すように2つの
電磁開閉弁30,31等の開閉弁を設けて上述したよう
に切り換え可能に接続しても同様な作用効果が得られる
Example 2. In the above embodiment, a three-way switching valve 8 is provided to connect the first connection pipes 6b, 6c, 6 on the indoor unit side.
d and the first connection pipe 6 or the second connection pipe 7, and as shown in FIG. Similar effects can be obtained even if the connection is switchable in this way.

【0040】[0040]

【発明の効果】以上説明したとおりこの発明の空気調和
装置は、圧縮機、四方切換弁、熱源機側熱交換器、アキ
ュムレータ等よりなる1台の熱源機と、室内側熱交換器
、第1の流量制御装置等からなる複数台の室内機とを第
1、第2の接続配管を介して接続すると共に、上記複数
台の室内機の上記室内側熱交換器の一方を上記第1の接
続配管または、第2の接続配管に切り換え可能に接続す
る切換弁を有する第1の分岐部と、上記複数台の室内機
の上記室内側熱交換器の他方を、上記第1の流量制御装
置を介して上記第2の接続配管に接続してなる第2の分
岐部とを第2の流量制御装置を介して接続したものにお
いて、上記複数台の室内機のうち、室外の空気を吸込み
上記室内側熱交換器を通過させてその空気を、他の室内
機の室内側熱交換の1次側空気として供給する第1の室
内機、第1の室内機から室内側熱交換器の1次側に空気
の供給を受ける第2の室内機としているので、冷暖房を
選択的に、かつ一方の室内機では冷房、他方の室内機で
は暖房を同時に行うことができる。
[Effects of the Invention] As explained above, the air conditioner of the present invention includes one heat source machine including a compressor, a four-way switching valve, a heat exchanger on the heat source machine side, an accumulator, etc., an indoor heat exchanger, a first A plurality of indoor units comprising a flow rate control device, etc. are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first connection. A first branching section having a switching valve that is switchably connected to a pipe or a second connection pipe, and the other of the indoor heat exchangers of the plurality of indoor units, and the first flow rate control device. A second branch part connected to the second connection pipe via a second flow rate control device, wherein one of the plurality of indoor units sucks outdoor air and supplies the air to the indoor unit. A first indoor unit that passes through the inner heat exchanger and supplies the air as primary air for indoor heat exchange in other indoor units, and from the first indoor unit to the primary side of the indoor heat exchanger. Since the second indoor unit is supplied with air, cooling and heating can be performed selectively, and one indoor unit can perform cooling and the other indoor unit can perform heating at the same time.

【0041】また、第2の室内機の運転又は停止に連動
して、第1の室内機を連動して運転又は停止させている
ので、第2の室内機の運転、停止に連動して外気の導入
が行われ、換気が行われ換気量を確保することができる
。また、第2の室内機が1台でも暖房運転の場合は、第
1の室内機は暖房運転に、また第2の室内機のうち暖房
運転の第2の室内機が1台もなく、かつ1台でも冷房運
転の第2の室内機がある場合は、第1の室内機は冷房運
転に、また第2の室内機のうち、暖房運転及び冷房運転
の第2の室内機が1台もなく、かつ1台でも送風運転の
第2の室内機がある場合は、第1の室内機は、送風運転
を行うように構成されているので、室外の空気を予め第
1の室内機にて、加温、或は冷却処理するため第2の室
内機は、室外の空気を導入することによる暖房負荷、あ
るいは冷房負荷の増加を抑えることができ、安定した外
気導入運転が可能となった。
[0041] Furthermore, since the first indoor unit is operated or stopped in conjunction with the operation or stop of the second indoor unit, the outside air is is introduced, ventilation is performed, and the amount of ventilation can be secured. In addition, if even one second indoor unit is in heating operation, the first indoor unit is in heating operation, and there is no second indoor unit in heating operation, and If at least one second indoor unit is in cooling operation, the first indoor unit is in cooling operation, and among the second indoor units, at least one of the second indoor units is in heating operation and cooling operation. If not, and if there is at least one second indoor unit that operates as a blower, the first indoor unit is configured to perform a blower operation, so the outdoor air is supplied to the first indoor unit in advance. Since the second indoor unit performs heating or cooling processing, it is possible to suppress an increase in heating load or cooling load due to the introduction of outdoor air, and stable operation of introducing outside air is possible.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centered on a refrigerant system of an air conditioner according to a first embodiment of the present invention.

