JPH04365854A - Ion plating device - Google Patents

Ion plating device

Info

Publication number
JPH04365854A
JPH04365854A JP13925491A JP13925491A JPH04365854A JP H04365854 A JPH04365854 A JP H04365854A JP 13925491 A JP13925491 A JP 13925491A JP 13925491 A JP13925491 A JP 13925491A JP H04365854 A JPH04365854 A JP H04365854A
Authority
JP
Japan
Prior art keywords
film
electron beam
forming material
ions
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13925491A
Other languages
Japanese (ja)
Inventor
Natsuki Takahashi
夏木 高橋
Hideyuki Hiraiwa
秀行 平岩
Osamu Okubo
治 大久保
Yoshio Sunaga
芳雄 砂賀
Masao Iguchi
征夫 井口
Kazuhiro Suzuki
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Ulvac Inc
Original Assignee
Ulvac Inc
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Kawasaki Steel Corp filed Critical Ulvac Inc
Priority to JP13925491A priority Critical patent/JPH04365854A/en
Publication of JPH04365854A publication Critical patent/JPH04365854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film at an arbitrary film thickness distribution without impairing the deposition efficiency of a film forming material sticking to a work and to form the film having a uniform compsn. in the case of a compd. film by arbitrarily controlling the distributions of the ions, reactive gaseous ions and plasma thereof of an evaporating material which is evaporated and ionized without affecting the focusing property and orbit of an electron beam. CONSTITUTION:This ion plating device is provided with a focusing coil which efficiently irradiates the film forming material with the electrons supplied from an electron beam generator 5 and forms the magnetic field for ionizing the film forming material 10 to be evaporated and introduced gases. The device is provided with a 2nd focusing coil 13 which guides the ions of the film forming material evaporated from a hearth 4 and the ions and plasma of the introduced gases toward the work without affecting the orbit and focusing property of the electron beam 9 and controls the thickness distribution of the vapor deposited film on the surface of the work 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐摩耗性や耐蝕性、装
飾的価値、電磁気的特性、光学的特性を要求される金属
あるいは非金属の物体の表面に、例えばTiN、TiC
、TiCN、Al2O3、c−BN、Si3N4、Si
O2等を形成するイオンプレーティング装置に関する。
[Industrial Application Field] The present invention applies to the surface of metallic or non-metallic objects that require wear resistance, corrosion resistance, decorative value, electromagnetic properties, and optical properties, such as TiN, TiC, etc.
, TiCN, Al2O3, c-BN, Si3N4, Si
This invention relates to an ion plating device that forms O2, etc.

【0002】0002

【従来の技術】従来、ホローカソード電子銃の電子ビー
ム発生装置を備えたイオンプレーティング装置として、
図1或いは図2に示すように、真空室a内に被処理物b
と成膜材料cとの間にバイアス電源dによりバイアスを
かけ、両者の間に電離空間eを形成させると共に、その
電離空間eに対向させてホローカソード型電子銃fを設
け、該電子銃fの外周と成膜材料cを収めたハースgの
周囲とに夫々集束コイルh,iを設けた構成のものが知
られている(特公昭51−20170号、特公昭51−
13471号公報参照)。これらの図に於いて、jは反
応ガスを真空室a内へ導入する導入口を示し、電子銃f
から供給される電子ビームkをハースg内の成膜材料c
に照射して該成膜材料cを蒸発させると共にその蒸発物
をイオン化又は活性化し、同時にイオン化又は活性化し
た反応ガスと共に電離空間e中を輸送して被処理物bに
膜として付着させる。
[Prior Art] Conventionally, as an ion plating apparatus equipped with an electron beam generator of a hollow cathode electron gun,
As shown in FIG. 1 or 2, a workpiece b is placed in a vacuum chamber a.
A bias power source d applies a bias between the film-forming material c and the ionized space e to form an ionized space e between the two, and a hollow cathode electron gun f is provided opposite the ionized space e, and the electron gun f It is known that focusing coils h and i are provided around the outer periphery of the hearth g and around the hearth g containing the film-forming material c (Japanese Patent Publication No. 51-20170, Japanese Patent Publication No. 51-1989).
(See Publication No. 13471). In these figures, j indicates the inlet for introducing the reaction gas into the vacuum chamber a, and the electron gun f
The electron beam k supplied from
is irradiated to evaporate the film-forming material c and ionize or activate the evaporated material, and at the same time transport it together with the ionized or activated reaction gas through the ionization space e and deposit it on the object to be processed b as a film.

