JPH11180902A - Production of lower olefin - Google Patents

Production of lower olefin

Info

Publication number
JPH11180902A
JPH11180902A JP36367597A JP36367597A JPH11180902A JP H11180902 A JPH11180902 A JP H11180902A JP 36367597 A JP36367597 A JP 36367597A JP 36367597 A JP36367597 A JP 36367597A JP H11180902 A JPH11180902 A JP H11180902A
Authority
JP
Japan
Prior art keywords
catalyst
rare earth
zeolite
earth element
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36367597A
Other languages
Japanese (ja)
Other versions
JP3072348B2 (en
Inventor
Yuji Yoshimura
雄二 葭村
Kazuhisa Murata
和久 村田
Takashi Hayakawa
孝 早川
Kunio Suzuki
邦夫 鈴木
Katsuomi Takehira
勝臣 竹平
Kenichi Wakui
顕一 涌井
Mitsuharu Shiozawa
光治 塩沢
Koichi Sato
浩一 佐藤
Goro Sawada
悟郎 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Idemitsu Petrochemical Co Ltd
Maruzen Petrochemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Original Assignee
Agency of Industrial Science and Technology
Tonen Sekiyu Kagaku KK
Idemitsu Petrochemical Co Ltd
Maruzen Petrochemical Co Ltd
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tonen Sekiyu Kagaku KK, Idemitsu Petrochemical Co Ltd, Maruzen Petrochemical Co Ltd, Nippon Petrochemicals Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP9363675A priority Critical patent/JP3072348B2/en
Publication of JPH11180902A publication Critical patent/JPH11180902A/en
Application granted granted Critical
Publication of JP3072348B2 publication Critical patent/JP3072348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11

Abstract

PROBLEM TO BE SOLVED: To suppress the formation of a by-product at an industrially advantageous low temperature and efficiently produce the objective compound in high selectivity by using a catalyst containing a specific amount of a rare earth element supported on a zeolite when catalytically cracking a hydrocarbon. SOLUTION: A >=2C hydrocarbon raw material is brought into contact with a catalyst supporting a rare earth element in an amount of 0.4-20 expressed in terms of atomic ratio to the aluminum in a crystalline aluminosilicate zeolite thereon. The hydrocarbon raw material is preferably subjected to dehydrogenating treatment and then brought into contact with the catalyst to improve the yield. ZSM-5 or ZSM-11 or both are preferred as the zeolite. Lanthanum, cerium and the like are preferred as the rare earth element. The catalyst preferably further contains 0.1-10 wt.% phosphorus supported thereon. The catalytic cracking reaction is preferably carried out in the presence of steam at 600-700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素原料を触
媒を使用して接触分解することにより低級オレフィン、
主としてエチレン及びプロピレンを製造する方法に関す
る。
The present invention relates to a catalyst for catalytically cracking a hydrocarbon feedstock using a catalyst to produce a lower olefin,
It mainly relates to a method for producing ethylene and propylene.

【0002】[0002]

【従来の技術】エチレン、プロピレン等の低級オレフィ
ンは各種化学品の基礎原料として重要な物質である。従
来、これらの低級オレフィンの製造方法としては、エタ
ン、プロパン、ブタン等のガス状炭化水素あるいはナフ
サ等の液状炭化水素を原料とし、外熱式の管状炉内で水
蒸気雰囲気下に加熱分解する方法が広く実施されてい
る。しかしながら、この方法では、オレフィン収率を高
めるため800℃以上の高温を必要とすること、またそ
のために高価な装置材料を使用しなければならないとい
う経済的に不利な点を有している。このため触媒を用い
た炭化水素の接触分解法が種々検討されてきている。そ
れらの中でも固体酸とくにゼオライトを用いた場合は比
較的低温(350〜700℃)で分解できるため、数多
くの例が報告されている。例えば旭化成工業社の一連の
特許(特開昭60−222428、特開昭61−721
8、特開平3−130236、特開平6−19213
4、特開平6−192135、特開平6−19970
7、特開平6−228017、特開平6−346062
など)では、酸量や酸強度を特定の範囲に制御したZS
M−5型触媒を用いたn−ヘキサンおよびナフサの接触
分解法が開示されているが、この方法では芳香族成分
(ベンゼン、トルエン、キシレン、以下BTX)が多く
生成し、オレフィンを効率的に得ることはできない。ま
た特開平1−213240、特開平3−504737で
はクラッキング活性の指標であるα値を特定の範囲に制
御したZSM−5による触媒的クラッキングが開示され
ているが、これらの触媒でもBTXが多く生成し、C2
〜C4のオレフィン収率は約40%かそれ以下である。
特開平2−1413、特開平2−184638では、
銅、コバルト、銀などを担持したZSM−5触媒による
パラフィン類の接触分解法が開示されている。この方法
ではプロピレンが40〜60%の収率で得られることが
報告されているが、非常に希釈した条件下でのパルス反
応のデータであり商業的な実施には困難が伴う。またエ
チレンの収率も20%以下と低い。ZSM−5を他の成
分、例えば希土類元素などで修飾した触媒による接触分
解も数多く報告されている。米国特許第5,232,6
75号および第5,380,690号、欧州特許第72
7,404号にはZSM−5中のアルミニウムに対して
原子数の比で0.01〜0.3の希土類元素を含むZS
M−5触媒によるパラフィン類の接触分解法が開示され
ているが、エチレン収率は10%以下、プロピレン収率
は20%以下であり、むしろ液状成分の生成が多い。さ
らに、これまでブテン類、ペンテン類、ヘキセン類のよ
うな不飽和成分を多く含む炭化水素をゼオライトと接触
させた場合、BTXを含む芳香族が多量に生成すること
が報告されており(例えば特公昭56−42639、特
公平4−5712、米国特許第3,845,150号、
米国特許第3,960,978号など)、不飽和成分を
含む炭化水素を分解しようとする場合、エチレン・プロ
ピレン等の軽質オレフィンの収率は低かった。ゼオライ
ト以外の金属酸化物触媒を用いたパラフィンの分解によ
るオレフィン製造の方法も数多く報告されている(例え
ば特公昭48−13523、特公昭46−25370、
特公昭49−45364、特公昭52−12162、特
公昭53−23806、特公昭56−5435、特公昭
56−5436、特公昭56−29919、特公昭60
−41054など)。しかしながらこれらの例では一般
に分解温度が現行の熱分解法と同等(700〜800℃
以上)であり、また一酸化炭素や二酸化炭素が多く生成
するという問題点がある。上記のように、触媒を用いて
軽質炭化水素を分解してオレフィン、特にエチレンおよ
びプロピレンを効率よく製造する方法は確立されていな
い。
2. Description of the Related Art Lower olefins such as ethylene and propylene are important substances as basic raw materials for various chemical products. Conventionally, as a method for producing these lower olefins, a method in which a gaseous hydrocarbon such as ethane, propane, butane or a liquid hydrocarbon such as naphtha is used as a raw material and is thermally decomposed in a steam furnace in an externally heated tubular furnace. Is widely practiced. However, this method has an economic disadvantage that a high temperature of 800 ° C. or more is required to increase the olefin yield, and that expensive equipment materials must be used. For this reason, various catalytic cracking methods for hydrocarbons using a catalyst have been studied. Among them, when a solid acid, particularly zeolite, is used, it can be decomposed at a relatively low temperature (350 to 700 ° C.), so that many examples have been reported. For example, a series of patents of Asahi Kasei Kogyo Co., Ltd. (JP-A-60-222428, JP-A-61-721)
8, JP-A-3-130236, JP-A-6-19213
4, JP-A-6-192135, JP-A-6-19970
7, JP-A-6-228017, JP-A-6-346062
In ZS, the acid amount and acid strength are controlled to specific ranges.
Although a catalytic cracking method of n-hexane and naphtha using an M-5 type catalyst is disclosed, this method generates a large amount of aromatic components (benzene, toluene, xylene, BTX) and efficiently converts olefins. You can't get it. JP-A-1-213240 and JP-A-3-504737 disclose catalytic cracking by ZSM-5 in which the α value which is an index of cracking activity is controlled to a specific range. However, even with these catalysts, a large amount of BTX is generated. And C 2
Olefin yields -C 4 is about 40% or less.
In JP-A-2-1413 and JP-A-2-184846,
A catalytic cracking method for paraffins using a ZSM-5 catalyst supporting copper, cobalt, silver or the like is disclosed. Although it is reported that propylene can be obtained in this method in a yield of 40 to 60%, it is a data of the pulse reaction under a very dilute condition, and there is difficulty in commercial implementation. Also, the yield of ethylene is as low as 20% or less. Numerous catalytic cracking by a catalyst obtained by modifying ZSM-5 with another component such as a rare earth element has been reported. US Patent 5,232,6
Nos. 75 and 5,380,690, EP 72
No. 7,404 discloses a ZS containing 0.01 to 0.3 rare earth element at an atomic ratio to aluminum in ZSM-5.
A catalytic cracking method for paraffins using an M-5 catalyst is disclosed. However, the yield of ethylene is 10% or less, and the yield of propylene is 20% or less. Furthermore, it has been reported that when hydrocarbons containing a large amount of unsaturated components such as butenes, pentenes, and hexenes are brought into contact with zeolites, a large amount of aromatics including BTX is produced (for example, in particular). No. 56-42639, Japanese Patent Publication No. 4-5712, U.S. Pat. No. 3,845,150,
US Pat. No. 3,960,978), when attempting to crack hydrocarbons containing unsaturated components, the yield of light olefins such as ethylene and propylene was low. Many methods for producing olefins by decomposing paraffin using a metal oxide catalyst other than zeolite have been reported (for example, JP-B-48-13523, JP-B-46-25370,
JP-B-49-45364, JP-B-52-12162, JP-B-53-23806, JP-B-56-5435, JP-B-56-5436, JP-B-56-29919, and JP-B-60
−41054). However, in these examples, the decomposition temperature is generally equivalent to that of the current pyrolysis method (700 to 800 ° C.).
Above) and there is a problem that a large amount of carbon monoxide and carbon dioxide are generated. As described above, a method for efficiently producing olefins, particularly ethylene and propylene, by decomposing light hydrocarbons using a catalyst has not been established.