【図2】図1に示す空気調和装置の冷房または暖房のみ
の運転動作状態図である。
FIG. 2 is a diagram showing the operating state of the air conditioner shown in FIG. 1 in only cooling or heating mode.

【図3】図1に示す空気調和装置の暖房主体の運転動作
状態図である。
FIG. 3 is a diagram illustrating the operating state of the air conditioner shown in FIG. 1 mainly for heating.

【図4】図1に示す空気調和装置の冷房主体の運転動作
状態図である。
FIG. 4 is a diagram illustrating a cooling-based operation state of the air conditioner shown in FIG. 1;

【図5】この発明の他の実施例による空気調和装置の冷
媒系を中心とする全体構成図である。
FIG. 5 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention.

【図6】この発明における第1の室内機の運転について
説明するための動作を示すフローチャート図である。
FIG. 6 is a flowchart showing an operation for explaining the operation of the first indoor unit in the present invention.

【図7】従来の空気調和装置の冷媒系を中心とする全体
構成図である。
FIG. 7 is an overall configuration diagram centered on the refrigerant system of a conventional air conditioner.

【図8】図7に示す空気調和装置の冷房または暖房のみ
の運転動作状態図である。
8 is a diagram illustrating the operating state of the air conditioner shown in FIG. 7 in only cooling or heating mode; FIG.

【図9】図7に示す空気調和装置の暖房主体の運転動作
状態図である。
9 is a diagram illustrating the operating state of the air conditioner shown in FIG. 7 mainly for heating; FIG.

【図10】図7に示す空気調和装置の冷房主体の運転動
作状態図である。
10 is a diagram illustrating the operating state of the air conditioner shown in FIG. 7 mainly for cooling; FIG.

【符号の説明】[Explanation of symbols]