【0003】このとき、電子ビームkは、電子銃f近傍
の集束コイルhとハースgの周囲の集束コイルiにより
集束され、電子ビームkが成膜材料cに照射されるよう
に軌道が決定される。また、蒸発しイオン化された成膜
材料cおよび反応ガスのイオンとプラズマは、集束コイ
ルh,iにより形成される磁場によって拘束され、電離
空間eを通って被処理物bへ輸送される。
At this time, the electron beam k is focused by a focusing coil h near the electron gun f and a focusing coil i around the hearth g, and its trajectory is determined so that the electron beam k irradiates the film forming material c. Ru. Further, the evaporated and ionized film-forming material c and reaction gas ions and plasma are restrained by the magnetic field formed by the focusing coils h and i, and are transported to the object to be processed b through the ionization space e.

【0004】こうしたイオンプレーティングの作動時に
於いて、集束コイルhは、電子銃fの電子放出面から安
定した電子放出を行なわせることと、電子銃fから放出
された電子ビームkを成膜材料cの直上にまで輸送する
役割を営み、また、集束コイルiは、電子ビームkを適
度に集束させ、ビームを効率よく成膜材料cに入射させ
ることと、電子銃fの集束コイルhとの合成磁場により
電子ビームkを成膜材料cに偏向させる役割を営む。こ
れらの役割は、成膜材料cを効率よく安定して蒸発させ
ることを主目的としている。集束コイルh,iによって
形成される磁場の磁束線を図3に示す。
During the operation of such ion plating, the focusing coil h is used to cause stable electron emission from the electron emission surface of the electron gun f, and to direct the electron beam k emitted from the electron gun f to the film-forming material. The focusing coil i plays the role of transporting the electron beam directly above the electron beam c, and the focusing coil i focuses the electron beam k appropriately and makes the beam efficiently incident on the film-forming material c, and the focusing coil h of the electron gun f. It plays the role of deflecting the electron beam k toward the film-forming material c using a synthetic magnetic field. The main purpose of these roles is to efficiently and stably evaporate the film forming material c. The flux lines of the magnetic field formed by the focusing coils h, i are shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】従来のイオンプレーテ
ィング装置では、集束コイルh,iは、上記のように成
膜材料cを効率よく安定して蒸発させることを主目的と
して設計されているため、蒸発しイオン化した成膜材料
cのイオン、反応ガスのイオン及びそのプラズマは、集
束コイルh,iによって形成された磁場によりハースg
の中心軸のまわりに拘束されるものの、電子ビームkの
集束性及び軌道に影響を及ぼすことなく任意に上記イオ
ン及びプラズマの分布を制御できない欠点があった。そ
のため、被処理物bに付着する成膜材料cの効率を損な
うことなく任意の膜厚分布の膜や化合物膜の場合には組
成が均一な膜を形成することが困難であった。
[Problems to be Solved by the Invention] In the conventional ion plating apparatus, the focusing coils h and i are designed with the main purpose of efficiently and stably evaporating the film forming material c as described above. , the ions of the evaporated and ionized film-forming material c, the ions of the reaction gas, and their plasma are moved by the hearth g by the magnetic field formed by the focusing coils h and i.
However, there is a drawback that the distribution of the ions and plasma cannot be arbitrarily controlled without affecting the convergence and trajectory of the electron beam k. Therefore, it has been difficult to form a film with a uniform composition in the case of a film with an arbitrary thickness distribution or a compound film without impairing the efficiency of the film forming material c adhering to the object b.