【0003】[0003]

【発明が解決しようとする課題】本発明は、触媒を使用
して炭化水素原料を接触分解する際に、芳香族炭化水素
や重質物等の副生成物の生成を抑制し、エチレン、プロ
ピレン等の低級オレフィンを効率良く製造する方法を提
供することをその課題とする。
DISCLOSURE OF THE INVENTION The present invention suppresses the production of by-products such as aromatic hydrocarbons and heavy substances when catalytically cracking a hydrocarbon raw material using a catalyst, and reduces the production of ethylene, propylene and the like. It is an object of the present invention to provide a method for producing a lower olefin efficiently.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を進めた結果、特定範囲の量の希
土類元素をゼオライトに担持した触媒を使用し炭化水素
原料を接触分解することにより、工業的に有利な低温
で、芳香族炭化水素や重質物等の副生成物の生成を抑制
し、高選択的にエチレンおよびプロピレンを製造できる
ことを見出し本発明を完成した。すなわち、本発明によ
れば、炭化水素原料を、特定範囲の量の希土類元素を担
持したゼオライト触媒を使用して接触分解することを特
徴とする低級オレフィンの製造方法が提供される。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have conducted catalytic cracking of hydrocarbon raw materials using a catalyst in which a specific range of rare earth elements is supported on zeolite. By doing so, it has been found that the production of by-products such as aromatic hydrocarbons and heavy substances can be suppressed at a low temperature that is industrially advantageous, and ethylene and propylene can be produced with high selectivity, and the present invention has been completed. That is, according to the present invention, there is provided a process for producing a lower olefin, which comprises catalytically cracking a hydrocarbon raw material using a zeolite catalyst supporting a rare earth element in a specific range.

【0005】[0005]

【発明の実施の形態】本発明で使用する炭化水素原料と
しては、常温、常圧でガス状又は液状の炭化水素類が使
用できる。一般的には、炭素数2〜30、好ましくは2
〜20のパラフィン又はこれを主成分(10wt%以
上)とする炭化水素原料が用いられる。このような炭化
水素原料としては、例えば、エタン、プロパン、ブタ
ン、ペンタン、ヘキサン等のパラフィン類、あるいはナ
フサ、軽油等の軽質炭化水素留分を挙げることができ
る。また、原料成分は飽和炭化水素に限定されるもので
はなく、不飽和結合を有する成分を含有するものでも使
用できる。また芳香族成分が含まれていてもよい。不飽
和成分を含む留分でもBTX化を抑制しエチレン・プロ
ピレンを高収率で得ることができるという点は本触媒の
特徴のひとつである。このため、パラフィンをそのまま
本触媒で分解するよりも、不飽和分の多い留分またはパ
ラフィンの脱水素工程を経た後の留分を本触媒で分解す
ることで、より高いエチレン・プロピレン収率が得られ
る。本触媒での分解工程に先立つ脱水素工程で用いられ
る触媒としては、例えばクロミア担時アルミナ触媒、白
金および錫担時アルミン酸亜鉛触媒などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION As the hydrocarbon raw material used in the present invention, gaseous or liquid hydrocarbons at normal temperature and normal pressure can be used. Generally, it has 2 to 30 carbon atoms, preferably 2 carbon atoms.
~ 20 paraffins or hydrocarbon raw materials containing the same as a main component (10 wt% or more) are used. Examples of such hydrocarbon raw materials include paraffins such as ethane, propane, butane, pentane and hexane, and light hydrocarbon fractions such as naphtha and light oil. The raw material components are not limited to saturated hydrocarbons, and those containing components having unsaturated bonds can also be used. Further, an aromatic component may be contained. One of the features of the present catalyst is that BTX conversion can be suppressed and ethylene / propylene can be obtained in high yield even with a fraction containing an unsaturated component. For this reason, a higher ethylene / propylene yield can be obtained by decomposing a fraction having a large amount of unsaturated content or a fraction having undergone the dehydrogenation step of paraffin with the present catalyst, rather than decomposing paraffin as it is with the present catalyst. can get. Examples of the catalyst used in the dehydrogenation step prior to the decomposition step with the present catalyst include a chromia-supported alumina catalyst and a platinum and tin-supported zinc aluminate catalyst.

【0006】本発明の触媒は、希土類元素を担持したゼ
オライトを主成分とする。ゼオライトとしては高シリカ
型のゼオライト、特にZSM−5及び/又はZSM−1
1が好ましい。ゼオライトのSiO2/Al23比は2
5〜800、好ましくは50〜600であり、さらに好
ましくは100〜300である。希土類元素としてはど
のようなものでも使用可能であるが、好ましくは、ラン
タン、セリウム、プラセオジム、ネオジム、サマリウ
ム、ガドリニウム、ジスプロシウム等を挙げることがで
きる。希土類元素は、それぞれを単独で使用しても、ま
た、2種以上を混合して使用してもよい。触媒は、希土
類元素の種々の塩、例えば酢酸塩、硝酸塩、ハロゲン化
物、硫酸塩、炭酸塩、あるいはアルコキシド、アセチル
アセトナト等を溶解させた水、エタノール等の溶液にプ
ロトン型のゼオライトを含浸し、乾燥、焼成することに
より容易に調製することができる。これらの担持法によ
り希土類元素の一部はゼオライト細孔内に入り、一部は
ゼオライトのプロトンとイオン交換するが、大部分はゼ
オライト上に酸化物となって担持される。希土類元素は
ゼオライト上に担持されていることが重要であり、ゼオ
ライトと希土類酸化物を物理的に混合しただけでは本触
媒の効果は得られない。
[0006] The catalyst of the present invention is mainly composed of a zeolite supporting a rare earth element. As the zeolite, a high silica type zeolite, particularly ZSM-5 and / or ZSM-1
1 is preferred. The SiO 2 / Al 2 O 3 ratio of the zeolite is 2
It is 5-800, preferably 50-600, and more preferably 100-300. Any rare earth element can be used, but preferably, lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium and the like can be used. The rare earth elements may be used alone or in combination of two or more. The catalyst is a solution of various salts of rare earth elements, for example, acetate, nitrate, halide, sulfate, carbonate, or alkoxide, acetylacetonate, etc. It can be easily prepared by drying, baking and baking. According to these supporting methods, a part of the rare earth element enters the pores of the zeolite and a part exchanges ions with the protons of the zeolite, but most of the rare earth element is supported as an oxide on the zeolite. It is important that the rare earth element is supported on the zeolite, and the effect of the present catalyst cannot be obtained only by physically mixing the zeolite and the rare earth oxide.

【0007】本発明の触媒において、希土類元素の担持
量は、ゼオライト中のアルミニウムに対し原子比で0.4
〜20、好ましくは1〜10、さらに好ましくは2〜5
であり、これらの値より担持量が少ない場合は芳香族炭
化水素および重質物の生成が抑制されず、担持量が多す
ぎる場合は触媒活性が急激に低下するためオレフィン収
率は少なくなる。希土類元素の効果は未だ明らかではな
いが、後記実施例に示すように酸点をほとんど持たない
シリカライトに担持した場合に活性が得られないことか
ら、本発明の実施条件では希土類元素(酸化物)そのも
のは炭化水素の分解に対し不活性であると考えられる。
このことから分解反応はゼオライトの酸点が活性点とな
っており、希土類元素(酸化物)はおそらくその塩基性
の作用により、生成したオレフィンのゼオライトからの
脱離を促進し、その結果、副反応としての芳香族や重質
物の生成が抑制されているものと推測される。
[0007] In the catalyst of the present invention, the amount of the rare earth element carried is 0.4 as an atomic ratio with respect to the aluminum in the zeolite.
-20, preferably 1-10, more preferably 2-5
When the supported amount is smaller than these values, the generation of aromatic hydrocarbons and heavy substances is not suppressed, and when the supported amount is too large, the catalytic activity is sharply reduced and the olefin yield is reduced. Although the effect of the rare earth element is not yet clear, the activity is not obtained when the rare earth element is supported on silicalite having almost no acid sites, as shown in the following Examples. ) Itself is considered to be inert to the decomposition of hydrocarbons.
From this, the decomposition reaction is based on the acid site of the zeolite as the active site, and the rare earth element (oxide) promotes the elimination of the produced olefin from the zeolite, probably due to its basic action. It is assumed that the generation of aromatics and heavy substances as a reaction was suppressed.

【0008】本発明の触媒の形状は特に限定されず、粉
末や成形品等のいずれの形状のものでもよい。これらの
中でもリンは触媒の耐久性向上に効果があり、例えば希
土類元素を担持した本触媒をリン酸水素二アンモニウム
水溶液に含浸することによってリンを担持することがで
きる。リンは本触媒に対し0.1〜10重量%、好まし
くは1〜7重量%、さらに好ましくは2〜5重量%含有
させることが好ましい。さらにまた、これらの触媒はゼ
オライトおよび希土類以外の他の成分、例えばアルカ
リ、アルカリ土類、遷移金属、貴金属、ハロゲン、リ
ン、バインダー等が含まれていてもよい。シリカ、アル
ミナ、マグネシアあるいは石英砂等の充填剤と混合して
使用することも可能である。
[0008] The shape of the catalyst of the present invention is not particularly limited, and may be any shape such as a powder or a molded product. Among these, phosphorus is effective in improving the durability of the catalyst. For example, phosphorus can be supported by impregnating the present catalyst supporting a rare earth element with an aqueous solution of diammonium hydrogen phosphate. It is preferable that phosphorus is contained in the present catalyst in an amount of 0.1 to 10% by weight, preferably 1 to 7% by weight, more preferably 2 to 5% by weight. Furthermore, these catalysts may contain components other than zeolite and rare earth, for example, alkali, alkaline earth, transition metal, noble metal, halogen, phosphorus, binder and the like. It is also possible to use a mixture with a filler such as silica, alumina, magnesia or quartz sand.

【0009】本発明の接触分解反応は、固定床、流動床
等の形式の反応器を使用し、上記の触媒を充填した触媒
層へ炭化水素原料を供給することにより行われる。この
とき炭化水素原料は、窒素、水素、ヘリウムあるいはス
チーム等で希釈されていてもよい。これらの希釈剤の中
でも特にスチームは触媒の活性状態を保つ効果があり、
好ましいスチームの供給量は原料炭化水素に対し0.1
〜1wt%、さらに好ましくは0.3〜0.7wt%で
ある。反応温度は350〜780℃、好ましくは500
〜750℃、さらに好ましくは600〜700℃の範囲
である。780℃を越える温度でも実施できるが、メタ
ンおよびコークの生成が急増する。また350℃未満で
は十分な活性が得られないため、一回通過あたりのオレ
フィン収量が少なくなる。反応圧力は常圧、減圧あるい
は加圧下のいずれでも実施できるが、通常は常圧からや
や加圧が採用される。以上のような条件下に本発明の方
法を実施すれば、従来の熱分解法と比較して低温で炭化
水素原料を効率良く分解でき、エチレン、プロピレン等
の低級オレフィンを選択的に製造することができる。
The catalytic cracking reaction of the present invention is carried out by using a reactor of a type such as a fixed bed or a fluidized bed, and supplying a hydrocarbon raw material to a catalyst bed packed with the above-mentioned catalyst. At this time, the hydrocarbon raw material may be diluted with nitrogen, hydrogen, helium, steam, or the like. Among these diluents, steam has the effect of maintaining the active state of the catalyst,
A preferable steam supply amount is 0.1 to the feed hydrocarbon.
To 1 wt%, more preferably 0.3 to 0.7 wt%. The reaction temperature is 350-780 ° C, preferably 500
To 750 ° C, more preferably 600 to 700 ° C. It can be carried out at temperatures above 780 ° C., but the production of methane and coke increases sharply. If the temperature is lower than 350 ° C., sufficient activity cannot be obtained, so that the yield of olefin per one pass decreases. The reaction pressure can be carried out at normal pressure, reduced pressure or increased pressure, but usually from normal pressure to slightly increased pressure is employed. By carrying out the method of the present invention under the above conditions, it is possible to efficiently decompose a hydrocarbon raw material at a lower temperature as compared with a conventional pyrolysis method, and to selectively produce lower olefins such as ethylene and propylene. Can be.

【0010】[0010]

【実施例】以下に本発明を実施例を挙げてさらに詳細に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0011】実施例1 ゼオライトとして粉末状のプロトン型ZSM−5アルミ
ノシリケート(ケイ光X線分析で測定したSiO2/A
23モル比200、BET表面積360m2/g、粒
子径150μm以下)4gを、その10wt%に相当す
る0.4gのランタンを含む酢酸ランタン水溶液〔0.
9877gの酢酸ランタン1/2水和物(La(CH3
COO)3・0.5H2O)を脱イオン水60ccに溶解
させたもの〕に含浸し、40℃で1時間撹拌した。生成
したスラリーを減圧下、40℃〜60℃で撹拌しながら
約2時間かけて水分を蒸発させ、白色の粉末を得た。得
られた粉末を空気中、120℃、8時間乾燥した後、マ
ッフル炉内で4時間かけて600℃まで昇温し、600
℃で5時間焼成した。得られた白色固体を乳鉢で粉砕し
150μmのふるいを通過させたものを10%La/Z
SM−5触媒とした(La/Al原子比=4.3)。こ
の触媒1gを内径10mm、長さ330mmの石英製反
応管(外径4mmの熱電対用内挿管つき)に、触媒層の
長さが約70mmとなるように不活性充填剤(石英砂)
と共に充填した。触媒層の上下には石英砂を充填した。
このリアクターに空気を40cc/min(0℃、1気
圧換算、以下同じ)で流しながら触媒層の温度を650
℃まで昇温し、そのまま1時間前処理を行った。前処理
終了後、触媒層の温度を650℃に保持し、原料として
ノルマルブタンを2.8cc/min、窒素およびスチ
ームをそれぞれ5.7cc/min、0.01g/mi
nの流量で供給してノルマルブタンの接触分解反応を行
った。反応生成物の分析をガスクロマトグラフィーによ
り行い、生成物収率および原料転化率を次式により算出
した。 生成物収率(重量%)=(各成分重量/供給原料重量)
×100 原料転化率(%)=(1−未反応原料重量/供給原料重
量)×100 反応結果を表1に示す。
Example 1 A powdery proton type ZSM-5 aluminosilicate as a zeolite (SiO 2 / A measured by fluorescent X-ray analysis)
4 g of l 2 O 3 molar ratio, BET surface area: 360 m 2 / g, particle diameter: 150 μm or less), and an aqueous lanthanum acetate solution containing 0.4 g of lanthanum corresponding to 10 wt% [0.
9877 g of lanthanum acetate hemihydrate (La (CH 3
COO) 3 · 0.5H 2 O) was impregnated with what was dissolved in deionized water 60cc] and stirred for 1 hour at 40 ° C.. The resulting slurry was stirred at 40 ° C. to 60 ° C. under reduced pressure to evaporate water for about 2 hours to obtain a white powder. After drying the obtained powder in air at 120 ° C. for 8 hours, the temperature was raised to 600 ° C. in a muffle furnace for 4 hours, and
Calcination was performed at 5 ° C. for 5 hours. The obtained white solid was pulverized in a mortar and passed through a 150 μm sieve to obtain 10% La / Z
This was an SM-5 catalyst (La / Al atomic ratio = 4.3). An inert filler (quartz sand) is added to 1 g of this catalyst in a quartz reaction tube (with an inner diameter of 4 mm and a thermocouple insertion tube of 4 mm in outer diameter) having an inner diameter of 10 mm and a length of 330 mm so that the length of the catalyst layer becomes about 70 mm.
And filled together. Quartz sand was filled above and below the catalyst layer.
The temperature of the catalyst layer was raised to 650 while flowing air at 40 cc / min (0 ° C., 1 atm conversion, the same applies hereinafter) through this reactor.
The temperature was raised to ° C., and the pretreatment was performed for 1 hour. After completion of the pretreatment, the temperature of the catalyst layer was maintained at 650 ° C., and as raw materials, 2.8 cc / min of normal butane, 5.7 cc / min of nitrogen and steam, and 0.01 g / mi of nitrogen and steam, respectively.
n was supplied at a flow rate of n to perform a catalytic cracking reaction of normal butane. The reaction product was analyzed by gas chromatography, and the product yield and the raw material conversion were calculated by the following equations. Product yield (% by weight) = (weight of each component / weight of feed)
× 100 Raw material conversion rate (%) = (1−weight of unreacted raw material / weight of supplied raw material) × 100 The reaction results are shown in Table 1.

【0012】比較例1 実施例1と同様な方法で、粉末状のプロトン型ZSM−
5アルミノシリケート(ケイ光X線分析で測定したSi
2/Al23モル比200、BET表面積360m2
g、粒子径150μm以下)に、その0.5wt%に相
当するランタンを担持した触媒を調製し0.5%La/
ZSM−5触媒とした(La/Al原子比=0.2
2)。この触媒1gを用い実施例1と同様な方法でノル
マルブタンの接触分解反応を行った。反応結果を表1に
示す。この例でわかるように、希土類担持量が低すぎる
場合はBTXが多く、オレフィン収率は低い。
Comparative Example 1 In the same manner as in Example 1, powdery proton-type ZSM-
5 Aluminosilicate (Si measured by fluorescent X-ray analysis
O 2 / Al 2 O 3 molar ratio 200, BET surface area 360 m 2 /
g, a particle diameter of 150 μm or less) to prepare a catalyst carrying 0.5% by weight of lanthanum.
A ZSM-5 catalyst (La / Al atomic ratio = 0.2
2). Using 1 g of this catalyst, a catalytic decomposition reaction of normal butane was carried out in the same manner as in Example 1. Table 1 shows the reaction results. As can be seen from this example, when the amount of the rare earth carried is too low, BTX is high and the olefin yield is low.

【0013】比較例2 粉末状のプロトン型ZSM−5アルミノシリケート(ケ
イ光X線分析で測定したSiO2/Al23モル比20
0、BET表面積360m2/g、粒子径150μm以
下)をそのまま触媒として1g充填した他は実施例1と
同じ条件でノルマルブタンの接触分解反応を行った。反
応結果を表1に示す。この例でわかるように、希土類元
素を担持していない触媒はBTXが多く生成し、エチレ
ン、プロピレン収率は低い。
Comparative Example 2 Proton type ZSM-5 aluminosilicate in powder form (SiO 2 / Al 2 O 3 molar ratio measured by fluorescent X-ray analysis: 20)
(0, BET surface area: 360 m 2 / g, particle size: 150 μm or less) The catalytic cracking reaction of normal butane was carried out under the same conditions as in Example 1 except that 1 g was charged as a catalyst. Table 1 shows the reaction results. As can be seen from this example, the catalyst not carrying a rare earth element generates a large amount of BTX and has a low ethylene and propylene yield.

【0014】比較例3 プロトン型ZSM−5アルミノシリケートの替わりにシ
リカライト(SiO2、BET表面積360m2/g、粒
子径150μm以下)を用い、実施例1と同様な方法で
ランタンを含浸担持し10%La/シリカライト触媒を
調製した。この触媒1gを用い実施例1と同じ条件でノ
ルマルブタンの分解反応を行った。反応結果を表1に示
す。この例でわかるように、固体酸点をもたないシリカ
ライトに希土類元素を担持した触媒では分解活性はみら
れない。
Comparative Example 3 Instead of proton type ZSM-5 aluminosilicate, silicalite (SiO 2 , BET surface area: 360 m 2 / g, particle size: 150 μm or less) was used, and lanthanum was impregnated and carried in the same manner as in Example 1. A 10% La / silicalite catalyst was prepared. Using 1 g of this catalyst, a decomposition reaction of normal butane was carried out under the same conditions as in Example 1. Table 1 shows the reaction results. As can be seen from this example, the decomposition activity is not seen in the catalyst in which the rare earth element is supported on silicalite having no solid acid point.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2、実施例3および比較例4、比較
例5 これらの例は、希土類担持量がゼオライト中のアルミニ
ウムに対し原子比で0.4以上と0.3以下の場合で、
エチレン・プロピレン収率およびBTX収率に顕著な差
が出ることを示す。触媒として実施例1と同じ10%L
a/ZSM−5触媒(La/Al原子比=4.33)、
および実施例1と同様にして調製した1%La/ZSM
−5触媒(La/Al原子比=0.43)のそれぞれ
0.5gを実施例1と同じ反応管に触媒層の長さが約5
0mmとなるように不活性充填剤(石英砂)と共に充填
した。このリアクターに空気を40cc/minで流し
ながら触媒層の温度を650℃まで昇温し、そのまま1
時間前処理を行った。前処理終了後、触媒層の温度を6
50℃に保持し、原料としてノルマルブタンを2.8c
c/min、窒素およびスチームをそれぞれ12.2c
c/min、0.0047g/minの流量で供給して
ノルマルブタンの接触分解反応を行った。この結果を実
施例2および実施例3として表2に示す。さらに触媒と
して比較例1のものと同じ0.5%La/ZSM−5触
媒(La/Al原子比=0.22)および比較例2と同
じ未担持のHZSM−5触媒を用い、実施例2〜3と同
じ条件でノルマルブタンの接触分解反応を行った。この
結果を比較例4および比較例5として表2に示す。表2
で明らかなように、La/Al原子比を0.4から0.
3以下へ低下させると、BTXの生成が著しく増大し、
エチレン・プロピレン収率は減少する。
Examples 2 and 3 and Comparative Examples 4 and 5 These examples are based on the case where the amount of rare earth carried is 0.4 or more and 0.3 or less with respect to the aluminum in zeolite.
This shows that there are significant differences between the ethylene / propylene yield and the BTX yield. 10% L as catalyst as in Example 1
a / ZSM-5 catalyst (La / Al atomic ratio = 4.33),
And 1% La / ZSM prepared in the same manner as in Example 1.
0.5 g of each of the -5 catalyst (La / Al atomic ratio = 0.43) was placed in the same reaction tube as in Example 1 and the length of the catalyst layer was about 5 g.
It was filled together with an inert filler (quartz sand) so as to be 0 mm. While flowing air through this reactor at 40 cc / min, the temperature of the catalyst layer was raised to 650 ° C.
Time pretreatment was performed. After completion of the pretreatment, the temperature of the catalyst
Maintained at 50 ° C., 2.8 c of normal butane as a raw material
c / min, 12.2 c each of nitrogen and steam
The catalyst was supplied at a flow rate of 0.0047 g / min at a rate of c / min to perform a catalytic decomposition reaction of normal butane. The results are shown in Table 2 as Example 2 and Example 3. Further, the same 0.5% La / ZSM-5 catalyst (La / Al atomic ratio = 0.22) as in Comparative Example 1 and the same unsupported HZSM-5 catalyst as in Comparative Example 2 were used as Example 2. The catalytic cracking reaction of normal butane was carried out under the same conditions as in Examples 1 to 3. The results are shown in Table 2 as Comparative Examples 4 and 5. Table 2
As is apparent from the above, the La / Al atomic ratio was set to 0.4 to 0.1.
When it is reduced to 3 or less, the production of BTX increases remarkably,
Ethylene propylene yield decreases.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例4 この例は実施例1の触媒にさらにリンを加えた触媒によ
る接触分解反応を示す。実施例1で調製した10%La
/ZSM−5触媒2gに対しその2wt%に相当する
0.02gのリンを含むリン酸水素二アンモニウム水溶
液(リン酸水素二アンモニウム0.1706gを脱イオ
ン水20gに溶解させたもの)に含浸し、40℃で1時
間撹拌した。生成したスラリーを減圧下、40℃〜60
℃で撹拌しながら約2時間かけて水分を蒸発させ、白色
の粉末を得た。得られた粉末を空気中、120℃、8時
間乾燥した後、マッフル炉内で4時間かけて600℃ま
で昇温し、600℃で5時間焼成した。得られた白色固
体を乳鉢で粉砕し150μmのふるいを通過させたもの
を10%La−2%P/ZSM−5触媒とした。(La
/Al原子比=4.3) この触媒1gを使用し、実施例1と同じ反応を実施し
た。反応結果を表3に示す。
Example 4 This example shows a catalytic cracking reaction using a catalyst obtained by further adding phosphorus to the catalyst of Example 1. 10% La prepared in Example 1
/ ZSM-5 catalyst is impregnated in an aqueous solution of diammonium hydrogen phosphate containing 0.02 g of phosphorus corresponding to 2 g of the catalyst (0.1706 g of diammonium hydrogen phosphate dissolved in 20 g of deionized water). And stirred at 40 ° C. for 1 hour. The resulting slurry is heated at 40 ° C to 60 ° C under reduced pressure.
The water was evaporated over about 2 hours while stirring at し な が ら ° C. to obtain a white powder. After the obtained powder was dried in air at 120 ° C. for 8 hours, the temperature was raised to 600 ° C. in a muffle furnace over 4 hours and calcined at 600 ° C. for 5 hours. The obtained white solid was crushed in a mortar and passed through a 150 μm sieve to obtain a 10% La-2% P / ZSM-5 catalyst. (La
/ Al atomic ratio = 4.3) Using 1 g of this catalyst, the same reaction as in Example 1 was carried out. Table 3 shows the reaction results.

【0019】比較例6 実施例1で用いたものと同じ粉末状のプロトン型ZSM
−5アルミノシリケート(ケイ光X線分析で測定したS
iO2/Al23モル比200、BET表面積360m2
/g、粒子径150μm以下)4gに対しその2wt%
に相当する0.08gのリンを含むリン酸水素二アンモ
ニウム水溶液(リン酸水素二アンモニウム0.3411
gを脱イオン水40gに溶解させたもの)に含浸し、4
0℃で1時間撹拌した。生成したスラリーを減圧下、4
0℃〜60℃で撹拌しながら約2時間かけて水分を蒸発
させ、白色の粉末を得た。得られた粉末を空気中、12
0℃、8時間乾燥した後、マッフル炉内で4時間かけて
600℃まで昇温し、600℃で5時間焼成した。得ら
れた白色固体を乳鉢で粉砕し150μmのふるいを通過
させたものを2%P/ZSM−5触媒とした。この触媒
1gを使用し、実施例1と同じ反応を実施した。反応結
果を表3に示す。この例でわかるようにリンのみを担持
させた触媒ではオレフィン収率は低い。
Comparative Example 6 The same powdery proton type ZSM as used in Example 1
-5 aluminosilicate (S measured by fluorescent X-ray analysis
iO 2 / Al 2 O 3 molar ratio 200, BET surface area 360 m 2
/ G, particle diameter 150 μm or less) 2 wt% for 4 g
Diammonium hydrogen phosphate aqueous solution containing 0.08 g of phosphorus (0.3411 diammonium hydrogen phosphate)
g in 40 g of deionized water).
Stirred at 0 ° C. for 1 hour. The resulting slurry is reduced under reduced pressure to 4
The water was evaporated over about 2 hours while stirring at 0 ° C to 60 ° C to obtain a white powder. The obtained powder is placed in air at 12
After drying at 0 ° C. for 8 hours, the temperature was raised to 600 ° C. in a muffle furnace for 4 hours and calcined at 600 ° C. for 5 hours. The obtained white solid was crushed in a mortar and passed through a 150 μm sieve to obtain a 2% P / ZSM-5 catalyst. Using 1 g of this catalyst, the same reaction as in Example 1 was performed. Table 3 shows the reaction results. As can be seen from this example, the catalyst supporting only phosphorus has a low olefin yield.

【0020】[0020]

【表3】 [Table 3]

【0021】実施例5〜7 酢酸ランタン1/2水和物の替わりにそれぞれ酢酸セリ
ウム1水和物、硝酸プラセオジム6水和物、酢酸サマリ
ウム4水和物を用いた他は実施例1と同様な方法で希土
類元素を10wt%担持した触媒を調製した。(原子
比:Ce/Al=4.3、Pr/Al=4.3、Sm/
Al=4.00) これら触媒0.5gをそれぞれ内径10mm、長さ33
0mmの石英製反応管(外径4mmの熱電対用内挿管つ
き)に、触媒層の長さが約50mmとなるように不活性
充填剤(石英砂)と共に充填した。触媒層の上下には石
英砂を充填した。このリアクターに空気を40cc/m
inで流しながら触媒層の温度を650℃まで昇温し、
そのまま1時間前処理を行った。前処理終了後、触媒層
の温度を650℃に保持し、原料としてノルマルブタン
を2.8cc/min、窒素およびスチームをそれぞれ
12cc/min、0.0047g/minの流量で供
給してノルマルブタンの接触分解反応を行った。結果を
表4に示す。
Examples 5-7 The same as Example 1 except that cerium acetate monohydrate, praseodymium nitrate hexahydrate and samarium acetate tetrahydrate were used instead of lanthanum acetate hemihydrate. A catalyst supporting 10 wt% of a rare earth element was prepared by a suitable method. (Atomic ratio: Ce / Al = 4.3, Pr / Al = 4.3, Sm /
(Al = 4.00) 0.5 g of each of these catalysts was 10 mm in inner diameter and 33 mm in length.
A 0 mm quartz reaction tube (with an inner tube for a thermocouple having an outer diameter of 4 mm) was filled together with an inert filler (quartz sand) so that the length of the catalyst layer was about 50 mm. Quartz sand was filled above and below the catalyst layer. 40cc / m of air into this reactor
while raising the temperature of the catalyst layer to 650 ° C. while flowing in,
Pretreatment was performed for 1 hour as it was. After completion of the pretreatment, the temperature of the catalyst layer was maintained at 650 ° C., and normal butane was supplied as a raw material at a flow rate of 2.8 cc / min, nitrogen and steam at a flow rate of 12 cc / min and 0.0047 g / min, respectively. A catalytic cracking reaction was performed. Table 4 shows the results.

【0022】[0022]

【表4】 [Table 4]

【0023】実施例8 この例は希土類担持触媒による飽和および不飽和炭化水
素混合物の接触分解例を示す。実施例1と同様な方法で
調製した10%La/ZSM−5触媒0.5gを実施例
5〜7と同様にしてリアクターに充填した。リアクター
に空気を40cc/minで流しながら650℃まで昇
温し、そのまま1時間前処理を行った。前処理終了後、
触媒層の温度を650℃に保持し、原料として1−ブテ
ンを30vol%含むノルマルブタン/1−ブテン混合
ガスを2.8cc/min、窒素およびスチームをそれ
ぞれ12cc/min、0.0047g/minの流量
で供給してノルマルブタン/1−ブテン混合ガスの接触
分解反応を行った。結果を表5に示す。
Example 8 This example shows the catalytic cracking of a mixture of saturated and unsaturated hydrocarbons with a rare earth supported catalyst. 0.5 g of a 10% La / ZSM-5 catalyst prepared in the same manner as in Example 1 was charged into the reactor in the same manner as in Examples 5 to 7. The temperature was raised to 650 ° C. while flowing air at 40 cc / min into the reactor, and pretreatment was performed for 1 hour. After preprocessing,
The temperature of the catalyst layer was maintained at 650 ° C., and as a raw material, a normal butane / 1-butene mixed gas containing 30 vol% of 1-butene was 2.8 cc / min, nitrogen and steam were 12 cc / min and 0.0047 g / min, respectively. The catalyst was supplied at a flow rate to perform a catalytic cracking reaction of a normal butane / 1-butene mixed gas. Table 5 shows the results.

【0024】実施例9 この例は希土類担持触媒による不飽和炭化水素の接触分
解例を示す。実施例1と同様な方法で調製した10%L
a/ZSM−5触媒0.3gを内径10mm、長さ33
0mmの石英製反応管(外径4mmの熱電対用内挿管つ
き)に、触媒層の長さが約30mmとなるように不活性
充填剤(石英砂)と共に充填した。触媒層の上下には石
英砂を充填した。このリアクターに空気を40cc/m
inで流しながら触媒層の温度を650℃まで昇温し、
そのまま1時間前処理を行った。前処理終了後、触媒層
の温度を650℃に保持し、原料として1−ブテンを
1.8cc/min、窒素およびスチームをそれぞれ1
5cc/min、0.0078g/minの流量で供給
して1−ブテンの接触分解反応を行った。結果を表5に
示す。
Example 9 This example shows an example of catalytic cracking of unsaturated hydrocarbons with a rare earth supported catalyst. 10% L prepared in the same manner as in Example 1
a / ZSM-5 catalyst 0.3 g with an inner diameter of 10 mm and a length of 33
A 0 mm quartz reaction tube (with a thermocouple inner tube having an outer diameter of 4 mm) was filled together with an inert filler (quartz sand) so that the length of the catalyst layer was about 30 mm. Quartz sand was filled above and below the catalyst layer. 40cc / m of air into this reactor
while raising the temperature of the catalyst layer to 650 ° C. while flowing in,
Pretreatment was performed for 1 hour as it was. After completion of the pretreatment, the temperature of the catalyst layer was maintained at 650 ° C., and 1-butene was used as a raw material at 1.8 cc / min, and nitrogen and steam were added at a rate of 1 respectively.
The catalyst was supplied at a flow rate of 5 cc / min at a flow rate of 0.0078 g / min to perform a catalytic decomposition reaction of 1-butene. Table 5 shows the results.

【0025】[0025]

【表5】 [Table 5]

【0026】実施例10 この例は希土類担持触媒によるヘキサンの接触分解例を
示す。実施例1と同様な方法で調製した10%La/Z
SM−5触媒0.5gを内径10mm、長さ330mm
の石英製反応管(外径4mmの熱電対用内挿管つき)
に、触媒層の長さが約50mmとなるように不活性充填
剤(石英砂)と共に充填した。触媒層の上下には石英砂
を充填した。このリアクターに空気を40cc/min
で流しながら触媒層の温度を650℃まで昇温し、その
まま1時間前処理を行った。前処理終了後、触媒層の温
度を650℃に保持し、原料としてノルマルヘキサンを
0.42g/h、窒素およびスチームをそれぞれ2cc
/min、0.0047g/min、水素を11cc/
minの流量で供給してノルマルヘキサンの接触分解反
応を行った。結果を表6に示す。
Example 10 This example shows an example of catalytic decomposition of hexane using a rare earth supported catalyst. 10% La / Z prepared in the same manner as in Example 1
0.5 g of SM-5 catalyst is 10 mm in inner diameter and 330 mm in length
Quartz reaction tube (with 4 mm outside diameter thermocouple inner tube)
Was filled with an inert filler (quartz sand) so that the length of the catalyst layer was about 50 mm. Quartz sand was filled above and below the catalyst layer. 40cc / min of air into this reactor
Then, the temperature of the catalyst layer was raised to 650 ° C. while flowing at, and pretreatment was performed for 1 hour as it was. After the pretreatment, the temperature of the catalyst layer was maintained at 650 ° C., and 0.42 g / h of normal hexane and 2 cc of nitrogen and steam were used as raw materials.
/ Min, 0.0047 g / min, and 11 cc /
The catalyst was supplied at a flow rate of min to perform a catalytic decomposition reaction of normal hexane. Table 6 shows the results.

【0027】比較例7 触媒として粉末状のプロトン型ZSM−5アルミノシリ
ケート(ケイ光X線分析で測定したSiO2/Al23
モル比200、BET表面積360m2/g、粒子径1
50μm以下)を0.5g充填した他は実施例10と同
じ条件でノルマルヘキサンの接触分解反応を行った。結
果を表5に示す。このように希土類元素を担持していな
い場合はBTXが多く、オレフィン収率は低い。
Comparative Example 7 A powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 measured by fluorescent X-ray analysis) was used as a catalyst.
Molar ratio 200, BET surface area 360 m 2 / g, particle size 1
The catalytic decomposition reaction of normal hexane was carried out under the same conditions as in Example 10 except that 0.5 g of 50 μm or less was charged. Table 5 shows the results. When no rare earth element is supported, BTX is high and the olefin yield is low.

【0028】実施例11 この例は希土類担持触媒の前段に脱水素触媒を充填して
パラフィンの接触分解を行った例を示す。実施例6と同
様な方法で調製した10%Pr/ZSM−5触媒0.5
gを、内径10mm、長さ330mmの石英製反応管
(外径4mmの熱電対用内挿管つき)に、触媒層の長さ
が約50mmとなるように不活性充填剤(石英砂)と共
に充填した。この触媒層の上部に白金系脱水素触媒(例
えばUS5,344,805記載のもの)を3g充填
し、さらにその上部および触媒層の下部には石英砂を充
填した。このリアクターに空気を40cc/minで流
しながら、脱水素触媒が充填された触媒層は580℃ま
で、10%Pr/ZSM−5触媒が充填された触媒層は
650℃まで昇温し、そのまま1時間前処理を行った。
前処理終了後、触媒層の温度をそのまま580℃および
650℃に保持し、原料としてノルマルブタンを2.8
cc/min、窒素およびスチームをそれぞれ2cc/
min、0.0078g/min、水素を11cc/m
inの流量で供給してノルマルブタンの接触分解反応を
行った。結果を表6に示す。
Example 11 This example shows an example in which a dehydrogenation catalyst was charged before the rare earth-supported catalyst to perform catalytic cracking of paraffin. 0.5% of 10% Pr / ZSM-5 catalyst prepared in the same manner as in Example 6.
g into a quartz reaction tube with an inner diameter of 10 mm and a length of 330 mm (with an inner tube for thermocouple with an outer diameter of 4 mm) together with an inert filler (quartz sand) so that the length of the catalyst layer becomes about 50 mm. did. 3 g of a platinum-based dehydrogenation catalyst (for example, described in US Pat. No. 5,344,805) was filled in the upper part of the catalyst layer, and quartz sand was filled in the upper part and the lower part of the catalyst layer. While flowing air through this reactor at 40 cc / min, the temperature of the catalyst layer filled with the dehydrogenation catalyst was raised to 580 ° C, and the temperature of the catalyst layer filled with the 10% Pr / ZSM-5 catalyst was raised to 650 ° C. Time pretreatment was performed.
After the completion of the pretreatment, the temperature of the catalyst layer is kept at 580 ° C. and 650 ° C., and 2.8 of normal butane is used as a raw material.
cc / min, nitrogen and steam each at 2 cc / min.
min, 0.0078 g / min, hydrogen at 11 cc / m
The catalyst was supplied at a flow rate of in to perform a catalytic decomposition reaction of normal butane. Table 6 shows the results.

【0029】[0029]

【表6】 [Table 6]

【0030】実施例12 この例では希土類担持触媒の耐久性に関するデータを示
す。実施例2と同様な方法で調製した触媒1gを使用
し、実施例1と同じ条件で反応を実施した。反応開始後
1時間および反応開始後4時間の反応成績を表7に示
す。このように本触媒では顕著な劣化は認められなかっ
た。
Example 12 This example shows data relating to the durability of a rare earth supported catalyst. Using 1 g of the catalyst prepared in the same manner as in Example 2, the reaction was carried out under the same conditions as in Example 1. Table 7 shows the reaction results 1 hour after the start of the reaction and 4 hours after the start of the reaction. Thus, no remarkable deterioration was observed in the present catalyst.

【0031】比較例8 触媒として粉末状のプロトン型ZSM−5アルミノシリ
ケート(ケイ光X線分析で測定したSiO2/Al23
モル比200、BET表面積360m2/g、粒子径1
50μm以下)1gを用いて実施例10と同様な反応を
実施した。反応開始後1時間および反応開始後4時間の
反応成績を表7に示す。このように希土類を担持してい
ない触媒ではオレフィン収率が低く、かつ劣化も早い。
Comparative Example 8 Powdered proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 measured by fluorescent X-ray analysis) as a catalyst
Molar ratio 200, BET surface area 360 m 2 / g, particle size 1
The same reaction as in Example 10 was carried out using 1 g of 50 μm or less. Table 7 shows the reaction results 1 hour after the start of the reaction and 4 hours after the start of the reaction. As described above, the catalyst which does not support the rare earth element has a low olefin yield and deteriorates quickly.

【0032】[0032]

【表7】 [Table 7]

【0033】[0033]

【発明の効果】本発明の方法によれば、ガス状あるいは
液状炭化水素を原料とし、芳香族炭化水素や重質物等の
副生成物の生成を抑制し、エチレン、プロピレン等の低
級オレフィンを選択的に製造することができる。さら
に、従来の加熱分解法に比較すると、本発明の場合、反
応温度を100℃以上低下させることが可能である。
According to the method of the present invention, the production of by-products such as aromatic hydrocarbons and heavy substances is suppressed using gaseous or liquid hydrocarbons as raw materials, and lower olefins such as ethylene and propylene are selected. It can be manufactured in a special way. Furthermore, in the case of the present invention, it is possible to lower the reaction temperature by 100 ° C. or more as compared with the conventional thermal decomposition method.

【手続補正書】[Procedure amendment]

【提出日】平成10年1月28日[Submission date] January 28, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】本発明の触媒の形状は特に限定されず、粉
末や成形品等のいずれの形状のものでもよい。また、こ
れらの触媒はゼオライトおよび希土類以外の他の成分、
例えばアルカリ、アルカリ土類、遷移金属、貴金属、ハ
ロゲン、リン、バインダー等が含まれていてもよい。
れらの中でもリンは触媒の耐久性向上に効果があり、例
えば希土類元素を担持した本触媒をリン酸水素ニアンモ
ニウム水溶液に含浸することによってリンを担持するこ
とができる。リンは本触媒に対し0.1〜10重量%、
好ましくは1〜7重量%、さらに好ましくは2〜5重量
%含有させることが好ましい。さらにシリカ、アルミ
ナ、マグネシアあるいは石英砂等の充填剤と混合して使
用することも可能である。
[0008] The shape of the catalyst of the present invention is not particularly limited, and may be any shape such as a powder or a molded product. Also,
These catalysts are components other than zeolites and rare earths,
For example, alkali, alkaline earth, transition metal, precious metal,
Logen, phosphorus, a binder and the like may be contained. Among these, phosphorus is effective in improving the durability of the catalyst. For example, phosphorus can be supported by impregnating the rare earth element-supported catalyst with an aqueous solution of diammonium hydrogen phosphate. Phosphorus is 0.1 to 10% by weight based on the weight of the catalyst;
Preferably, the content is 1 to 7% by weight, more preferably 2 to 5% by weight. It is also possible to use more silica, alumina, mixed with fillers such as magnesia or quartz sand.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】比較例7 触媒として粉末状のプロトン型ZSM−5アルミノシリ
ケート(ケイ光x線分析で測定したSiO/Al
モル比200、BET表面積360m/g、粒子径
150μm以下)を0.5g充填した他は実施例10と
同じ条件でノルマルヘキサンの接触分解反応を行った。
結果を表6に示す。このように希土類元素を担持してい
ない場合はBTXが多く、オレフィン収率は低い。
Comparative Example 7 A powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O measured by fluorescent x-ray analysis) was used as a catalyst.
The catalytic cracking reaction of normal hexane was carried out under the same conditions as in Example 10 except that 0.5 g of a 3 molar ratio of 200, a BET surface area of 360 m 2 / g, and a particle size of 150 μm or less were filled.
Table 6 shows the results. When no rare earth element is supported, BTX is high and the olefin yield is low.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0031】比較例8 触媒として粉末状のプロトン型ZSM−5アルミノシリ
ケート(ケイ光X線分析で測定したSiO/Al
モル比200、BET表面積360m/g、粒子径
150μm以下)1gを用いて実施例1と同様な反応を
実施した。反応開始後1時間および反応開始後4時間の
反応成績を表7に示す。このように希土類を担持してい
ない触媒ではオレフィン収率が低く、かつ劣化も早い。
Comparative Example 8 A powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O measured by fluorescent X-ray analysis) was used as a catalyst.
The same reaction as in Example 1 was carried out using 1 g of 3 molar ratio, 200 g of BET surface area, 360 m 2 / g, particle diameter of 150 μm or less. Table 7 shows the reaction results 1 hour after the start of the reaction and 4 hours after the start of the reaction. As described above, the catalyst which does not support the rare earth element has a low olefin yield and deteriorates quickly.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 (71)出願人 000221627 東燃化学株式会社 東京都渋谷区広尾一丁目1番39号 (71)出願人 000231682 日本石油化学株式会社 東京都千代田区内幸町1丁目3番1号 (71)出願人 000157603 丸善石油化学株式会社 東京都中央区八丁堀2丁目25番10号 (74)上記5名の代理人 弁理士 池浦 敏明 (72)発明者 葭村 雄二 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 村田 和久 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 早川 孝 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 鈴木 邦夫 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 竹平 勝臣 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 涌井 顕一 東京都千代田区霞が関三丁目2番6号 社 団法人日本化学工業協会内 (72)発明者 塩沢 光治 東京都千代田区霞が関三丁目2番6号 社 団法人日本化学工業協会内 (72)発明者 佐藤 浩一 東京都千代田区霞が関三丁目2番6号 社 団法人日本化学工業協会内 (72)発明者 澤田 悟郎 東京都千代田区霞が関三丁目2番6号 社 団法人日本化学工業協会内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // C07B 61/00 300 C07B 61/00 300 (71) Applicant 000221627 Tonen Chemical Co., Ltd. 1-39, Hiroo 1-chome, Shibuya-ku, Tokyo (71) Applicant 000231682 Nippon Petrochemical Co., Ltd. 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo (71) Applicant 000157603 Maruzen Petrochemical Co., Ltd. 2- 25-10, Hatchobori, Chuo-ku, Tokyo (74) 5 Attorney Toshiaki Ikeura (72) Inventor Yuji Yoshimura 1-1-1, Higashi, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Kazuhisa Murata 1-1-1, Higashi, Tsukuba, Ibaraki Industrial Technology (72) Inventor Takashi Hayakawa 1-1-1, Higashi, Tsukuba, Ibaraki Pref. (72) Inventor Kunio Suzuki 1-1-1, Higashi, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Katsuomi Takehira 1-1, Higashi, 1-1, Higashi, Tsukuba, Ibaraki Pref. ) Inventor Kenichi Wakui 3-6-6 Kasumigaseki, Chiyoda-ku, Tokyo Japan Chemical Industry Association (72) Inventor Koji Shiozawa 3-2-6 Kasumigaseki, Chiyoda-ku, Tokyo Japan Chemical Industry Association (72) Inventor Koichi Sato 3-2-6 Kasumigaseki, Chiyoda-ku, Tokyo Within the Japan Chemical Industry Association (72) Inventor Goro 3-6-6 Kasumigaseki, Chiyoda-ku, Tokyo Japan Chemical Industry In association

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素数2以上の炭化水素原料を触媒に接
触させ、低級オレフィンを製造するにあたり、希土類元
素を担持した結晶性アルミノシリケートゼオライトを触
媒とし、かつ該触媒の希土類元素の担持量がゼオライト
中のアルミニウムに対し原子比で0.4〜20の範囲で
あることを特徴とする低級オレフィンの製造方法。
When producing a lower olefin by contacting a hydrocarbon raw material having 2 or more carbon atoms with a catalyst, a crystalline aluminosilicate zeolite carrying a rare earth element is used as a catalyst, and the amount of the rare earth element carried by the catalyst is reduced. A method for producing a lower olefin, wherein the atomic ratio of aluminum to zeolite is in the range of 0.4 to 20.
【請求項2】 結晶性アルミノシリケートゼオライトが
ZSM−5型及び/又はZSM−11型ゼオライトであ
る請求項1記載の低級オレフィンの製造方法。
2. The method for producing a lower olefin according to claim 1, wherein the crystalline aluminosilicate zeolite is a ZSM-5 type and / or ZSM-11 type zeolite.
【請求項3】 該触媒がさらに0.1〜10重量%のリ
ンを含有している請求項1または2記載の低級オレフィ
ンの製造方法。
3. The method for producing a lower olefin according to claim 1, wherein said catalyst further contains 0.1 to 10% by weight of phosphorus.
【請求項4】 水蒸気の共存下に接触反応を行う請求項
1〜3記載の低級オレフィンの製造方法。
4. The method for producing a lower olefin according to claim 1, wherein the catalytic reaction is carried out in the presence of steam.
【請求項5】 炭素数2以上の炭化水素原料を脱水素工
程を通過させた後に、該触媒を含む触媒層を通過させる
ことによって接触反応を行う請求項1〜4記載の低級オ
レフィンの製造方法。
5. The method for producing a lower olefin according to claim 1, wherein a catalytic reaction is carried out by passing a hydrocarbon material having 2 or more carbon atoms through a dehydrogenation step and then passing through a catalyst layer containing the catalyst. .
JP9363675A 1997-12-16 1997-12-16 Method for producing lower olefin Expired - Lifetime JP3072348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9363675A JP3072348B2 (en) 1997-12-16 1997-12-16 Method for producing lower olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9363675A JP3072348B2 (en) 1997-12-16 1997-12-16 Method for producing lower olefin

Publications (2)

Publication Number Publication Date
JPH11180902A true JPH11180902A (en) 1999-07-06
JP3072348B2 JP3072348B2 (en) 2000-07-31

Family

ID=18479908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9363675A Expired - Lifetime JP3072348B2 (en) 1997-12-16 1997-12-16 Method for producing lower olefin

Country Status (1)

Country Link
JP (1) JP3072348B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065005A1 (en) * 2003-01-24 2004-08-05 Idemitsu Kosan Co., Ltd. Catalyst for catalytic cracking of hydrocarbon and process for producing light olefin with the same
WO2004076596A1 (en) * 2003-01-24 2004-09-10 Idemitsu Kosan Co., Ltd. Process of catalytic cracking of hydrocarbon
WO2005105710A1 (en) * 2004-04-30 2005-11-10 Maruzen Petrochemical Company Limited Method for producing lower olefin
JP2007119529A (en) * 2005-10-25 2007-05-17 Petroleum Energy Center Method for producing high octane value gasoline base material
JP2008519782A (en) * 2004-11-12 2008-06-12 ポリメーリ エウローパ ソシエタ ペル アチオニ Continuous process for the production of phenol from benzene in a fixed bed reactor.
JP2009242264A (en) * 2008-03-28 2009-10-22 Idemitsu Kosan Co Ltd Method for producing light olefin
JP2010042344A (en) * 2008-08-12 2010-02-25 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
CN102276405A (en) * 2010-06-12 2011-12-14 中国石油化工股份有限公司 Method for preparing propylene as main product from C4 and high carbon olefins
KR20160018677A (en) 2013-06-07 2016-02-17 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Method for producing unsaturated hydrocarbon using metal-containing zeolite catalyst
WO2019124519A1 (en) * 2017-12-20 2019-06-27 三菱ケミカル株式会社 Method for producing ethylene
CN110975928A (en) * 2019-12-06 2020-04-10 陕西延长石油(集团)有限责任公司 Modification method and application of binder-free ZSM-11 molecular sieve catalyst

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993397B1 (en) * 2003-01-24 2010-11-09 이데미쓰 고산 가부시키가이샤 Process of catalytic cracking of hydrocarbon
WO2004076596A1 (en) * 2003-01-24 2004-09-10 Idemitsu Kosan Co., Ltd. Process of catalytic cracking of hydrocarbon
WO2004065005A1 (en) * 2003-01-24 2004-08-05 Idemitsu Kosan Co., Ltd. Catalyst for catalytic cracking of hydrocarbon and process for producing light olefin with the same
CN100386295C (en) * 2003-01-24 2008-05-07 出光兴产株式会社 Process for catalytic cracking of hydrocarbons
US7863212B2 (en) * 2003-01-24 2011-01-04 Idemitsu Kosan Co., Ltd. Process of catalytic cracking of hydrocarbon
WO2005105710A1 (en) * 2004-04-30 2005-11-10 Maruzen Petrochemical Company Limited Method for producing lower olefin
JP2008519782A (en) * 2004-11-12 2008-06-12 ポリメーリ エウローパ ソシエタ ペル アチオニ Continuous process for the production of phenol from benzene in a fixed bed reactor.
JP2007119529A (en) * 2005-10-25 2007-05-17 Petroleum Energy Center Method for producing high octane value gasoline base material
JP2009242264A (en) * 2008-03-28 2009-10-22 Idemitsu Kosan Co Ltd Method for producing light olefin
JP2010042344A (en) * 2008-08-12 2010-02-25 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
CN102276405A (en) * 2010-06-12 2011-12-14 中国石油化工股份有限公司 Method for preparing propylene as main product from C4 and high carbon olefins
KR20160018677A (en) 2013-06-07 2016-02-17 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Method for producing unsaturated hydrocarbon using metal-containing zeolite catalyst
WO2019124519A1 (en) * 2017-12-20 2019-06-27 三菱ケミカル株式会社 Method for producing ethylene
CN110975928A (en) * 2019-12-06 2020-04-10 陕西延长石油(集团)有限责任公司 Modification method and application of binder-free ZSM-11 molecular sieve catalyst
CN110975928B (en) * 2019-12-06 2022-11-01 陕西延长石油(集团)有限责任公司 Modification method and application of binder-free ZSM-11 molecular sieve catalyst

Also Published As

Publication number Publication date
JP3072348B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US4808763A (en) Process for upgrading light paraffins
US7531706B2 (en) Process for producing olefin by catalytic cracking of hydrocarbon
JP2000300987A (en) Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor
WO2005105710A1 (en) Method for producing lower olefin
JP3072348B2 (en) Method for producing lower olefin
JP4823655B2 (en) Method for producing xylenes
JP4452021B2 (en) Hydrocarbon catalytic cracking process
TW201821159A (en) Hydrocarbon conversion process
JP2008266286A (en) Method for producing alkene
JP5288255B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
EP2121645B1 (en) Catalyst system and process for the production of epoxides
JP4414169B2 (en) Olefin production method
JP5779398B2 (en) Method for activating zeolite catalyst
JP2010042343A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
US4477592A (en) Catalyst for skeletal isomerization
JP5674029B2 (en) Propylene and ethylene production method
KR102544676B1 (en) Catalyst for Producing Light Olefin and Producing Method of Light Olefin Using the Same
WO2022270401A1 (en) Method for producing cyclopentadiene
JP4159853B2 (en) Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same
JP3072347B2 (en) Method for producing lower olefin
JPH05194964A (en) Production of high-octane gasoline base
JP2021102561A (en) Manufacturing method of isoprene
JP2005247932A (en) Method for producing high-octane-number gasoline base stock
JPH04366199A (en) Preparation of liquid hydrocarbon mixture from lower olefin

Legal Events

Date Code Title Description
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term