A  熱源機 B  第1の室内機 C,D  第2の室内機 E  中継機 1  圧縮機 2  四方切換弁 3  熱源側熱交換器 4  アキュムレータ 5  室内側熱交換器 6  第1の接続管 7  第2の接続管 8  切換弁 9  第1の流量制御装置 10  第1の分岐部 11  第2の分岐部 12  気液分離装置 13  第2の流量制御装置 14  バイパス管 15  第3の流量制御装置 16a  第2の熱交換部 16b,16c,16d  第3の熱交換部17  第
4の流量制御装置
A Heat source unit B First indoor unit C, D Second indoor unit E Relay unit 1 Compressor 2 Four-way switching valve 3 Heat source side heat exchanger 4 Accumulator 5 Indoor side heat exchanger 6 First connecting pipe 7 Second connecting pipe 8 switching valve 9 first flow control device 10 first branch section 11 second branch section 12 gas-liquid separation device 13 second flow control device 14 bypass pipe 15 third flow control device 16a second Heat exchange parts 16b, 16c, 16d Third heat exchange part 17 Fourth flow rate control device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等よりなる1台の熱源機と、室内側
熱交換器、第1の流量制御装置等からなる複数台の室内
機とを、第1、第2の接続配管を介して接続すると共に
、上記複数台の室内機の上記室内側熱交換器の一方を上
記第1の接続配管または、第2の接続配管に切り換え可
能に接続する切換弁を有する第1の分岐部と、上記複数
台の室内機の上記室内側熱交換器の他方を、上記第1の
流量制御装置を介して上記第2の接続配管に接続してな
る第2の分岐部とを第2の流量制御装置を介して接続し
たものにおいて、外気導入用送風機を備え、この送風機
により導入された外気と熱交換させる第1の室内機と、
室内空気を循環させる送風機を備え、この送風機により
循環される空気と熱交換させる第2の室内機とにより上
記室内機を構成し、上記第2の室内機のうち少なくとも
1台が暖房運転を行う場合、第1の室内機は暖房運転を
行うことを特徴とする冷・暖房同時運転可能な空気調和
装置。
[Claim 1] One heat source device consisting of a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units can be switched to the first connection pipe or the second connection pipe. A first branch portion having a switching valve connected to the first branch and the other of the indoor heat exchangers of the plurality of indoor units are connected to the second connection pipe via the first flow rate control device. A first indoor unit, which is connected to a second branch section formed by a second flow rate control device via a second flow rate control device, which is equipped with an outside air introduction blower and exchanges heat with the outside air introduced by the blower;
The indoor unit includes a blower that circulates indoor air, and a second indoor unit that exchanges heat with the air that is circulated by the blower, and at least one of the second indoor units performs heating operation. In this case, an air conditioner capable of simultaneous cooling and heating operation, wherein the first indoor unit performs heating operation.
【請求項2】  圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等よりなる1台の熱源機と、室内側
熱交換器、第1の流量制御装置等からなる複数台の室内
機とを、第1、第2の接続配管を介して接続すると共に
、上記複数台の室内機の上記室内側熱交換器の一方を上
記第1の接続配管または、第2の接続配管に切り換え可
能に接続する切換弁を有する第1の分岐部と、上記複数
台の室内機の上記室内側熱交換器の他方を、上記第1の
流量制御装置を介して上記第2の接続配管に接続してな
る第2の分岐部とを第2の流量制御装置を介して接続し
たものにおいて、外気導入用送風機を備え、この送風機
により導入された外気と熱交換させる第1の室内機と、
室内空気を循環させる送風機を備え、この送風機により
循環される空気と熱交換させる第2の室内機とにより上
記室内機を構成し、上記第2の室内機のうち、暖房運転
を行う第2の室内機が1台もなく、かつ少なくとも1台
の冷房運転を行う第2の室内機がある場合、第1の室内
機を冷房運転させることを特徴とする冷・暖房同時運転
可能な空気調和装置。
[Claim 2] One heat source device consisting of a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units can be switched to the first connection pipe or the second connection pipe. A first branch portion having a switching valve connected to the first branch and the other of the indoor heat exchangers of the plurality of indoor units are connected to the second connection pipe via the first flow rate control device. A first indoor unit, which is connected to a second branch section formed by a second flow rate control device via a second flow rate control device, which is equipped with an outside air introduction blower and exchanges heat with the outside air introduced by the blower;
The indoor unit includes a second indoor unit that includes a blower that circulates indoor air and exchanges heat with the air that is circulated by the blower, and of the second indoor unit, a second indoor unit that performs heating operation An air conditioner capable of simultaneous cooling and heating operation, characterized in that when there is no indoor unit and there is at least one second indoor unit that performs cooling operation, the first indoor unit is operated for cooling. .
【請求項3】  圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等よりなる1台の熱源機と、室内側
熱交換器、第1の流量制御装置等からなる複数台の室内
機とを、第1、第2の接続配管を介して接続すると共に
、上記複数台の室内機の上記室内側熱交換器の一方を上
記第1の接続配管または、第2の接続配管に切り換え可
