JPH04366199A - Preparation of liquid hydrocarbon mixture from lower olefin - Google Patents

Preparation of liquid hydrocarbon mixture from lower olefin

Info

Publication number
JPH04366199A
JPH04366199A JP16743791A JP16743791A JPH04366199A JP H04366199 A JPH04366199 A JP H04366199A JP 16743791 A JP16743791 A JP 16743791A JP 16743791 A JP16743791 A JP 16743791A JP H04366199 A JPH04366199 A JP H04366199A
Authority
JP
Japan
Prior art keywords
catalyst
liquid hydrocarbon
hydrocarbon mixture
lower olefin
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16743791A
Other languages
Japanese (ja)
Inventor
Masami Yamamura
正美 山村
Toshiya Wakatsuki
俊也 若月
Kaoru Fujimoto
薫 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Exploration Co Ltd
SEKIYU SHIGEN KAIHATSU KK
Original Assignee
Japan Petroleum Exploration Co Ltd
SEKIYU SHIGEN KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Exploration Co Ltd, SEKIYU SHIGEN KAIHATSU KK filed Critical Japan Petroleum Exploration Co Ltd
Priority to JP16743791A priority Critical patent/JPH04366199A/en
Publication of JPH04366199A publication Critical patent/JPH04366199A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To improve the yield of liquid hydrocarbons and prolong the catalyst lift by the use of a composite catalyst. CONSTITUTION:A composite catalyst is prepared by mixing physically a pentasil- type zeolite catalyst with a hydrogen activation catalyst containing gallium, zinc, platinum, molybdenum, cobalt or nickel in a weight ratio of 1:4. The composite catalyst is packed in a reactor, through which a feedstock gas containing lower olefins is passed at a temperature of 350-600 deg.C, a weight hourly space velocity of 1-50hr<-1> and a total pressure of 0.1-20atm, thereby reacting the olefins.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、エチレン、プロピレン
等の低級オレフィンまたは、これらを含むガス組成物を
原料として、触媒の存在下に芳香族炭化水素を含む液状
炭化水素混合物を製造する方法に関する。
[Field of Industrial Application] The present invention relates to a method for producing a liquid hydrocarbon mixture containing aromatic hydrocarbons in the presence of a catalyst using lower olefins such as ethylene and propylene or gas compositions containing these as raw materials. .

【0002】0002

【従来の技術】最近、天然ガスの用途として、その主成
分であるメタンを部分酸化反応によって、エタン、エチ
レンとし、これをさらに重合して液体燃料を製造する研
究が盛んに行なわれている。この場合、生成物の1つで
あるエチレンを効率的に液体燃料に変換することが重要
な課題である。エチレンやプロピレンなどの低級オレフ
ィンからガソリン留分として有用な液状炭化水素を製造
する場合の触媒としては、従来からゼオライト触媒が用
いられている。たとえば、アメリカ合衆国モービル社は
、鉛を使用しない高オクタン価ガソリンを製造する方法
として、たとえば、特開昭56−103292号公報に
おいて、ゼオライト触媒を用いたオレフィン含有混合物
からガソリン留分を製造する方法を開示している。
BACKGROUND OF THE INVENTION Recently, research has been actively conducted to use natural gas to produce liquid fuel by partially oxidizing methane, its main component, into ethane and ethylene, which are then polymerized. In this case, it is an important issue to efficiently convert ethylene, one of the products, into liquid fuel. Zeolite catalysts have conventionally been used as catalysts for producing liquid hydrocarbons useful as gasoline fractions from lower olefins such as ethylene and propylene. For example, Mobil Corporation of the United States discloses a method for producing a gasoline fraction from an olefin-containing mixture using a zeolite catalyst in Japanese Patent Application Laid-open No. 103292/1983 as a method for producing lead-free high octane gasoline. are doing.

【0003】0003

【発明が解決しようとする課題】しかし、一般にゼオラ
イト触媒は反応中に生成するカーボン状物質の析出によ
り、急速に活性が低下する現象が認められる。活性が低
下した触媒は、析出したカーボン状物質を空気または酸
素で燃焼することにより再生することができる。この反
応−再生のサイクルはゼオライト触媒の宿命ともいわれ
ているが、同一条件下で少しでも活性の高い時間が長く
、再生回数の少ないものほど、経済的に優れた触媒であ
ることはいうまでもない。したがって、低級オレフィン
特にエチレンを直接原料として、効率よく、しかもでき
るだけ触媒再生回数を少なくして液体燃料を製造する技
術の開発が望まれる。
However, it is generally observed that the activity of zeolite catalysts rapidly decreases due to the precipitation of carbon-like substances produced during the reaction. A catalyst whose activity has decreased can be regenerated by burning the deposited carbonaceous material with air or oxygen. This reaction-regeneration cycle is said to be the fate of zeolite catalysts, and it goes without saying that the longer the activity remains under the same conditions and the fewer times the catalyst is regenerated, the better it will be economically. do not have. Therefore, it is desired to develop a technology for producing liquid fuel efficiently using lower olefins, particularly ethylene, as a raw material, while reducing the number of times the catalyst is regenerated as much as possible.

【0004】本発明の目的は、エチレンなどの低級オレ
フィンから芳香族炭化水素を含む液状炭化水素混合物を
製造するに際し、液状炭化水素の収率を向上させるとと
もに、ゼオライト触媒の再生回数を少なくした製造方法
を提供することにある。
The purpose of the present invention is to improve the yield of liquid hydrocarbons and reduce the number of times the zeolite catalyst is regenerated when producing a liquid hydrocarbon mixture containing aromatic hydrocarbons from lower olefins such as ethylene. The purpose is to provide a method.

【0005】[0005]

【課題を解決するための手段】本発明者らは、エチレン
などの低級オレフィンまたはこれらを含有するガス組成
物を芳香族炭化水素を含む液状炭化水素混合物に変換す
るに際し、液状炭化水素の収率向上と、ゼオライト触媒
の長寿命化を図ることを目的として、鋭意研究を重ねた
結果、ペンタシル型ゼオライトと水素活性化触媒からな
る複合触媒を用いることによって、課題を解決できるこ
とを見出した。
[Means for Solving the Problems] The present inventors have discovered that when converting lower olefins such as ethylene or gas compositions containing these into liquid hydrocarbon mixtures containing aromatic hydrocarbons, the yield of liquid hydrocarbons can be improved. As a result of intensive research with the aim of improving the performance of zeolite catalysts and extending the life of the zeolite catalyst, we discovered that the problem could be solved by using a composite catalyst consisting of pentasil-type zeolite and a hydrogen-activated catalyst.

【0006】すなわち、本発明の要旨は、低級オレフィ
ンまたは低級オレフィンを含むガス組成物を原料として
、触媒の存在下に、芳香族炭化水素を含む液状炭化水素
混合物を製造する方法において、低級オレフィンを芳香
族炭化水素を含む液状炭化水素混合物に変換しうる触媒
に、水素活性化触媒を物理混合して調製した複合触媒を
用いることを特徴とする、低級オレフィンを原料とする
液状炭化水素混合物の製造方法に存する。
That is, the gist of the present invention is to provide a method for producing a liquid hydrocarbon mixture containing an aromatic hydrocarbon using a lower olefin or a gas composition containing a lower olefin as a raw material in the presence of a catalyst. Production of a liquid hydrocarbon mixture using a lower olefin as a raw material, characterized by using a composite catalyst prepared by physically mixing a hydrogen activated catalyst with a catalyst that can be converted into a liquid hydrocarbon mixture containing aromatic hydrocarbons. It lies in the method.

【0007】本発明において、上記複合触媒としては、
ペンタシル型ゼオライトまたはこれを水素イオンもしく
はアルカリ土類金属で変性した触媒と、ガリウム,亜鉛
,白金,モリブデン,コバルトあるいはニッケルよりな
る群から選ばれるいずれか一種または二種の金属もしく
はその酸化物からなる触媒を物理混合して調製される。 このような複合触媒を反応器に充填し、これにエチレン
などの低級オレフィンまたはこれらを含有する原料を、
通常、重量時間空間速度(WHSV)0.1〜400h
r−1、温度200〜700℃、圧力0.1〜100気
圧(10〜10132キロパスカル)の条件下で通して
反応させることにより、芳香族炭化水素を含む液状炭化
水素混合物を得ることができる。通常、エチレン等の低
級オレフィンはペンタシル型ゼオライト触媒のみによっ
て、芳香族炭化水素を含む液状炭化水素混合物に変換さ
れるが、その際、ゼオライト触媒に水素活性化触媒を物
理混合して調製した複合触媒を用いると、芳香族化合物
を含む液状炭化水素の生成率が顕著に増大するだけでな
く、多くの場合、ゼオライト触媒の寿命を延ばすことが
できること、さらにたとえば、ガリウムの場合は、これ
をゼオライト変性用に用いるよりは、水素活性化触媒と
して用いた方が効果があるという事実は、極めて予想外
のことであった。
[0007] In the present invention, the above composite catalyst includes:
Consisting of pentasil type zeolite or a catalyst obtained by modifying it with hydrogen ions or alkaline earth metals, and one or two metals selected from the group consisting of gallium, zinc, platinum, molybdenum, cobalt, or nickel, or their oxides. Prepared by physically mixing catalysts. Such a composite catalyst is packed into a reactor, and lower olefins such as ethylene or raw materials containing these are added to the reactor.
Normally, weight hourly space velocity (WHSV) 0.1-400h
A liquid hydrocarbon mixture containing aromatic hydrocarbons can be obtained by reacting under conditions of r-1, temperature of 200 to 700°C, and pressure of 0.1 to 100 atm (10 to 10,132 kilopascals). . Normally, lower olefins such as ethylene are converted into a liquid hydrocarbon mixture containing aromatic hydrocarbons using only a pentasil-type zeolite catalyst.In this case, a composite catalyst prepared by physically mixing a hydrogen-activated catalyst with a zeolite catalyst is used. Not only can the production rate of liquid hydrocarbons containing aromatics be significantly increased, but also the lifetime of the zeolite catalyst can be extended in many cases; The fact that it is more effective when used as a hydrogen activation catalyst than when used for commercial purposes was extremely unexpected.

【0008】以下、本発明について、詳細に説明する。 本発明では、エチレンなどの低級オレフィンを芳香族炭
化水素を含む液状炭化水素混合物に変換するゼオライト
触媒と水素活性化触媒を一定割合で混合した複合触媒を
用いる。まず、ゼオライト触媒としては、例えば自動車
用液体燃料の原料として使用可能な軽質芳香族炭化水素
特に、ベンゼン,トルエン,キシレン類の生成割合の高
い触媒が望ましい。このようなゼオライト触媒としては
、ペンタシル型ゼオライトを挙げることができる。ペン
タシル型ゼオライトは、シリカとアルミナからなるアル
ミノシリケートやゼオライトのうち、酸素原子および珪
素またはアルミニウム原子からなる5員環が10個集ま
り、これによって特異な細孔を構成している合成ゼオラ
イトの総称である。より具体的には、アメリカ合衆国モ
ービル社が開発した特殊な合成ゼオライトである、ZS
M−5,ZSM−11,ZSM−12,ZSM−23,
ZSM−35,ZSM−48型のゼオライトおよびこれ
に類似の構造をもつゼオライトをいう。本発明では、こ
れらのいずれも用いることができるが、特にZSM−5
型ゼオライトが好ましい。ペンタシル型ゼオライトを構
成するシリカとアルミナのモル比(SiO2/Al2O
3 比)は、15〜3000が好ましく、最も好ましく
は20〜100である。
The present invention will be explained in detail below. In the present invention, a composite catalyst is used in which a zeolite catalyst and a hydrogen-activated catalyst are mixed at a certain ratio to convert lower olefins such as ethylene into a liquid hydrocarbon mixture containing aromatic hydrocarbons. First, the zeolite catalyst is preferably a catalyst that can be used as a raw material for liquid fuel for automobiles, and can produce a high proportion of light aromatic hydrocarbons, particularly benzene, toluene, and xylenes. As such a zeolite catalyst, a pentasil type zeolite can be mentioned. Pentasil type zeolite is a general term for synthetic zeolites, which are aluminosilicates and zeolites made of silica and alumina, and have ten five-membered rings made of oxygen atoms and silicon or aluminum atoms, which form unique pores. be. More specifically, ZS is a special synthetic zeolite developed by Mobil Corporation in the United States.
M-5, ZSM-11, ZSM-12, ZSM-23,
Refers to ZSM-35, ZSM-48 type zeolites, and zeolites with structures similar to these. In the present invention, any of these can be used, but in particular ZSM-5
Type zeolites are preferred. The molar ratio of silica and alumina (SiO2/Al2O
3 ratio) is preferably 15-3000, most preferably 20-100.

【0009】ペンタシル型ゼオライトとしては、水熱合
成したのち有機塩基を取り除いた焼成品をそのまま用い
ることができるが、これを水素イオンで変性したものを
用いてもよい。水素イオン変性は、たとえば、次のよう
にして行なうことができる。硝酸アンモニウム(試薬特
級)40gを蒸留水1000mlに溶解し、これにZS
M−5型ゼオライト10gを加えて、80℃で3時間攪
拌後ゼオライトを溶液から濾別する。このゼオライトを
さらに上記の硝酸アンモニウム水溶液に懸濁し同様に処
理する。この操作を合計10回行なって、水素イオン変
性を終了する。その後、まず空気中、120℃で15時
間乾燥し、さらに空気中、550℃で2時間焼成する。
As the pentasil type zeolite, a calcined product obtained by hydrothermally synthesizing and removing the organic base can be used as it is, but it may also be modified with hydrogen ions. Hydrogen ion modification can be performed, for example, as follows. Dissolve 40g of ammonium nitrate (special grade reagent) in 1000ml of distilled water, and add ZS to this.
After adding 10 g of M-5 type zeolite and stirring at 80°C for 3 hours, the zeolite was filtered from the solution. This zeolite is further suspended in the above aqueous ammonium nitrate solution and treated in the same manner. This operation is repeated 10 times in total to complete the hydrogen ion modification. Thereafter, it is first dried in air at 120°C for 15 hours, and then fired in air at 550°C for 2 hours.