【0006】例えば、図4に示すように、電子ビームk
の集束性及び軌道に影響を及ぼすことなく集束コイルh
,iによる磁場を大きくすると、Aで示すように被処理
物bへの付着効率が40%程度と大きくなるが、その膜
厚分布は±50%程度の不均一さを生じ、一方、集束コ
イルh,iによる磁場を小さくすると、Bで示すように
膜厚分布は±15%程度に均一になるが、付着効率は5
%程度の小さなものになる。更に、化合物膜形成に必要
な十分高い密度のプラズマを均一に被処理物bの近傍に
形成できないため、例えばTiN膜をFeの被処理物b
に形成した場合、場所により、図5に示すように、Ti
N膜のX線回折強度が被処理物bのFeに比べて非常に
小さい膜が形成される場合がある。
For example, as shown in FIG.
The focusing coil h without affecting the focusing property and trajectory of
, i, the adhesion efficiency to the object b increases to about 40% as shown in A, but the film thickness distribution becomes non-uniform about ±50%. When the magnetic field due to h and i is reduced, the film thickness distribution becomes uniform to about ±15% as shown in B, but the adhesion efficiency is 5%.
It will be as small as %. Furthermore, since it is not possible to uniformly form a sufficiently high-density plasma necessary for compound film formation near the workpiece b,
When Ti is formed, depending on the location, as shown in FIG.
A film may be formed in which the X-ray diffraction intensity of the N film is much smaller than that of the Fe of the object to be processed b.

【0007】本発明は、上記の従来のイオンプレーティ
ング装置の欠点を解決するもので、電子ビームの集束性
及び軌道に影響を及ぼすことなく蒸発しイオン化された
蒸発物質のイオン、反応ガスイオン及びそのプラズマの
分布を任意に制御することにより、被処理物に付着する
成膜材料の付着効率を損なうことなくしかも任意の膜厚
分布で膜を形成でき、化合物膜の場合には組成が均一な
膜を形成できるイオンプレーティング装置を提供するこ
とを目的とするものである。
The present invention solves the above-mentioned drawbacks of the conventional ion plating apparatus, and the ions of the evaporated substance, reactant gas ions, and By arbitrarily controlling the distribution of the plasma, it is possible to form a film with an arbitrary thickness distribution without impairing the adhesion efficiency of the film-forming material that adheres to the workpiece, and in the case of compound films, the composition can be uniform. The object of the present invention is to provide an ion plating device that can form a film.

【0008】[0008]

【課題を解決するための手段】本発明では、真空室内に
、蒸着膜が形成される被処理物と、該真空室内の下方に
設けられた成膜材料を溶解させるハースと、ガス導入口
とを設け、該被処理物にはこれに直流バイアスをかける
直流バイアス装置が接続され、更に、該ハースに向けて
電子ビームを供給する電子ビーム発生装置と、該電子ビ
ーム発生装置から供給される電子を効率よく成膜材料へ
照射させると共に蒸発する成膜材料と導入ガスをイオン
化するための磁場を形成する集束コイルを備えたイオン
プレーティング装置に於いて、該ハースから蒸発する成
膜材料のイオンと導入ガスのイオン及びプラズマを、該
電子ビームの軌道と集束性に影響を及ぼすことなく被処
理物に向けて誘導すると共に、該被処理物の表面での蒸
着膜の膜厚分布を制御する第2集束コイルを設けること
により、上記の目的を達成するようにした。
[Means for Solving the Problems] In the present invention, a workpiece on which a vapor-deposited film is to be formed, a hearth provided below the vacuum chamber for dissolving the film-forming material, and a gas inlet are provided in a vacuum chamber. A DC bias device that applies a DC bias to the object is connected to the workpiece, and an electron beam generator that supplies an electron beam toward the hearth, and an electron beam that is supplied from the electron beam generator. In an ion plating device equipped with a focusing coil that efficiently irradiates the film-forming material and forms a magnetic field to ionize the evaporated film-forming material and introduced gas, the ions of the film-forming material evaporated from the hearth are In addition to guiding the ions and plasma of the introduced gas toward the object to be processed without affecting the trajectory and focusability of the electron beam, the film thickness distribution of the deposited film on the surface of the object to be processed is controlled. By providing a second focusing coil, the above objective was achieved.

【0009】[0009]

【作用】電子ビーム発生装置からの電子ビームが集束コ
イルにより誘導されてハース内の成膜材料を照射すると
、該成膜材料が蒸発してイオン化すると共に真空室内に
導入した不活性ガス或いは反応ガスのプラズマとイオン
が発生し、これらのイオンとプラズマはバイアスがかけ
られた被処理物の表面に蒸着膜或いは反応蒸着膜として
付着する。該ハースと被処理物との間の電離空間と、該
被処理物の背後とに夫々独立して設けた第2集束コイル
を制御することにより、電子ビームの集束性及び軌道に
影響を及ぼさずに、成膜材料のイオン、導入ガスのイオ
ン及びそのプラズマの分布を任意に制御する磁場を形成
することが出来、被処理物に付着する成膜材料の付着効
率を損なわずに任意の膜厚分布で成膜し、化合物膜の場
合は組成が均一な膜を成膜することが出来る。
[Operation] When the electron beam from the electron beam generator is guided by a focusing coil and irradiates the film-forming material inside the hearth, the film-forming material evaporates and becomes ionized, and at the same time the inert gas or reactive gas introduced into the vacuum chamber Plasma and ions are generated, and these ions and plasma adhere to the biased surface of the workpiece as a vapor deposited film or a reactive vapor deposited film. By controlling second focusing coils that are independently provided in the ionization space between the hearth and the object to be processed and behind the object to be processed, the focusability and trajectory of the electron beam are not affected. It is possible to form a magnetic field that arbitrarily controls the distribution of the ions of the film-forming material, the ions of the introduced gas, and their plasma, and it is possible to form a film of any thickness without impairing the adhesion efficiency of the film-forming material that adheres to the workpiece. In the case of a compound film, it is possible to form a film with a uniform composition.

【0010】0010

【実施例】本発明の実施例を図面に基づき説明すると、
図6に於いて、符号1は真空室を示し、該真空室1内の
上方には蒸着膜が形成される被処理物2が適当な手段で
設けられ、該被処理物2の下方にはこれとの間で直流バ
イアス装置3により直流バイアスがかけられたハース4
が設けられる。更に、該真空室1内には、成膜材料10
を収めたハース4に向けて電子を照射するホローカソー
ド電子銃で構成された電子ビーム発生装置5と、不活性
ガス或いは反応ガスを導入するガス導入口6とが設けら
れる。該電子ビーム発生装置5の近傍には集束コイル7
が設けられ、ハース4の周囲には集束コイル8が設けら
れる。11は真空ポンプに接続される真空排気口である
[Example] An example of the present invention will be explained based on the drawings.
In FIG. 6, reference numeral 1 indicates a vacuum chamber, and a workpiece 2 on which a vapor deposited film is formed is provided above the vacuum chamber 1 by appropriate means, and a workpiece 2 below the workpiece 2 is provided. A hearth 4 to which a DC bias is applied by a DC bias device 3 between the
will be provided. Further, in the vacuum chamber 1, a film forming material 10 is provided.
An electron beam generator 5 configured with a hollow cathode electron gun that irradiates electrons toward the hearth 4 containing the gas, and a gas inlet 6 that introduces an inert gas or a reactive gas are provided. A focusing coil 7 is located near the electron beam generator 5.
is provided, and a focusing coil 8 is provided around the hearth 4. 11 is a vacuum exhaust port connected to a vacuum pump.

【0011】こうした構成は従来のものと略同様で、電
子ビーム発生装置5からの電子ビーム9は集束コイル7
によりハース4の直上へと誘導され、ハース4の周囲の
集束コイル8により集束されてハース4内の成膜材料1
0を蒸発させ、その蒸発材料は該ハース4の上方に発生
するガス導入口6からのガスによるプラズマによりイオ
ン化され、該ガスが反応ガスの場合には該蒸発材料が反
応して被処理物2に膜状に付着するが、本発明に於いて
は、該ハース4から蒸発する成膜材料10のイオンと導
入ガスのイオン及びプラズマを、該電子ビーム9の軌道
と集束性に影響を及ぼすことなく被処理物2に向けて誘
導すると共に、該被処理物2の表面での蒸着膜の膜厚分
布を制御する第2集束コイル13を設けた。
This configuration is substantially the same as the conventional one, and the electron beam 9 from the electron beam generator 5 is focused by the focusing coil 7.
The film-forming material 1 inside the hearth 4 is guided directly above the hearth 4 and focused by the focusing coil 8 around the hearth 4.
0 is evaporated, and the evaporated material is ionized by the plasma generated by the gas from the gas inlet 6 generated above the hearth 4. If the gas is a reactive gas, the evaporated material reacts and becomes the object to be processed 2. However, in the present invention, the ions of the film-forming material 10 evaporated from the hearth 4, the ions of the introduced gas, and the plasma are used to influence the trajectory and focusability of the electron beam 9. A second focusing coil 13 is provided which guides the object 2 toward the object 2 to be processed and controls the thickness distribution of the deposited film on the surface of the object 2 to be processed.

【0012】該第2集束コイル13は、該被処理物2と
ハース4との間の電離空間12と、被処理物2の背後と
に夫々独立して磁場強度が制御できるようにした環状の
コイル13a,13bで構成され、成膜材料10を蒸発
させる時にこれらのコイル13a,13bの磁場を調整
し、例えば図7に示すような磁場を形成することができ
る。イオンは磁場の強さに反比例した回転半径(ラーマ
ー半径)で回転しながら磁束線に沿って運動することが
知られているが、ハース4から蒸発したイオン化された
成膜材料10のイオン、導入ガスイオン、及びこれらの
プラズマは、まず第2集束コイル13aにより形成され
る磁場により拘束される。このとき該コイル13aによ
る磁場は、電子ビーム9の集束性及び軌道に影響を及ぼ
さない。更に第2集束コイル13a,13bによる磁場
を適当に合成することにより、被処理物2の被付着面上
で均一な磁場を形成しておくと、上記イオン及びそれら
のプラズマは被処理物2の被付着面に均一に誘導される
。その結果、被処理物2に付着する成膜材料10の付着
効率を損なうことなく厚さが均一な膜を形成することが
でき、反応ガスを導入して化合物膜を形成するときには
膜厚のみでなく組成も均一な膜を形成することができる
The second focusing coil 13 is an annular coil whose magnetic field strength can be controlled independently in the ionized space 12 between the object 2 and the hearth 4 and behind the object 2. It is composed of coils 13a and 13b, and when the film forming material 10 is evaporated, the magnetic fields of these coils 13a and 13b can be adjusted to form a magnetic field as shown in FIG. 7, for example. It is known that ions move along magnetic flux lines while rotating with a radius of rotation (Lamor radius) that is inversely proportional to the strength of the magnetic field. The gas ions and their plasma are first restrained by the magnetic field formed by the second focusing coil 13a. At this time, the magnetic field generated by the coil 13a does not affect the focusing properties and trajectory of the electron beam 9. Furthermore, by appropriately combining the magnetic fields from the second focusing coils 13a and 13b to form a uniform magnetic field on the surface of the object 2 to be treated, the ions and their plasma will be absorbed by the object 2. It is uniformly guided to the surface to which it is attached. As a result, it is possible to form a film with a uniform thickness without impairing the adhesion efficiency of the film-forming material 10 that adheres to the processing object 2, and when forming a compound film by introducing a reactive gas, only the film thickness can be formed. It is possible to form a film with a uniform composition.

【0013】本発明に基づくイオンプレーティング装置
により成膜材料10としてTiを用意し、ガス導入口6
からN2ガスを導入してFeの被処理物2に形成したT
iN膜の膜厚分布とX線回折強度を夫々図8、図9に示
した。これにより明らかなように、膜厚分布は±5%程
度、付着効率は約50%で、X線回折強度の大きいもの
が得られる。尚、被処理物2の被付着面が比較的小さい
場合や、膜を被処理物2の一部分に局所的に形成したい
場合には、第2集束コイル13の磁場を制御して、蒸発
イオン、反応ガスイオン、及びそれらのプラズマを必要
な方向に図10のように誘導することも可能である。
Ti is prepared as the film forming material 10 using the ion plating apparatus based on the present invention, and the gas inlet 6 is
T formed on the Fe treatment object 2 by introducing N2 gas from
The film thickness distribution and X-ray diffraction intensity of the iN film are shown in FIGS. 8 and 9, respectively. As is clear from this, a film with a film thickness distribution of about ±5%, an adhesion efficiency of about 50%, and a high X-ray diffraction intensity can be obtained. Note that when the surface of the object 2 to be treated is relatively small, or when it is desired to form a film locally on a part of the object 2, the magnetic field of the second focusing coil 13 is controlled so that the evaporated ions, It is also possible to guide the reactive gas ions and their plasma in the required direction as shown in FIG.

【0014】[0014]

【発明の効果】以上のように本発明では、集束コイルで
制御した電子ビームにより直流バイアスをかけながらイ
オンプレーティングを行なう装置に於いて、ハースから
蒸発する成膜材料のイオンと導入ガスのイオン及びプラ
ズマを、被処理物に向けて誘導して蒸着膜の膜厚分布を
制御する第2集束コイルを設けたので、被処理物の被着
面に任意の磁場を形成することができ、任意の膜厚分布
で付着効率良く成膜を行なえ、化合物膜の場合には組成
が均一な膜を形成することができる等の効果がある。
As described above, in the present invention, in an apparatus that performs ion plating while applying a direct current bias using an electron beam controlled by a focusing coil, ions of the film-forming material evaporated from the hearth and ions of the introduced gas are separated. and a second focusing coil that guides the plasma toward the object to be processed to control the thickness distribution of the deposited film, making it possible to form any magnetic field on the surface of the object to be processed. The film can be formed with good adhesion efficiency with the film thickness distribution, and in the case of a compound film, it is possible to form a film with a uniform composition.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  従来のイオンプレーティング装置の截断側
面図
[Figure 1] Cutaway side view of a conventional ion plating device

【図2】  他の従来例の截断側面図[Figure 2] Cutaway side view of another conventional example

【図3】  従来のイオンプレーティング装置の集束コ
イルにより形成される磁場の線図
[Figure 3] Diagram of the magnetic field formed by the focusing coil of a conventional ion plating device

【図4】  従来のイオンプレーティング装置による成
膜速度分布図
[Figure 4] Deposition rate distribution diagram using conventional ion plating equipment

【図5】  従来のイオンプレーティング装置によるT
iN膜の形成不良状態を示すX線回折強度の線図
[Figure 5] T by conventional ion plating equipment
Diagram of X-ray diffraction intensity showing poor formation of iN film

【図6
】  本発明の実施例のイオンプレーティング装置の截
断側面図
[Figure 6
] A cutaway side view of an ion plating apparatus according to an embodiment of the present invention.

【図7】  本発明の実施例による磁場の線図[Figure 7] Diagram of magnetic field according to an embodiment of the present invention

【図8】
  本発明の実施例による成膜速度分布図
[Figure 8]
Film deposition rate distribution diagram according to an embodiment of the present invention

【図9】  
本発明の実施例によるTiN膜のX線回折強度の線図
[Figure 9]
Diagram of X-ray diffraction intensity of TiN film according to an example of the present invention

【図10】  本発明の他の実施例による成膜速度制御
の説明図
FIG. 10: Explanatory diagram of film formation rate control according to another embodiment of the present invention

【符号の説明】[Explanation of symbols]

1  真空室        2  被処理物    
    3  直流バイアス装置
1 Vacuum chamber 2 Workpiece
3 DC bias device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  真空室内に、蒸着膜が形成される被処
理物と、該真空室内の下方に設けられた成膜材料を溶解
させるハースと、ガス導入口とを設け、該被処理物には
これに直流バイアスをかける直流バイアス装置が接続さ
れ、更に、該ハースに向けて電子ビームを供給する電子
ビーム発生装置と、該電子ビーム発生装置から供給され
る電子を効率よく成膜材料へ照射させると共に蒸発する
成膜材料と導入ガスをイオン化するための磁場を形成す
る集束コイルを備えたイオンプレーティング装置に於い
て、該ハースから蒸発する成膜材料のイオンと導入ガス
のイオン及びプラズマを、該電子ビームの軌道と集束性
に影響を及ぼすことなく被処理物に向けて誘導すると共
に、該被処理物の表面での蒸着膜の膜厚分布を制御する
第2集束コイルを設けたことを特徴とするイオンプレー
ティング装置。
Claim 1: A vacuum chamber is provided with a workpiece on which a vapor deposition film is to be formed, a hearth provided below the vacuum chamber for dissolving the film-forming material, and a gas inlet; is connected to a DC bias device that applies a DC bias, and further includes an electron beam generator that supplies an electron beam toward the hearth, and an electron beam generator that efficiently irradiates the film-forming material with the electrons supplied from the electron beam generator. In an ion plating device equipped with a focusing coil that forms a magnetic field to ionize the film-forming material and the introduced gas, which evaporate as the ionization occurs, the ions of the film-forming material evaporated from the hearth, the ions of the introduced gas, and the plasma are ionized. A second focusing coil is provided which guides the electron beam toward the object to be processed without affecting the trajectory and focusability of the electron beam, and controls the thickness distribution of the deposited film on the surface of the object to be processed. An ion plating device featuring:
【請求項2】  上記第2集束コイルを、ハースと被処
理物との間の電離空間と、該被処理物の背後とに夫々独
立に制御可能な2つの集束コイルで構成したことを特徴
とする請求項1に記載のイオンプレーティング装置。
2. The second focusing coil is comprised of two focusing coils that can be independently controlled, one in the ionized space between the hearth and the object to be processed, and the other behind the object to be processed. The ion plating apparatus according to claim 1.
【請求項3】  上記ガス導入口から反応ガスを真空室
内に導入するようにし、上記第2集束コイルの電流を制
御して被処理物の表面に形成される反応蒸着膜の組成分
布を制御したことを特徴とする請求項1に記載のイオン
プレーティング装置。
3. A reactive gas is introduced into the vacuum chamber from the gas inlet, and the current of the second focusing coil is controlled to control the composition distribution of the reactive vapor deposited film formed on the surface of the object to be treated. The ion plating apparatus according to claim 1, characterized in that:
JP13925491A 1991-06-11 1991-06-11 Ion plating device Pending JPH04365854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13925491A JPH04365854A (en) 1991-06-11 1991-06-11 Ion plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13925491A JPH04365854A (en) 1991-06-11 1991-06-11 Ion plating device

Publications (1)

Publication Number Publication Date
JPH04365854A true JPH04365854A (en) 1992-12-17

Family

ID=15241026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13925491A Pending JPH04365854A (en) 1991-06-11 1991-06-11 Ion plating device

Country Status (1)

Country Link
JP (1) JPH04365854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720206A1 (en) * 1994-12-28 1996-07-03 Sumitomo Heavy Industries, Ltd. Plasma processing method and plasma processing apparatus
JP2008522026A (en) * 2004-11-26 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated product and method for producing the same
JP2008522021A (en) * 2004-11-04 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated product and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720206A1 (en) * 1994-12-28 1996-07-03 Sumitomo Heavy Industries, Ltd. Plasma processing method and plasma processing apparatus
US5677012A (en) * 1994-12-28 1997-10-14 Sumitomo Heavy Industries, Ltd. Plasma processing method and plasma processing apparatus
JP2008522021A (en) * 2004-11-04 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated product and method for producing the same
JP2008522026A (en) * 2004-11-26 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated product and method for producing the same

Similar Documents

Publication Publication Date Title
US5433836A (en) Arc source macroparticle filter
US7014889B2 (en) Process and apparatus for plasma activated depositions in a vacuum
US5126030A (en) Apparatus and method of cathodic arc deposition
JPH08176807A (en) Method and apparatus for vapor-depositing highly ionized medium in electromagnetically controlled environment
US4941430A (en) Apparatus for forming reactive deposition film
US20130020195A1 (en) Vacuum deposition apparatus
US5976636A (en) Magnetic apparatus for arc ion plating
JPH04365854A (en) Ion plating device
JP3409874B2 (en) Ion plating equipment
US20090020415A1 (en) "Iontron" ion beam deposition source and a method for sputter deposition of different layers using this source
JP3464998B2 (en) Ion plating apparatus and method for controlling thickness and composition distribution of deposited film by ion plating
JP3399570B2 (en) Continuous vacuum deposition equipment
RU2173911C2 (en) Production of electric-arc plasma in curvilinear plasma guide and application of coating on supporting structure
JPS6320447A (en) Method and apparatus for continuous coating of metallic strip with ceramics
AU655009B2 (en) Arc source macroparticle filter
JPS595732Y2 (en) Ion plating equipment
JPS63203767A (en) Ion plating device
JPH0796707B2 (en) Hollow cathode long continuous ion plating device
JP2600092B2 (en) Surface modification method for metallic materials
JPS60128261A (en) Ion plating device
JPH01287288A (en) Method for cleaning metal surface and cleaned metal
JPS61119669A (en) Ion plating apparatus
JPH0372069A (en) Method for continuously vapor-depositing compound on metal strip
JP2686139B2 (en) Magnetic recording medium and method of manufacturing the same
JPH1180940A (en) Arc type evaporation source

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001212