能に接続する切換弁を有する第1の分岐部と、上記複数
台の室内機の上記室内側熱交換器の他方を、上記第1の
流量制御装置を介して上記第2の接続配管に接続してな
る第2の分岐部とを第2の流量制御装置を介して接続し
たものにおいて、外気導入用送風機を備え、この送風機
により導入された外気と熱交換させる第1の室内機と、
室内空気を循環させる送風機を備え、この送風機により
循環される空気と熱交換させる第2の室内機とにより上
記室内機を構成し、上記第2の室内機のうち、暖房運転
、或は冷房運転を行う第2の室内機が一台もなく、かつ
1台でも送風運転を行う第2の室内機がある場合、第1
の室内機を送風運転させることを特徴とする冷・暖房同
時運転可能な空気調和装置。
[Claim 3] One heat source device consisting of a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units can be switched to the first connection pipe or the second connection pipe. A first branch portion having a switching valve connected to the first branch and the other of the indoor heat exchangers of the plurality of indoor units are connected to the second connection pipe via the first flow rate control device. A first indoor unit, which is connected to a second branch section formed by a second flow rate control device via a second flow rate control device, which is equipped with an outside air introduction blower and exchanges heat with the outside air introduced by the blower;
The indoor unit includes a second indoor unit that includes a blower that circulates indoor air and exchanges heat with the air that is circulated by the blower, and the second indoor unit is in heating operation or cooling operation. If there is no second indoor unit that performs ventilation operation, and there is at least one second indoor unit that performs ventilation operation, the first
An air conditioner capable of simultaneous cooling and heating operation, which is characterized by operating an indoor unit to blow air.
JP3141980A 1991-05-09 1991-06-13 Air conditioner Expired - Fee Related JP2723380B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3141980A JP2723380B2 (en) 1991-06-13 1991-06-13 Air conditioner
AU16034/92A AU649810B2 (en) 1991-05-09 1992-05-05 Air conditioning apparatus
ES95106908T ES2120104T3 (en) 1991-05-09 1992-05-08 AIR CONDITIONER.
EP92304136A EP0514086B1 (en) 1991-05-09 1992-05-08 Air conditioning apparatus
DE69212225T DE69212225D1 (en) 1991-05-09 1992-05-08 air conditioner
DE69226381T DE69226381T2 (en) 1991-05-09 1992-05-08 air conditioning
US07/880,719 US5297392A (en) 1991-05-09 1992-05-08 Air conditioning apparatus
ES92304136T ES2092035T3 (en) 1991-05-09 1992-05-08 AIR CONDITIONER.
EP95106908A EP0676595B1 (en) 1991-05-09 1992-05-08 Air conditioning apparatus
AU59368/94A AU660124B2 (en) 1991-05-09 1994-04-05 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141980A JP2723380B2 (en) 1991-06-13 1991-06-13 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04366374A true JPH04366374A (en) 1992-12-18
JP2723380B2 JP2723380B2 (en) 1998-03-09

Family

ID=15304601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141980A Expired - Fee Related JP2723380B2 (en) 1991-05-09 1991-06-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP2723380B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198841A (en) * 1987-10-09 1989-04-17 Mitsubishi Electric Corp Air conditioning system
JPH03125868A (en) * 1989-10-06 1991-05-29 Mitsubishi Electric Corp Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198841A (en) * 1987-10-09 1989-04-17 Mitsubishi Electric Corp Air conditioning system
JPH03125868A (en) * 1989-10-06 1991-05-29 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP2723380B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JP4076753B2 (en) Air conditioner
JP2004085177A (en) Multi-air conditioner and operation control method of outdoor fan
JPH08291952A (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2004324947A (en) Air conditioning system
JP2598550B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JPH04366374A (en) Air conditioning apparatus
JP2525927B2 (en) Air conditioner
JP2003279174A (en) Air conditioning device
JP2601052B2 (en) Air conditioner
JP3138491B2 (en) Air conditioner
JPH04347466A (en) Air conditioner
JP3791019B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JP2536229B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JPH04110573A (en) Air conditioner
JPH04353369A (en) Air conditioner
JPH0754218B2 (en) Air conditioner
JPH04371763A (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH04366373A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees