JPH0436421Y2 - - Google Patents

Info

Publication number
JPH0436421Y2
JPH0436421Y2 JP4463486U JP4463486U JPH0436421Y2 JP H0436421 Y2 JPH0436421 Y2 JP H0436421Y2 JP 4463486 U JP4463486 U JP 4463486U JP 4463486 U JP4463486 U JP 4463486U JP H0436421 Y2 JPH0436421 Y2 JP H0436421Y2
Authority
JP
Japan
Prior art keywords
light
polarized light
circularly polarized
separating
shifting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4463486U
Other languages
Japanese (ja)
Other versions
JPS62156840U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4463486U priority Critical patent/JPH0436421Y2/ja
Publication of JPS62156840U publication Critical patent/JPS62156840U/ja
Application granted granted Critical
Publication of JPH0436421Y2 publication Critical patent/JPH0436421Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、光の偏光状態を測定する偏光解析装
置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a polarization analyzer that measures the polarization state of light.

<従来技術> 偏光解析装置(エリプソメータ)はミクロン以
下の薄膜の厚さ(例えば薄膜デバイスのゲート絶
縁膜や、層間絶縁膜、多層膜、多結晶半導体の膜
厚)測定や基板や膜の物性、特性を知るための屈
折率を測定するものである。
<Prior art> Ellipsometers are used to measure the thickness of sub-micron thin films (for example, the thickness of gate insulating films in thin film devices, interlayer insulating films, multilayer films, and polycrystalline semiconductors), and to measure the physical properties of substrates and films. It measures the refractive index to determine its characteristics.

はじめに偏光解析の原理を第2図を用いて簡単
に説明する。
First, the principle of polarization analysis will be briefly explained using FIG.

図中Sは入射面に対する垂直成分、Pは水平成
分である。1は薄膜が形成された試料であり、2
は入射偏光、3は反射偏光である。図では試料1
に入射した垂直成分のS波が反射後楕円偏光に変
化している状態を示している。
In the figure, S is a vertical component with respect to the plane of incidence, and P is a horizontal component. 1 is a sample on which a thin film was formed, 2
is the incident polarized light, and 3 is the reflected polarized light. In the figure, sample 1
This shows a state in which the vertical component of the S-wave incident on the image changes into elliptically polarized light after reflection.

ところで、この変化は2つのパラメータからな
り、1つは垂直成分S波、水平成分P波間の位相
差Δであり、もう1つは各成分波間の反射係数比
角ψである。このΔ,ψは Δ=δP−δS ψ=tan-1(RP/RS) で表わすことができる。偏光解析装置はこのΔ,
ψを測定する装置である。
By the way, this change consists of two parameters, one is the phase difference Δ between the vertical component S wave and the horizontal component P wave, and the other is the reflection coefficient ratio angle ψ between each component wave. These Δ and ψ can be expressed as Δ=δ P −δ S ψ=tan −1 (R P /R S ). The polarization analyzer uses this Δ,
This is a device that measures ψ.

第3図は、この様な偏光解析装置に用いられる
従来装置を示す要部構成図である。第3図におい
て、Lは光源であり、光源Lからの光は偏光子
H1により直接偏光とされ、1/4波長板Qにより円
偏光2に変換される。この円偏光2は試料1で反
射しその表面に形成された膜厚や特性により楕円
偏光3となり、検光子H2で更に直接偏光とされ
る。Pは前記直線偏光4の光強度を電気信号に変
換する光電変換素子である。
FIG. 3 is a block diagram of the main parts of a conventional device used in such a polarization analyzer. In Figure 3, L is a light source, and the light from light source L is polarized.
The light is directly polarized by H 1 and converted into circularly polarized light 2 by the quarter-wave plate Q. This circularly polarized light 2 is reflected by the sample 1 and becomes elliptically polarized light 3 due to the thickness and characteristics of the film formed on its surface, and is further converted into directly polarized light by the analyzer H2 . P is a photoelectric conversion element that converts the light intensity of the linearly polarized light 4 into an electrical signal.

上記構成において、検光子H2を回転させなが
ら光電変換素子Pで光強度を測定する。このとき
光強度が最大となる位置が楕円の長軸方向であ
る。そして、この位置に直交する位置が楕円の短
軸方向であり、前記長軸方向の光強度と短軸方向
の光強度の比から楕円の長軸と短軸の比を求める
ことができる。
In the above configuration, the light intensity is measured by the photoelectric conversion element P while rotating the analyzer H2 . At this time, the position where the light intensity is maximum is in the long axis direction of the ellipse. A position perpendicular to this position is the short axis direction of the ellipse, and the ratio between the long axis and short axis of the ellipse can be determined from the ratio of the light intensity in the long axis direction and the light intensity in the short axis direction.

<考案が解決しようとする問題点> ところで、このような構成において、長軸と短
軸の比を正確に測定するためには検光子H2を高
精度で回転させる必要があり、装置全体が複雑大
型となる。また、薄膜形成工程における真空中で
その膜厚を測定したいような場合、回転機構の油
漏れ防止等に特別な工夫が必要となる。
<Problems to be solved by the invention> By the way, in such a configuration, in order to accurately measure the ratio of the long axis to the short axis, it is necessary to rotate the analyzer H 2 with high precision, which makes the entire device It becomes complicated and large. Further, when it is desired to measure the film thickness in a vacuum during the thin film forming process, special measures are required to prevent oil leakage from the rotating mechanism.

本考案は上記従来技術に鑑みて成されたもの
で、回転機構が不要で、小形、軽量化が可能であ
り、真空中での測定も可能な偏光解析装置を実現
することを目的とする。
The present invention has been made in view of the above-mentioned prior art, and aims to realize a polarization analyzer that does not require a rotation mechanism, can be made smaller and lighter, and can also perform measurements in vacuum.

<問題点を解決するための手段> 前記問題点を解決するための本考案の構成は、
光源からの光を円偏光に変換する手段と、前記円
偏光を2方向に分岐する分岐部と、分岐した一方
の円偏光の周波数をシフトさせるシフト手段と、
分岐した他方の円偏光を反射する反射手段と、前
記シフト手段によりシフトした円偏光と反射手段
により反射した反射光を結合する結合部と、前記
結合した光を偏光分離する分離手段と、前記分離
手段で分離したそれぞれの光の光強度を検出する
光検出手段を備え、前記反射手段として試料を用
いたものである。
<Means for solving the problems> The configuration of the present invention for solving the above problems is as follows:
means for converting light from a light source into circularly polarized light; a branching section for branching the circularly polarized light into two directions; and a shifting means for shifting the frequency of one of the branched circularly polarized lights;
a reflecting means for reflecting the other branched circularly polarized light; a coupling section for coupling the circularly polarized light shifted by the shifting means with the reflected light reflected by the reflecting means; a separating means for polarizing the combined light; and a separating means for polarizing the combined light. The apparatus includes a light detection means for detecting the light intensity of each light separated by the means, and uses a sample as the reflection means.

<実施例> 第1図は本考案による偏光解析装置の一実施例
を示す構成図である。図において第3図と同一要
素には同一符号を付して説明は省略するが、本例
においては光源Lからの光は光フアイバFを介し
て偏光子H1に入射している。偏光子H1で直線偏
光となつた光は1/4波長板Qにより円偏光2とさ
れ、この円偏光とされた光は例えばニオブ酸リチ
ウム(LiNbO3)の基板にチタン(Ti)を拡散し
て形成した導波路Kに導入され分岐部Y1で2方
向に分岐される。分岐された一方の光は鋸歯状波
の電界を印加して周波数をシフトするシフト手段
Mによりその周波数がシフトされる。
<Example> FIG. 1 is a configuration diagram showing an example of a polarization analyzer according to the present invention. In the figure, the same elements as in FIG. 3 are denoted by the same reference numerals and explanations are omitted, but in this example, light from the light source L is incident on the polarizer H1 via the optical fiber F. The light that has become linearly polarized by polarizer H 1 is made into circularly polarized light 2 by quarter-wave plate Q, and this circularly polarized light is diffused with titanium (Ti) on a substrate of, for example, lithium niobate (LiNbO 3 ). The light is introduced into the waveguide K formed by the above-mentioned method, and is branched into two directions at a branching portion Y1 . The frequency of one of the branched lights is shifted by a shift means M that applies a sawtooth wave electric field to shift the frequency.

このとき、周波数シフトしたS,P波の偏光成
分は次式により表わすことができる。
At this time, the polarization components of the frequency-shifted S and P waves can be expressed by the following equation.

ERS・exp j(ω+ω′)t ……(1) ERP・exp j{(ω+ω′)t+θ} ……(2) ここで、ERS;円偏光のS成分の電界強度 ERP;円偏光のP成分の電界強度 ω;光の周波数 ω′;シフトした光の周波数のもとの周波数と
の差 t;時間 θ;位相(π/4) 一方分岐された他方の円偏光は導波路Kから出
射して試料1に入射されその表面の状態に応じて
楕円偏光になつて反射される。
E RS・exp j(ω+ω′)t ……(1) E RP・exp j{(ω+ω′)t+θ} ……(2) Here, E RS :Electric field strength of S component of circularly polarized light E RP :Circle Electric field strength of the P component of polarized light ω; Frequency of light ω′; Difference between the shifted frequency of light and the original frequency t: Time θ: Phase (π/4) The other branched circularly polarized light passes through the waveguide. The light is emitted from K, enters the sample 1, and is reflected as elliptically polarized light depending on the surface condition of the sample.

このとき、楕円偏光のS,P波の偏光成分は次
式により表わすことができる。
At this time, the polarization components of the S and P waves of elliptically polarized light can be expressed by the following equation.

ESS・exp j(ωt+Bs) ……(3) ESP・exp j(ωt+BP+θ) ……(4) ここで、ESS;楕円偏光のS成分の電界強度 ESP;楕円偏光のP成分の電界強度 BS;反射によつて生じたS成分の位相差 BP;反射によつて生じたP成分の位相差 t;時間 θ;位相(π/4) この楕円偏光は、ふたたび導波路Kに入射し結
合部Y2で周波数シフト手段によりシフトした円
偏光と結合される。
E SS・exp j(ωt+B s ) ……(3) E SP・exp j(ωt+B P +θ) ……(4) Here, E SS ; electric field strength of S component of elliptically polarized light E SP ; P of elliptically polarized light electric field strength of the component B S ; phase difference of the S component caused by reflection B P ; phase difference of the P component caused by reflection t; time θ; phase (π/4) This elliptically polarized light is guided again. The light enters the wave path K and is combined with the circularly polarized light shifted by the frequency shifting means at the coupling portion Y2 .

このとき上記シフトした円偏光と楕円偏光の結
合光(AS……S波、AP……P波)は(1)〜(4)式か
ら次式により表わすことができる。
At this time, the shifted combined light of the circularly polarized light and the elliptically polarized light (A S . . . S wave, A P . . . P wave) can be expressed by the following equation from equations (1) to (4).

AS=ERS・exp j(ω+ω′)t+ESS ・exp j(ωt+BS) ……(5) AP=ERP・exp j{(ω+ω′)t+θ} +ESP・exp j(ωt+BP+θ) ……(6) この結合光は検光子H2に入射されて偏光分離
され光強度を検出する手段(例えばフオトタイオ
ード)PD1,PD2により光強度を検出する。この
ときの光検出手段の出力は次式のように表わすこ
とができる。
A S =E RS・exp j(ω+ω′)t+E SS・exp j(ωt+B S ) ……(5) A P =E RP・exp j{(ω+ω′)t+θ} +E SP・exp j(ωt+B P +θ )...(6) This combined light is incident on the analyzer H 2 to undergo polarization separation, and the light intensity is detected by means for detecting light intensity (for example, photodiodes) PD 1 and PD 2 . The output of the photodetecting means at this time can be expressed as in the following equation.

PD1=|AS2=ESS 2+ERS 2 +2ESS・ERScos(ω′t−BS) ……(7) PD2=|AP2=ESP 2+ERP 2 +2ESP・ERPcos(ω′t−BP) ……(8) この光検出手段からの出力は図示しない直流カ
ツト手段により除去され、次式で示す交流成分が
取出される。
PD 1 = |A S | 2 =E SS 2 +E RS 2 +2E SS・E RS cos(ω′t−B S ) ……(7) PD 2 = |A P | 2 =E SP 2 +E RP 2 +2E SP ·E RP cos(ω′t−B P ) (8) The output from this photodetecting means is removed by a direct current cut means (not shown), and an alternating current component expressed by the following equation is extracted.

PD1AC=2ESS・ERScos(ω′t−BS) ……(9) PD2AC=2ESP・ERScos(ω′t−BP) ……(10) 上記(9),(10)式に示すAC信号出力の比から反射
光のS,P成分の強度比が求まり、また検出器の
AC信号の位相差から反射光のS,P偏光成分の
位相差を求めることができる。そして、上記2つ
のパラメータから試料表面の薄膜の厚さや特性を
分析することができる。
PD 1AC = 2E SS・E RS cos (ω′t−B S ) ……(9) PD 2AC = 2E SP・E RS cos (ω′t−B P ) ……(10) Above (9), ( The intensity ratio of the S and P components of the reflected light can be determined from the ratio of the AC signal output shown in equation 10), and the
The phase difference between the S and P polarization components of the reflected light can be determined from the phase difference between the AC signals. Then, the thickness and characteristics of the thin film on the sample surface can be analyzed from the above two parameters.