【0010】本発明の目的をよりよく達成するためには
、水素イオン変性ゼオライトをさらにアルカリ土類金属
により変性することが必要である。変性するために用い
るアルカリ土類金属としては、特にマグネシウムとカル
シウムが好ましい。変性は、これらのアルカリ土類金属
の塩、酸化物、水酸化物を用いて、イオン交換法や含浸
法などにより行なうことができる。イオン交換法による
変性の例を示せば以下の通りである。硝酸マグネシウム
(試薬特級)32gを蒸留水500mlに溶解し、これ
に水素イオン変性したZSM−5型ゼオライト5gを加
えて、80℃で3時間攪拌する。ゼオライトを溶液から
濾別後、さらに上記の硝酸マグネシウム溶液に懸濁し、
同様の処理を合計5回行なう。その後、まず空気中、1
20℃で15時間乾燥し、さらに空気中、550℃で2
時間焼成する。
In order to better achieve the objects of the present invention, it is necessary to further modify the hydrogen ion-modified zeolite with an alkaline earth metal. As alkaline earth metals used for modification, magnesium and calcium are particularly preferred. Modification can be carried out using salts, oxides, and hydroxides of these alkaline earth metals by an ion exchange method, an impregnation method, or the like. Examples of modification by ion exchange method are as follows. 32 g of magnesium nitrate (special grade reagent) is dissolved in 500 ml of distilled water, 5 g of ZSM-5 type zeolite modified with hydrogen ions is added thereto, and the mixture is stirred at 80° C. for 3 hours. After filtering the zeolite from the solution, it is further suspended in the above magnesium nitrate solution,
Similar processing is performed a total of 5 times. Then, first in the air, 1
Dry at 20°C for 15 hours, then dry in air at 550°C for 2 hours.
Bake for an hour.

【0011】一方、水素活性化触媒としては、通常、ガ
リウム,亜鉛,白金,モリブデン,コバルトあるいはニ
ッケルの有機塩や塩化物,硝酸塩などの無機塩、または
酸化物や水酸化物を用いて調製する。場合によっては、
これらをシリカ,アルミナあるいは活性炭などの担体に
担持させたものを用いることもできる。水素活性化触媒
は以下のようにして調製する。所定量の金属化合物を蒸
留水に溶解し、これに規定量のアルミナを加え、減圧下
で30分放置した後、水蒸気浴中で蒸発乾固する。その
後、まず空気中、120℃で15時間乾燥し、さらに空
気中、550℃で2時間焼成する。
On the other hand, hydrogen activation catalysts are usually prepared using organic salts of gallium, zinc, platinum, molybdenum, cobalt or nickel, inorganic salts such as chlorides and nitrates, or oxides and hydroxides. . In some cases,
These can also be supported on a carrier such as silica, alumina, or activated carbon. The hydrogen activated catalyst is prepared as follows. A predetermined amount of a metal compound is dissolved in distilled water, a predetermined amount of alumina is added thereto, the solution is left under reduced pressure for 30 minutes, and then evaporated to dryness in a steam bath. Thereafter, it is first dried in air at 120°C for 15 hours, and then fired in air at 550°C for 2 hours.

【0012】本発明の方法においては、このようにして
得られた水素活性化触媒とペンタシル型ゼオライト触媒
とを重量比1:1〜1:10、好ましくは1:4で混合
して用いる。混合は、固体粉末同士で行なってもよく、
あるいは適当な分散媒を用いてスラリー状で混合しても
よい。これらの触媒はそのまま反応に用いてもよいが、
空気中または窒素気流中で焼成後用いてもよい。また、
場合によっては水素または一酸化炭素などの気流中で還
元してもよい。混合触媒中に含有させる白金,クロム,
亜鉛あるいはガリウムの金属量は、それぞれ金属換算で
0.1〜15重量%であり、白金およびガリウムについ
ては0.1〜5重量%、モリブデン、コバルトおよびニ
ッケルについては0.5〜10重量%、亜鉛については
1〜20重量%が好ましい。
In the method of the present invention, the hydrogen-activated catalyst thus obtained and the pentasil type zeolite catalyst are mixed at a weight ratio of 1:1 to 1:10, preferably 1:4. Mixing may be performed between solid powders,
Alternatively, they may be mixed in the form of a slurry using a suitable dispersion medium. These catalysts may be used as they are in the reaction, but
It may be used after firing in air or in a nitrogen stream. Also,
Depending on the case, reduction may be carried out in a gas stream such as hydrogen or carbon monoxide. Platinum, chromium, contained in the mixed catalyst
The metal content of zinc or gallium is 0.1 to 15% by weight in terms of metal, respectively, 0.1 to 5% by weight for platinum and gallium, 0.5 to 10% by weight for molybdenum, cobalt, and nickel. Regarding zinc, 1 to 20% by weight is preferred.

【0013】次に上記で得られた触媒を用いて、低級オ
レフィン含有ガスから、芳香族炭化水素を含む液状炭化
水素混合物を製造する方法を述べる。反応は、温度20
0〜700℃、好ましくは350〜600℃、重量時間
空間速度0.1〜400hr−1、好ましくは1〜50
hr−1、全圧力0.1〜100気圧(10〜1013
2キロパスカル)、好ましくは0.1〜20気圧(10
〜2026キロパスカル)の条件下で行なうことができ
る。原料としては、低級オレフィンとしてエチレン,プ
ロピレンなどのほかに、これらを含むガスを原料として
用いることができる。後者の例として、メタンの部分酸
化反応により生成したエタンおよびエチレンを含むガス
を挙げることができる。これらの原料は水蒸気あるいは
、窒素,ヘリウム,アルゴンなどの不活性ガスで希釈し
て触媒上に供給することも可能である。生成物である芳
香族炭化水素と未反応原料は公知の方法によって互に分
離、精製される。この反応は、上記原料をガスとして供
給し、固体である触媒と充分接触させ得るものであれば
どんな反応形式でもよく、固定床反応方式、流動床反応
方式、移動床反応方式などいずれの反応形式でも本発明
の目的を達成することができる。
Next, a method for producing a liquid hydrocarbon mixture containing aromatic hydrocarbons from a gas containing lower olefins using the catalyst obtained above will be described. The reaction takes place at a temperature of 20
0 to 700°C, preferably 350 to 600°C, weight hourly space velocity 0.1 to 400 hr-1, preferably 1 to 50
hr-1, total pressure 0.1 to 100 atm (10 to 1013
2 kilopascals), preferably 0.1 to 20 atm (10
~2026 kilopascals). As raw materials, in addition to lower olefins such as ethylene and propylene, gases containing these can be used as raw materials. An example of the latter is a gas containing ethane and ethylene produced by a partial oxidation reaction of methane. These raw materials can also be diluted with water vapor or an inert gas such as nitrogen, helium, or argon and then supplied onto the catalyst. The aromatic hydrocarbon product and the unreacted raw material are separated and purified by known methods. This reaction may be carried out in any reaction format as long as the above raw materials are supplied as a gas and can be brought into sufficient contact with the solid catalyst, such as a fixed bed reaction method, a fluidized bed reaction method, a moving bed reaction method, etc. However, the object of the present invention can be achieved.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいて説明するが
、本発明はこれに限定されるものではない。 実施例1 (1)触媒の調製 イ)H−Z5触媒の調製 硝酸アンモニウム(試薬特級)40gを蒸留水1000
mlに溶解し、これにZSM−5型ゼオライト10gを
加えて、80℃で3時間攪拌した。ゼオライトを溶液か
ら濾別後、このゼオライトについて前記と同様の処理を
合計10回行なった。その後、空気中、120℃で15
時間乾燥し、さらに空気中、550℃で2時間焼成した
。 ロ)Ga+H−Z5触媒(複合触媒)の調製硝酸ガリウ
ム(試薬特級)3.00gを蒸留水25mlに溶解した
溶液に、アルミナ9.50gを加え、減圧下で30分放
置した後、水蒸気浴中で蒸発乾固した。その後、空気中
、120℃で15時間乾燥し、さらに空気中、550℃
で2時間焼成した。ここで得られた触媒粉末とH−Z5
触媒を重量比で1対4になるように秤量し、乳ばちで混
合した。 (2)反応 上記ロ)で得られた触媒粉末を圧力400Kg/cm2
 で打錠し、次いでこれを粉砕して20〜40メッシュ
に成粒したもの1gを内径10mmの石英ガラス製反応
管に充填した。反応は、大気圧下において、エチレンを
窒素で希釈した混合ガス(C2 H4 /N2 =20
/80:体積比)を用い、W/F=10g・ h /m
ol 、400℃の条件で行なった。反応管から出た生
成物をそのままガスクロマトグラフに導き分析した。結
果を表1に示す。
[Examples] The present invention will be explained below based on Examples, but the present invention is not limited thereto. Example 1 (1) Preparation of catalyst a) Preparation of H-Z5 catalyst 40 g of ammonium nitrate (reagent grade) was added to 1000 g of distilled water.
ml, 10 g of ZSM-5 type zeolite was added thereto, and the mixture was stirred at 80°C for 3 hours. After filtering the zeolite from the solution, the same treatment as above was performed on the zeolite 10 times in total. Then, in air at 120℃ for 15
It was dried for an hour and then fired in air at 550°C for 2 hours. b) Preparation of Ga + H-Z5 catalyst (composite catalyst) 9.50 g of alumina was added to a solution of 3.00 g of gallium nitrate (special grade reagent) dissolved in 25 ml of distilled water, left for 30 minutes under reduced pressure, and then placed in a steam bath. It was evaporated to dryness. After that, it was dried in the air at 120°C for 15 hours, and then in the air at 550°C.
It was baked for 2 hours. The catalyst powder obtained here and H-Z5
The catalysts were weighed out at a weight ratio of 1:4 and mixed in a mortar. (2) Reaction The catalyst powder obtained in step (b) above was heated to a pressure of 400 kg/cm2.
This was then crushed into granules of 20 to 40 mesh, and 1 g of the tablets were filled into a quartz glass reaction tube with an inner diameter of 10 mm. The reaction was carried out under atmospheric pressure using a mixed gas of ethylene diluted with nitrogen (C2 H4 /N2 = 20
/80: volume ratio), W/F=10g・h/m
The test was carried out at 400°C. The product released from the reaction tube was directly introduced into a gas chromatograph and analyzed. The results are shown in Table 1.

【表1】 表1の実験条件は、反応温度:400℃、触媒量:1.
00g、W/F=10g・ h /mol 、反応ガス
組成:C2 H4 /N2 =20/80である。表1
において、エタン転化率は反応したエタンの割合、選択
率は反応生成物の生成割合を示す。なお、表中、C1 
,C2 ,C3 ,C4 はそれぞれ炭素数1,2,3
,4の炭化水素を表わす。 また、C5 + 脂肪族は炭素数5以上の炭化水素、芳
香族は芳香族炭化水素を表わし、両者の合計が液状炭化
水素混合物を表わす。
[Table 1] The experimental conditions in Table 1 are: reaction temperature: 400°C, catalyst amount: 1.
00g, W/F=10g·h/mol, reaction gas composition: C2H4/N2=20/80. Table 1
In the equation, the ethane conversion rate indicates the proportion of ethane reacted, and the selectivity indicates the proportion of reaction products produced. In addition, in the table, C1
, C2, C3, and C4 have carbon numbers of 1, 2, and 3, respectively.
, 4 represents a hydrocarbon. Further, C5 + aliphatic represents a hydrocarbon having 5 or more carbon atoms, aromatic represents an aromatic hydrocarbon, and the sum of both represents a liquid hydrocarbon mixture.

【0015】比較例1 実施例1の(1)イ)で調製した、H−Z5触媒のみを
用いて、実施例1の(2)と同じ条件で反応させた。結
果を表2に示す。
Comparative Example 1 A reaction was carried out under the same conditions as in Example 1 (2) using only the H-Z5 catalyst prepared in Example 1 (1) A). The results are shown in Table 2.

【表2】 表2の実験条件は表1の場合と同一である。[Table 2] The experimental conditions in Table 2 are the same as in Table 1.

【0016】実施例2 (1)触媒の調製 イ)Mg−Z5触媒の調製 硝酸マグネシウム(試薬特級)32gを蒸留水500m
lに溶解し、これにH−Z5触媒5gを加えて、80℃
で3時間攪拌した。ゼオライトを溶液から濾別後、この
ゼオライトについて前記と同様の処理を合計5回行なっ
た。その後、空気中、120℃で15時間乾燥し、さら
に空気中、550℃で2時間焼成した。 ロ)Ga+Mg−Z5(複合触媒)の調製ゼオライトと
して上記イ)で得られたMg−Z5触媒を用いたほかは
、実施例1の(1)ロ)と同様にして調製した。 (2)反応 実施例1の(2)と同様にして行なった。結果を表3に
示す。
Example 2 (1) Preparation of catalyst a) Preparation of Mg-Z5 catalyst 32 g of magnesium nitrate (reagent special grade) was added to 500 m of distilled water.
1, add 5 g of H-Z5 catalyst, and heat to 80°C.
The mixture was stirred for 3 hours. After filtering the zeolite from the solution, the same treatment as above was performed on the zeolite five times in total. Thereafter, it was dried in air at 120°C for 15 hours, and further baked in air at 550°C for 2 hours. B) Preparation of Ga+Mg-Z5 (composite catalyst) A catalyst was prepared in the same manner as in (1) B) of Example 1, except that the Mg-Z5 catalyst obtained in A) above was used as the zeolite. (2) The reaction was carried out in the same manner as (2) of Reaction Example 1. The results are shown in Table 3.

【表3】 表3の実験条件は表1の場合と同一である。[Table 3] The experimental conditions in Table 3 are the same as in Table 1.

【0017】比較例2 実施例2の(1)イ)で調製した、Mg−Z5触媒のみ
を用いて、実施例1の(2)と同じ条件で反応させた。 結果を表4に示す。
Comparative Example 2 A reaction was carried out under the same conditions as in Example 1 (2) using only the Mg-Z5 catalyst prepared in Example 2 (1) A). The results are shown in Table 4.

【表4】 表4の実験条件は表1の場合と同一である。[Table 4] The experimental conditions in Table 4 are the same as in Table 1.

【0018】比較例3 硝酸ガリウム(試薬特級)3.00gを用い、実施例1
の(1)イ)と同様にしてGa−Z5触媒を調製し、実
施例1の(2)と同じ条件で反応させた。結果を表5に
示す。
Comparative Example 3 Using 3.00 g of gallium nitrate (special grade reagent), Example 1
A Ga-Z5 catalyst was prepared in the same manner as in (1) (a), and reacted under the same conditions as in (2) of Example 1. The results are shown in Table 5.

【表5】 表5の実験条件は表1の場合と同一である。[Table 5] The experimental conditions in Table 5 are the same as in Table 1.

【0019】実施例3 硝酸亜鉛(試薬特級)2.24gを用いたほかは、実施
例1の(1)ロ)と同様の操作でZn+H−Z5触媒を
調製し、実施例1の(2)と同じ条件で反応させた。結
果を表6に示す。
Example 3 A Zn+H-Z5 catalyst was prepared in the same manner as in (1) b) of Example 1 except that 2.24 g of zinc nitrate (special grade reagent) was used, and the same procedure as in (2) of Example 1 was carried out. The reaction was carried out under the same conditions. The results are shown in Table 6.

【表6】 表6の実験条件は表1の場合と同一である。[Table 6] The experimental conditions in Table 6 are the same as in Table 1.

【0020】実施例4 塩化白金酸(試薬特級)1.33gを用いたほかは、実
施例1の(1)ロ)と同様の操作でPt+H−Z5触媒
を調製し、実施例1の(2)と同じ条件で反応させた。 結果を表7に示す。
Example 4 A Pt+H-Z5 catalyst was prepared in the same manner as in (1) b) of Example 1, except that 1.33 g of chloroplatinic acid (special grade reagent) was used. ) was reacted under the same conditions. The results are shown in Table 7.

【表7】 表7の実験条件は表1の場合と同一である。[Table 7] The experimental conditions in Table 7 are the same as in Table 1.

【0021】実施例5 パラモリブデン酸アンモニウム(試薬特級)0.92g
を用い、アルミナに代えてシリカ9.50gを用いたほ
かは、実施例1の(1)ロ)と同様の操作でMo+H−
Z5触媒を調製し、実施例1の(2)と同じ条件で反応
させた。結果を表8に示す。
Example 5 Ammonium paramolybdate (special grade reagent) 0.92 g
Mo+H-
A Z5 catalyst was prepared and reacted under the same conditions as in Example 1 (2). The results are shown in Table 8.

【表8】 表8の実験条件は表1の場合と同一である。[Table 8] The experimental conditions in Table 8 are the same as in Table 1.

【0022】実施例6 硝酸コバルト(試薬特級)2.47gを用いたほかは、
実施例5と同様の操作でCo+H−Z5触媒を調製し、
実施例1の(2)と同じ条件で反応させた。結果を表9
に示す。
Example 6 Except for using 2.47 g of cobalt nitrate (special grade reagent),
A Co+H-Z5 catalyst was prepared in the same manner as in Example 5,
The reaction was carried out under the same conditions as in Example 1 (2). Table 9 shows the results.
Shown below.

【表9】 表9の実験条件は表1の場合と同一である。[Table 9] The experimental conditions in Table 9 are the same as in Table 1.

【0023】実施例7 硝酸ニッケル(試薬特級)2.48gを用い、H−Z5
触媒の代りにMg−Z5触媒を用いたほかは、実施例5
と同様の操作でNi+Mg−Z5触媒を調製し、実施例
1の(2)と同じ条件で反応させた。結果を表10に示
す。
Example 7 Using 2.48 g of nickel nitrate (special grade reagent), H-Z5
Example 5 except that Mg-Z5 catalyst was used instead of the catalyst.
A Ni+Mg-Z5 catalyst was prepared in the same manner as above, and reacted under the same conditions as in Example 1 (2). The results are shown in Table 10.

【表10】 表10の実験条件は表1の場合と同一である。[Table 10] The experimental conditions in Table 10 are the same as in Table 1.

【0024】[0024]

【発明の効果】本発明の方法によれば、以上の結果から
も認められるように、液状炭化水素の生成率が顕著に増
大し、さらに触媒寿命の長期化が図れ、その工業的価値
は大きい。
[Effects of the Invention] According to the method of the present invention, as can be seen from the above results, the production rate of liquid hydrocarbons can be significantly increased, and the catalyst life can be extended, which has great industrial value. .

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  低級オレフィンまたは低級オレフィン
を含むガス組成物を原料として、触媒の存在下に、芳香
族炭化水素を含む液状炭化水素混合物を製造する方法に
おいて、低級オレフィンを芳香族炭化水素を含む液状炭
化水素混合物に変換しうる触媒に、水素活性化触媒を物
理混合して調製した複合触媒を用いることを特徴とする
、低級オレフィンを原料とする液状炭化水素混合物の製
造方法。
Claim 1. A method for producing a liquid hydrocarbon mixture containing an aromatic hydrocarbon in the presence of a catalyst using a lower olefin or a gas composition containing the lower olefin as a raw material, wherein the lower olefin is a liquid hydrocarbon mixture containing an aromatic hydrocarbon. A method for producing a liquid hydrocarbon mixture using a lower olefin as a raw material, the method comprising using a composite catalyst prepared by physically mixing a hydrogen-activated catalyst with a catalyst that can be converted into a liquid hydrocarbon mixture.
【請求項2】  前記低級オレフィンを芳香族炭化水素
を含む液状炭化水素混合物に変換しうる触媒として、ペ
ンタシル型ゼオライト、またはこれを水素イオンあるい
はアルカリ土類金属で変性したゼオライトを、水素活性
化触媒として、ガリウム,亜鉛,白金,モリブデン,コ
バルトあるいはニッケルのいずれか一種または二種を含
む金属化合物をそれぞれ用いる、請求項1の低級オレフ
ィンを原料とする液状炭化水素混合物の製造方法。
2. As a catalyst capable of converting the lower olefin into a liquid hydrocarbon mixture containing aromatic hydrocarbons, a pentasil-type zeolite or a zeolite modified with hydrogen ions or an alkaline earth metal is used as a hydrogen-activated catalyst. A method for producing a liquid hydrocarbon mixture using a lower olefin as a raw material according to claim 1, wherein a metal compound containing one or two of gallium, zinc, platinum, molybdenum, cobalt, or nickel is used as the raw material.
【請求項3】  前記ペンタシル型ゼオライトがZSM
−5型合成ゼオライトである、請求項2の低級オレフィ
ンを原料とする液状炭化水素混合物の製造方法。
[Claim 3] The pentasil type zeolite is ZSM.
A method for producing a liquid hydrocarbon mixture using the lower olefin of claim 2 as a raw material, which is a -5 type synthetic zeolite.
【請求項4】  前記ペンタシル型ゼオライトを変性す
るためのアルカリ土類金属がマグネシウムまたはカルシ
ウムである、請求項2または請求項3の低級オレフィン
を原料とする液状炭化水素混合物の製造方法。
4. The method for producing a liquid hydrocarbon mixture using a lower olefin as a raw material according to claim 2 or 3, wherein the alkaline earth metal for modifying the pentasil type zeolite is magnesium or calcium.
【請求項5】  低級オレフィンがエチレンまたはプロ
ピレンである、請求項1ないし4の何れか項の低級オレ
フィンを原料とする液状炭化水素混合物の製造方法。
5. The method for producing a liquid hydrocarbon mixture using a lower olefin as a raw material according to any one of claims 1 to 4, wherein the lower olefin is ethylene or propylene.
JP16743791A 1991-06-13 1991-06-13 Preparation of liquid hydrocarbon mixture from lower olefin Withdrawn JPH04366199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16743791A JPH04366199A (en) 1991-06-13 1991-06-13 Preparation of liquid hydrocarbon mixture from lower olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16743791A JPH04366199A (en) 1991-06-13 1991-06-13 Preparation of liquid hydrocarbon mixture from lower olefin

Publications (1)

Publication Number Publication Date
JPH04366199A true JPH04366199A (en) 1992-12-18

Family

ID=15849695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16743791A Withdrawn JPH04366199A (en) 1991-06-13 1991-06-13 Preparation of liquid hydrocarbon mixture from lower olefin

Country Status (1)

Country Link
JP (1) JPH04366199A (en)

Similar Documents

Publication Publication Date Title
AU2009215655B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
US9144790B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
EP0259954B1 (en) Process for converting c2 to c12 aliphatics to aromatics over a zinc activated zeolite
JP4828680B2 (en) Method and catalyst for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons
JP6001546B2 (en) Process for producing light olefin using ZSM-5 catalyst
US9981254B2 (en) Pre-carburized molybdenum-modified zeolite catalyst and use thereof for the aromatization of lower alkanes
US20140235911A1 (en) Catalyst for the preparation of aromatic hydrocarbons and use thereof
TW201210696A (en) Regenerable composite catalysts for hydrocarbon aromatization
JP2004143373A (en) Method for producing olefin by catalytic cracking of hydrocarbon
AU601181B2 (en) Restructuring of olefins
EP0202000A1 (en) Aromatisation of paraffins
JP5192493B2 (en) Zeolite / kaolin catalyst composition
JP2008266286A (en) Method for producing alkene
US20110253596A1 (en) Regenerable Composite Catalysts for Paraffin Aromatization
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
JP2001334151A (en) Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material
JPH11180902A (en) Production of lower olefin
JPS61289049A (en) Production of propylene
JPH04366199A (en) Preparation of liquid hydrocarbon mixture from lower olefin
RU2188225C1 (en) Method of synthesis of aromatic hydrocarbons (variants)
RU2242279C2 (en) Paraffin c2-c5-hydrocarbon conversion catalyst, method of preparation thereof, and a method for conversion of paraffin c2-c5-hydrocarbons into lower olefins
EP0043695A1 (en) Activation of gallium ion exchanged aluminosilicate catalyst
JP3171877B2 (en) Process for producing liquid hydrocarbon mixtures from ethane
JPH04368341A (en) Process for simultaneous production of liquid hydrocarbon mixture and methane
RU2227793C1 (en) Method of production of mixture of naphthalenic hydrocarbons from light hydrocabon gases (versions)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903