<考案の効果> 以上実施例とともに具体的に説明したように本
考案によれば、回転機構がないので小形、軽量に
構成することができ、真空中での測定も容易な偏
光解析装置を実現することができる。
<Effects of the invention> As specifically explained above with the embodiments, according to the invention, there is no rotation mechanism, so it is possible to construct a compact and lightweight polarization analyzer, and it is easy to perform measurements in vacuum. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示す要部構成説明
図、第2図は偏光解析の原理を示す説明図、第3
図は従来の偏光解析装置を示す要部構成図であ
る。 1……試料、2……入射偏光(直線偏光)、3
……楕円偏光、4……円偏光、L……光源、F…
…光フアイバ、H1……偏光子、H2……分離手段
(検光子)、K……導波路、M……周波数シフト手
段、PD1,PD2……光検出手段、Y1……分岐部、
Y2……結合部。
Fig. 1 is an explanatory diagram of the main part configuration showing one embodiment of the present invention, Fig. 2 is an explanatory diagram showing the principle of polarization analysis, and Fig. 3 is an explanatory diagram showing the principle of polarization analysis.
The figure is a configuration diagram of main parts of a conventional polarization analyzer. 1... Sample, 2... Incident polarized light (linear polarized light), 3
...Elliptically polarized light, 4...Circularly polarized light, L...Light source, F...
...Optical fiber, H 1 ... Polarizer, H 2 ... Separation means (analyzer), K ... Waveguide, M ... Frequency shift means, PD 1 , PD 2 ... Light detection means, Y 1 ... branch,
Y 2 ...Connection part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光源からの光を円偏光に変換する手段と、前記
円偏光を2方向に分岐する分岐部と、分岐した一
方の円偏光の周波数をシフトさせるシフト手段
と、分岐した他方の円偏光を反射する反射手段
と、前記シフト手段によりシフトした円偏光と前
記反射手段により反射した反射光を結合する結合
部と、前記結合した光を偏光分離する分離手段
と、前記分離手段で分離したそれぞれの光の光強
度を検出する光検出手段を備え、前記反射手段と
して試料を用いたことを特徴とする偏光解析装
置。
means for converting light from a light source into circularly polarized light, a branching section for splitting the circularly polarized light into two directions, a shifting means for shifting the frequency of one of the branched circularly polarized lights, and a reflector for reflecting the other branched circularly polarized light. a reflecting means, a coupling part for coupling the circularly polarized light shifted by the shifting means and the reflected light reflected by the reflecting means, a separating means for separating the polarized light from the combined light, and a separating means for separating the polarized light by the separating means. A polarization analyzer comprising a light detection means for detecting light intensity, and using a sample as the reflection means.
JP4463486U 1986-03-26 1986-03-26 Expired JPH0436421Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4463486U JPH0436421Y2 (en) 1986-03-26 1986-03-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4463486U JPH0436421Y2 (en) 1986-03-26 1986-03-26

Publications (2)

Publication Number Publication Date
JPS62156840U JPS62156840U (en) 1987-10-05
JPH0436421Y2 true JPH0436421Y2 (en) 1992-08-27

Family

ID=30862631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4463486U Expired JPH0436421Y2 (en) 1986-03-26 1986-03-26

Country Status (1)

Country Link
JP (1) JPH0436421Y2 (en)

Also Published As

Publication number Publication date
JPS62156840U (en) 1987-10-05

Similar Documents

Publication Publication Date Title
US4176951A (en) Rotating birefringent ellipsometer and its application to photoelasticimetry
US4762414A (en) Static interferometric ellipsometer
WO2018058798A1 (en) Terahertz full-polarization-state detection spectrograph
US3594085A (en) Ellipsometric method and device
CN1187600C (en) Apparatus and method for measuring equivalent refraction power of optical film and physical thickness
JPH02503115A (en) differential ellipsometer
US4077720A (en) Spectroscopic auto ellipsometer
CN118243274A (en) Optical nondestructive testing system and method for residual stress of substrate
JPH0436421Y2 (en)
JP2008122405A (en) Method of reaction analysis
Oka Singleshot spectroscopic polarimetry using channeled spectrum
JPH08152307A (en) Method and apparatus for measuring optical constants
TWI464387B (en) Heterodyne interferometer based on the subtraction between optical interference signals designed for measuring the ellipsometric parameters of thin films
JP3181655B2 (en) Optical system and sample support in ellipsometer
USH230H (en) Apparatus for non-destructive inspection of blind holes
JPS63186130A (en) Ellipsometer
JPH0419522B2 (en)
JPH11101739A (en) Ellipsometry apparatus
JPS63168541A (en) Ellipsometer
JP2529562B2 (en) Ellipsometer
JPH07134147A (en) Signal waveform measuring device
Azzam Integrated photopolarimeters
JPH03160331A (en) Polarization analyser
JP4076237B2 (en) Ellipsometer
JPS63148108A (en) Ellipsometer